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Abstract—Stochastic hybrid system (SHS) models can be used
to analyze and design complex embedded systems that operate in
the presence of uncertainty and variability. Verification of reach-
ability properties for such systems is a critical problem. Develop-
ing sound computational methods for verification is challenging
because of the interaction between the discrete and the continuous
stochastic dynamics. In this paper, we propose a probabilistic
method for verification of SHSs based on discrete approxima-
tions focusing on reachability and safety problems. We show that
reachability and safety can be characterized as a viscosity solution
of a system of coupled Hamilton–Jacobi–Bellman equations. We
present a numerical algorithm for computing the solution based
on discrete approximations that are derived using finite-difference
methods. An advantage of the method is that the solution con-
verges to the one for the original system as the discretization
becomes finer. We also prove that the algorithm is polynomial in
the number of states of the discrete approximation. Finally, we
illustrate the approach with two benchmarks: a navigation and a
room heater example, which have been proposed for hybrid system
verification.

Index Terms—Reachability analysis, stochastic hybrid systems
(SHSs), verification.

I. INTRODUCTION

S TOCHASTIC hybrid system (SHS) models can be used
to analyze and design complex embedded systems that

operate in the presence of uncertainty and variability since
they incorporate complex dynamics, uncertainty, and multiple
modes of operations and they can support high-level control
specifications that are required for the design of autonomous or
semiautonomous applications. Verification of the reachability
properties for such systems aims at determining the probability
that the system will reach a set of desirable or unsafe states,
and it is a critical problem because of the interaction between
the discrete and the continuous stochastic dynamics.

Reachability and safety properties for (nonstochastic) hybrid
systems are usually expressed as formulas in appropriate logics.
Given a specification formula encoding a property, the task is
to determine whether the formal model of the system satisfies
the property or to generate a counterexample that violates
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the formula. In this paper, we propose a probabilistic method
for verification of reachability properties. Instead of encoding
the reachability property with a logical formula that can be
evaluated to be true or false, we consider a representation using
measurable functions taking values in [0, 1] that characterize
the probability that the system satisfies the property. Such a
real-valued logic framework is based on the seminal work by
Kozen [1], which generalizes logic to handle probabilistic phe-
nomena. An approach for the analysis of probabilistic systems
based on similar logics and discounting of the future has been
presented in [2].

This paper addresses verification for the reachability and
safety problems for SHSs. The main contribution is the char-
acterization of reachability and safety properties as viscosity
solutions of a system of coupled Hamilton–Jacobi–Bellman
(HJB) equations. Based on this formulation, this paper proposes
a computational method based on discrete approximations for
solving reachability analysis problems for SHSs.

Specifically, we show that reachability for SHSs can be
represented by a measurable function that is interpreted as the
probability that an arbitrary initial state will reach a target
set while avoiding an unsafe set. This paper shows that this
function is a value function of a dynamic programming problem
and can be characterized as a fixed point of a recursive operator
defined with respect to the (random) stopping times that repre-
sent the times of the discrete jumps. Assuming nondegeneracy
for the diffusion term of the stochastic continuous dynamics,
we show that the value function is bounded and continuous.
These properties are then used to prove that the value function
for the reachability problem of SHSs is similar to the value
function for the exit problem of a standard stochastic diffusion,
but the running and terminal costs depend on the value function
itself. Based on this formulation, we show the main result of
this paper, which characterizes the value function as a viscosity
solution of a system of coupled HJB equations.

One of the advantages of characterizing reachability proper-
ties using viscosity solutions is that for computational purposes
we can employ numerical algorithms based on discrete approx-
imations. We use an approximation method for SHSs based on
finite-differences similar to the methods presented in [3]. We
present an iterative algorithm based on dynamic programming
for computing the solution and we show that the algorithm con-
verges for appropriate initial conditions. Furthermore, we show
that the solution based on the discrete approximation converges
to the one for the original SHS as the discretization becomes
finer. The proof of the convergence is a straightforward ex-
tension to the SHSs of the results presented in [4]. Regarding
the efficiency of the computational methods, we prove that the
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iterative algorithm is polynomial in the number of states of
the discrete approximation process. This number exponentially
grows with the dimension of the continuous state space, and
therefore, scalability to high-dimensional systems is a limiting
factor of the approach. Finally, we illustrate our results with a
navigation benchmark and a room heater benchmark that have
been proposed for hybrid system verification [5]. Preliminary
results of our approach have been presented in [6].

The rest of this paper is organized as follows. Section II
compares the proposed approach with existing work on SHSs
and computational methods for verification of hybrid systems.
Section III describes the SHS model. Section IV formulates the
reachability and safety problem and characterizes their solution.
Section V presents and analyzes the numerical methods based
on discrete approximations. Section VI illustrates the approach
using two benchmarks, and Section VII concludes this paper.

II. RELATED WORK

In this paper, we adopt the model presented in [7], which can
be viewed as an extension of the SHSs described in [8]. An
important characteristic of this model used in our analysis is
that it satisfies the strong Markov property [7]. Related models
have been presented in [9], with emphasis on the modeling
and analysis of communication networks, and in [10] for the
simulation of concurrent systems. A technique for probabilistic
verification for discrete-time SHSs based on an optimal control
formulation has been presented in [11]. Mathematical tools
for analyzing the reachability of SHSs based on the theory on
Dirichlet forms that implies the development of computational
methods based on theorem provers have been presented in [12].
A method for safety verification based on overapproximation of
the safe set using barrier certificates has been developed in [13].

SHSs can be viewed as an extension of piecewise deter-
ministic processes [14] that incorporate stochastic continuous
dynamics. Reachability of such systems has been studied in
[15]. Communicating piecewise Markov processes have been
presented in [16] with emphasis on concurrence. Optimal con-
trol of piecewise deterministic processes has been studied in
[17], where it is proven that the value function is the unique
viscosity solution of a first-order HJB equation. The work in
[17] is based on a dynamic programming argument for char-
acterizing the value function as a fixed point of an appropriate
recursive operator and considers a discounted optimal control
criterion that ensures that the recursive operator is contractive
in order to prove convergence. In contrast, our work considers
a reachability criterion for SHSs for which the value function
is a viscosity solution of a set of coupled second-order HJB
equations. The results of [17] cannot be applied, because the
presence of stochastic continuous dynamics and the absence
of a discount factor in the reachability criterion require new
techniques for proving convergence.

Reachability properties for continuous and hybrid systems
have been characterized as viscosity solutions of variants of
HJB equations in [18] and [19]. Extensions of this approach
to SHSs and a toolbox based on level set methods have been
presented in [20]. Level set methods are also based on a dis-
cretization of the state space, but they may offer computational

advantages since the computation is limited to a neighborhood
of the reachable set. The dynamic programming approach
described in this paper is usually simpler to implement and
capture the dependence of the value function between discrete
modes. The approach also allows us to show the convergence
of the solution obtained using the numerical methods to the
solution of the SHS.

Discrete approximation methods based on finite differences
have been studied extensively in [3] and the references therein.
Convergence results justifying the use of discrete approxima-
tion techniques for stochastic optimal control problems have
been presented in [3] and [4]. Based on discrete approxima-
tions, the reachability problem can be solved using algorithms
for discrete processes [21]–[23]. The approach has been applied
for optimal control of SHSs, given the discounted cost criterion
in [24]. For verification of reachability properties, the discount
term cannot be used, and convergence of the value function can
be ensured only for appropriate initial conditions. A related
grid-based method for safety analysis of stochastic systems
with applications to air traffic management has been presented
in [25]. Our approach is similar, but using viscosity solu-
tions, we show the convergence of the discrete approximation
methods.

This section also compares the proposed approach with exist-
ing computational methods for (nonstochastic) hybrid systems.
To our knowledge, computational methods for verification of
SHSs have not been reported in the literature. Hybrid systems
can be verified by two types of techniques: 1) overapproxima-
tive and 2) convergent [26].

In overapproximative verification techniques, each step of
the verification algorithm is designed to produce an overap-
proximation of the forward or backward reachable set. These
methods use set representations such as polyhedra or ellipsoids
and have been reported to scale well up to about six dimensions
for general hybrid systems. If the reachable set is not initially
found to be safe, it is required to tighten the verification vari-
ables and approximations. Therefore, multiple attempts may be
necessary to verify a system, and it cannot be guaranteed that a
solution can always be found.

The d/dt tool uses an overapproximation based on convex
sets using griddy polyhedra expressed as closed-unit hyper-
cubes with integer vertices [27]. Polyhedral approximations
of flow pipes are used to calculate the forward reachable sets
from an initial polyhedral set for linear dynamics. CheckMate
is a Matlab-based tool that has similar requirements and uses a
similar verification algorithm as d/dt [28]. VeriSHIFT is a tool
that employs ellipsoidal sets and time-varying linear dynamics
to calculate the reachable set using a similar technique as
d/dt [29]. The predicate abstraction technique reported in [30]
requires the specification of appropriate predicates that divide
the state space into a finite number of regions. Continuous
and discrete successors are calculated similarly to d/dt, but the
predicate abstraction technique only calculates the intersection
of the successors with other abstract states instead of the union
with previous reachable states such as d/dt, CheckMate, or
VeriSHIFT [30].

Performance results have been reported in [5] for the navi-
gation benchmark (see Section VI) using d/dt and the predicate
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abstraction method. Because the performance of the verification
using either technique varies with the choice of initial state,
several initial states were tested. While some tests completed
in just seconds, others were unable to return a solution. Some
of the problems that d/dt could not verify were verified using
predicate abstraction inasmuch as 78 min on an instance of
the navigation benchmark with nine discrete states. These tests
were executed on a four-processor Sun Enterprise 3000 with
4 GB of memory.

It is difficult to compare these results with our approach,
because the performance of our algorithm is not dependent on a
set of initial states. Furthermore, our technique will verify SHSs
with nonlinear continuous dynamics. Our method is able to gen-
erate reachability results for every state of a 25-location version
of the navigation benchmark at a resolution of 0.1 in under
200 min on a 2-GHz desktop computer with 1 GB of memory.

Convergent approximative techniques solve the verification
problem by approximating the hybrid system with another
model of computation for which there exist well-understood
verification methods. These techniques generally use grids to
discretize the state space and allow the user to choose the
resolution of the approximation. Examples of this technique
include the level set method (LSM) [19] and our approximation
using locally consistent discrete Markov processes.

The LSM is based on two-person zero-sum game theory to
determine an implicit representation of the boundary of the
reachable set. Performance results are not as good as those of
overapproximative methods, but the LSM has been used on
systems with five dimensions [26]. One benefit of convergent
techniques is that they generally do not restrict the dynamics of
the system or the shape of the reachable set. We have verified a
stochastic version of the collision avoidance problem described
in [26] with our method and found that our method has a similar
performance as the LSM. One of the advantages of our method
is that it can be easily parallelized. In our preliminary work on
parallel methods for verification of SHSs, we have been able
to verify 7-D systems [31] by applying known decomposition
methods from parallel dynamic programming [32].

III. SHSS

We adopt the general SHS (GSHS) model presented in [7].
This section describes the model and establishes the notation.

Let Q be a set of discrete states. For each q ∈ Q, we consider
the Euclidean space R

d(q) with dimension d(q), and we define
an invariant as an open set Xq ⊆ R

d(q). The hybrid state space
is denoted as S =

⋃
q∈Q{q} × Xq. Let S̄ = S ∪ ∂S and ∂S =⋃

q∈Q{q} × ∂Xq denote the completion and the boundary of
S, respectively. The Borel σ-field in S is denoted as B(S).

Definition 1: A GSHS is defined as H = ((Q, d,X ), b, σ,
Init, λ,R), where

• Q is a set of discrete states (modes);
• d: Q → N is a map that defines the continuous state space

dimension for each q ∈ Q;
• X : Q → R

d(·) is a map that describes the invariant for each
q ∈ Q as an open set Xq ⊆ R

d(q);
• b: Q × Xq → R

d(q) and σ: Q × Xq → R
d(q)×p are drift

vectors and dispersion matrices, respectively;

• Init: B(S) → [0, 1] is an initial probability measure on S;
• λ: S̄ → R+ is a nonnegative transition rate function;
• R: S̄ × B(S̄) → [0, 1] is a transition measure.
To define the execution of the system, we denote the under-

lying probability space as (Ω,F , P ) and consider an R
p-valued

Wiener process w(t) and a sequence of stopping times {t0 =
0, t1, t2, . . .}. Let the state at time ti be s(ti) = (q(ti), x(ti))1

with x(ti) ∈ Xq(ti). While the continuous state stays in Xq(ti),
x(t) evolves according to the stochastic differential equation
(SDE), i.e.,

dx = b(q, x)dt + σ(q, x)dw (1)

where the discrete state q(t) = q(ti) remains constant and the
solution of (1) is understood using the Itô stochastic integral
[33]. A sample path of the stochastic process is denoted by
xt(ω), t > ti, and ω ∈ Ω.

The next stopping time ti+1 represents the time when the
system transitions to a new discrete state. The discrete transition
occurs either because the continuous state x exits the invariant
Xq(ti) of the discrete state q(ti) or based on an exponential
distribution with transition rate function λ. Therefore, ti+1

can be defined as the minimum between two other stopping
times: 1) the first hitting time of the boundary ∂Xq(ti) defined
as t∗i+1 = inf{t ≥ ti, x(t) ∈ ∂Xq(ti)} and 2) a stopping time
τi+1 described by an exponential distribution with survivor
function, i.e.,

M(t, ω) = exp


−

t∫
ti

λ (q(ti), xz(ω)) dz,


 , ω ∈ Ω.

Thus, the time of the next discrete transition ti+1 is a stopping
time whose distribution is defined by the survivor function

F (t, ω) = I(t<t∗
i+1) exp


−

t∫
ti

λ (q(ti), xz(ω)) dz




where I denotes the indicator function.2

At time ti+1, the system will transition to a new discrete
state, and the continuous state may jump according to reset
measure R. The trajectory of x(t) is assumed to be left-
continuous, so we denote the solution of (1) at t = ti+1

as x(t−i+1) and s(t−i+1) = (q(t−i+1), x(t−i+1)), where q(t−i+1) =
q(ti) is the discrete state before the transition. If ti+1 = ∞,
the system continues to evolve according to (1), with q(t) =
q(ti). If ti+1 < ∞, the system jumps at ti+1 to a new state
s(ti+1) = (q(ti+1), x(ti+1)) according to transition measure
R(s(t−i+1), A), with A ∈ B(S). The evolution of the system is
then governed by the SDE (1) with q(t) = q(ti+1) until the next
stopping time.

The following assumptions are imposed on the model.
The functions b(q, x) and σ(q, x) are bounded and Lipschitz

1When there is no confusion, we will interchangeably use the notation (q, x)
and s for the hybrid state to simplify complex formulas, and often, we will use
the notation sti = (qti , xti) for brevity.

2Given a set A ∈ F , the indicator function is defined as IA(ω) = 1 if ω ∈
A and 0 if ω �∈ A.
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continuous in x for every q; thus, SDE (1) has a unique solution.
The transition rate function λ is a bounded and measurable
function that is assumed to be integrable for every xt(ω). For
the transition measure, it is assumed that R(·, A) is measurable
for all A ∈ B(S), R(s, ·) is a probability measure for all s ∈ S̄,
and R((q, x), dz) is a stochastic continuous kernel.

Let Nt =
∑

i It≥ti
denote the number of jumps in interval

[0, t]. It is assumed that the expected number of jumps is finite
for every initial state s ∈ S, i.e., Es[Nt] < ∞. A sufficient
condition for ensuring finitely many jumps can be formulated
by imposing restrictions on the transition measure R(s,A). Let
s = (q, x) be the state after a discrete transition. If, for every
x ∈ A, d(x, ∂Xq) ≥ ε > 03 and ∃δ > 0 such that P [inf{t >
ti+1, x(t) ∈ ∂Xq} ≥ δ] = 1, then ti+1 − ti > δ, i = 1, 2, . . .,
with a probability of 1. This condition is satisfied if the contin-
uous state after a jump is in the interior of an invariant.

Additionally, in this paper, we consider the two following
assumptions:
Assumption 1—Nondegeneracy: The boundaries ∂Xq are

assumed to be sufficiently smooth, and the trajectories of the
system satisfy a nontangency condition with respect to the
boundaries. A sufficient condition for the nontangency assump-
tion is that the diffusion term is nondegenerate, i.e., a(q, x) =
σ(q, x)σT (q, x) is positive definite. This assumption is used
to show the continuity of the viscosity solution close to the
boundaries [4]. It should be noted that it is possible to show the
continuity of the viscosity solution close to the boundaries even
with degenerate variance by imposing appropriate conditions
[3], [4].
Assumption 2—Boundness: It is assumed that the set Q is

finite and that Xq is bounded for every q. This is a reasonable
assumption for many systems that have finitely many modes
and saturation constraints on the continuous state. Even if the
state space is unbounded, it is often desirable to approximate
it for applying numerical methods. By defining appropriately
the boundary conditions, it can be shown that the effect of
the numerical cutoff is small [4]. This assumption is used for
approximating the hybrid system by a finite Markov chain
(MC) and employing numerical methods based on dynamic
programming.

In the remainder of this paper, we refer to the class of GSHS
that satisfies the preceding assumptions as SHSs.

IV. PROBABILISTIC VERIFICATION

In this section, we formulate the reachability problem for
SHS, and we show that reachability can be characterized as a
viscosity solution of a system of coupled HJB equations.

A. Reachability

Given a target set and an unsafe set of states, the objective of
the reachability problem is to compute the probability that the
system execution from an arbitrary initial state will reach the
target set while avoiding the unsafe set.

3d(x, ∂Xq) denotes the Euclidean distance between x and ∂Xq .

Fig. 1. (a) Reachability and (b) safety.

In general, the target and unsafe sets for SHS may be de-
scribed as unions of target and unsafe sets, respectively for mul-
tiple modes. For example, a target set may be independent of
the discrete state and represented as a subset of the continuous
state space, which requires considering a target subset for every
discrete state. Let T = ∪q∈QT

{q} × T q and U = ∪q∈QU
{q} ×

Uq be subsets of S representing the set of target and unsafe
states, respectively. The reachability problem is illustrated in
Fig. 1(a). We assume that T q and Uq are proper open subsets
of Xq for each q, i.e., ∂T q ∩ ∂Xq = ∂Uq ∩ ∂Xq = ∅ and
the boundaries ∂T q and ∂Uq are sufficiently smooth. We de-
fine Γq = Xq \ (T̄ q ∪ Ūq) and Γ = ∪q∈Q{q} × Γq. The initial
state (which, in general, is a probability distribution) must lie
outside sets T and U . Transition measure R(s,A) is assumed
to be defined so that the system cannot jump directly to U or T .

Consider the stopping time τ = inf{t ≥ 0 : s(t) ∈ ∂T ∪
∂U} corresponding to the first hitting time of the boundary of
the target or unsafe set. Let s be an initial state in Γ; then, we
define the function V : Γ̄ → R+ as

V (s) =




Es

[
I(s(τ−)∈∂T )

]
, s ∈ Γ

1, s ∈ ∂T
0, s ∈ ∂U

where Es denotes the expectation of functionals, given the
initial condition s, and I denotes the indicator function. The
function V (s) can be interpreted as the probability that a
trajectory starting at s will reach set T while avoiding set U .

If the state hits the boundary of the unsafe or target set, then
the value function will take the value 0 and 1, respectively, and
it is assumed that the execution of the SHS terminates. The
termination of the stochastic process is formalized by slightly
modifying the SHS model. Inspired by [14], we add a new
terminal state ∆. The system transitions to ∆ with a probability
of 1 only upon hitting the boundary of the target or unsafe set.
The transition to the terminal state is captured by extending the
transition measure R of the SHS according to the following:

R(s,∆) =
{

1, if s ∈ ∂T ∪ ∂ U
0, otherwise.

The new process is indistinguishable from the original process
s(t) for t < τ , and at time τ , it jumps to ∆ and stays there for-
ever. The system immediately dies after transitioning to ∆, i.e.,
b(∆) = σ(∆) = λ(∆) = 0. Finally, we extend V by defining
V (∆) = 0, which agrees with the probabilistic interpretation
of V . By abuse of notation, we will denote the new process
also by s(t).

Given the assumptions on sets T and U and their boundaries,
we can construct a bounded function c : S̄ → R+ continuous
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in x such that

c(q, x) =
{

1, if x ∈ ∂T q

0, if x ∈ ∂Uq ∪ ∂Xq.

We define a counting process p∗ by

p∗(t) =
∞∑

i=1

I(t≥ti)I(s(ti− )∈∂S).

Process p∗(t) counts the number of times the trajectory hits the
boundary and jumps up to time t [14]. Then, value function V
can be written as

V (s) = Es


 ∞∫

0

c (qt− , xt−) dp∗(t)


 . (2)

We will show that V can be characterized as a viscosity solution
of a system of coupled HJB equations.

The formulation of the reachability problem previously de-
scribed can be modified to describe safety. In a safety problem,
we are given a set of safe states, and we want to compute the
probability that the system execution from an arbitrary (safe)
initial state will go outside the safe set. Let B = ∪q∈QB

{q} ×
Bq be a subset of S representing the set of safe states. The
safety problem is shown in Fig. 1(b). We assume that the set
of unsafe states Xq \ Bq for each q is a proper subset of Xq,
i.e., ∂Xq ∩ ∂Bq = ∅. The initial state must lie inside the safe
set B, and the transition measure R(s,A) is defined so that the
system cannot jump out of the safe set directly to the unsafe set.
We can transform the safety problem to a reachability problem
by defining the target set as T q = Xq \ Bq and the unsafe set
as Uq = ∅. Note that, in this case, the definition of Γq becomes
Γq = Xq \ (T q ∩ Uq) = Bq. Clearly, with this transformation,
the probability that the system is unsafe can be computed as
the value function described by (2) similarly to the reachability
problem.

B. Viscosity Solutions

In this section, we use a dynamic programming argument
to derive a representation of the value function that resembles
a discount cost criterion with a target set. Then, we extend
the results from standard stochastic diffusions to show that
the value function is characterized as a viscosity solution of a
system of HJB equations.

The application of dynamic programming requires a recur-
sive scheme that provides the basis for computing the value
function. We consider the set of nonnegative Borel measurable
functions B(S)+ and define operator G : B(S)+ → B(S)+ by

Gg(q, x) = Es

[
c
(
qt−1

, xt−1

)
I(t1=t∗1) + g (qt1 , xt1)

]
(3)

where t1 is the stopping time of the first jump. The value
function can be computed by recursive application of operator
G. The recursion is defined with respect to the stopping times ti
that represent the times of the discrete jumps. The next lemma

defines the recursive operation of G and is used by Theorem 1,
which shows that value function V is a fixed point of G.

Lemma 1:

Gng(q, x) = Es


 tn∫

0

c (qt− , xt−) dp∗(t) + g (qtn
, xtn

)


 .

Proof: By the strong Markov property [7] and the con-
struction of the SHS process, we have4

Es

[
c
(
qt−2

, xt−2

)
I(t2=t∗2) + g (qt2 , xt2) |Ft1

]
= Es

[
c
(
qt1 , xt−2

)
I(t2=t∗2) + g (qt2 , xt2) |Ft1

]
= Es [g (qt1 , xt1)] .

Therefore

G2g(q, x)=G(Gg(q, x))

= Es

[
c
(
qt−1

, xt−1

)
I(t1=t∗1) + Gg(qt1 , xt1)

]
= Es

[
c
(
qt−1

, xt−1

)
I(t1=t∗1)

+ Es

[
c
(
qt−2

, xt−2

)
I(t2=t∗2)+g(qt2 , xt2)|Ft1

]]
= Es

[
c
(
qt−1

, xt−1

)
I(t1=t∗1)+c

(
qt−2

, xt−2

)
× I(t2=t∗2) + g(qt2 , xt2)

]
.

By induction, we get

Gng(q, x) = Es

[
n∑

i=1

c
(
qt−

i
, xt−

i

)
I(ti=t∗

i ) + g(qtn
, xtn

)

]

= Es


 tn∫

0

c(qt− , xt−)dp∗(t) + g(qtn
, xtn

)


 .

�
Theorem 1: Value function V is a fixed point of operator G.
Proof: By definition of G, for any ψ1 ≤ ψ2, we have

Gψ1 ≤ Gψ2. Let v0(q, x) = 0 for every q and every x, and
set vn+1(q, x) = Gvn(q, x). Then, {vn} monotonically in-
creases, and vn takes values in [0, 1] for every n. Therefore,
limn→∞ vn(q, x) = v(q, x) exists. Note that convergence is not
guaranteed for other choices of v0.

Since v ≥ vn, we have Gv ≥ Gvn. Thus, Gv ≥ vn+1 for
all n. Therefore, Gv ≥ v. In addition, Gvn = vn+1 ≤ v ≤
Gv, and limn→∞ vn = v. Therefore, Gv ≤ v ≤ Gv, and v =
limn→∞ vn is a fixed point of G.

Finally, by Lemma 1, v = limn→∞ Gnv0 =
Es[

∫∞
0 c(qt− , xt−)dp∗(t)]; therefore, V is a fixed point of

G, i.e., V (s) = GV (s). �
Next, we show that value function V for the reachability

problem of SHSs is similar to the value function for the exit
problem of a standard stochastic diffusion, but the running and
terminal costs depend on value function V itself.

4Ft denotes the filtration of the SHS process.
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Theorem 2: Consider the value function V (s) defined by
(2), and define LV (q, x) = λ(q, x)

∫
Γ V (y)R((q, x), dy) and

ψV (q, x) = c(q, x) +
∫
Γ V (y)R((q, x), dy). Denote Λ(t) =

exp{−
∫ t

0 λ(q0, xz)dz}; then, for s ∈ Γ

V (s)=Es




t∗1∫
0

Λ(t)LV (qt− , xt−) dt+Λ (t∗1) ψV
(
qt∗1

, xt∗1

) .

(4)

Proof: The SHS satisfies the strong Markov property [7];
therefore, the Markov property can be applied not only for con-
stant times but also for random stopping times. Let t1 be the
time of the first jump and t∗1 =inf{t≥0 : x(t) ∈ ∂Xq(t0)}; then,
using a standard dynamic programming argument, we can write

V (s)=Es


I(t1<t∗1)

∫
Γ

V (y)R
((

qt−1
, xt−1

)
, dy

)

+ I(t1=t∗1)


c

(
qt∗1

, xt∗1

)
+
∫
Γ

V (y)R
((

qt∗1
, xt∗1

)
, dy

)

. (5)

By construction of the transition rate λ, t1, and xt are not
independent (unless λ is constant). Denote the σ-field σ(xt,
t ≥ 0) generated by xt as F∞. The conditional distribution of
t1, given F∞, is

P [t1 > t|F∞] = It<t∗1
Λ(t)

and the conditional density of t1 is

dP [t1 ≤ t|F∞]
dt

= λ(q0, xt)Λ(t)I(t<t∗1) + Λ (t∗1) δ (t − t∗1) .

Thus, (5) can be written as

V (s) = Es

[
Es

[
I(t1<t∗1)

∫
Γ

V (y)R
((

qt−1
, xt−1

)
, dy

)

+ I(t1=t∗1)

(
c
(
qt∗1

, xt∗1

)
+
∫
Γ

V (y)

× R
((

qt∗1
, xt∗1

)
, dy

))
|F∞

]]

=Es




t∗1∫
0

λ(qt, xt)Λ(t)
∫
Γ

V (y)R ((qt− , xt−), dy) dt

+ Λ (t∗1) c
(
qt∗1

, xt∗1

)
+ Λ (t∗1)

×
∫
Γ

V (y)R
((

qt∗1
, xt∗1

)
, dy

)
and, using the definitions of LV (q, x) and ψV (q, x), we have

V (s)=Es




t∗1∫
0

Λ(t)LV (qt− , xt−) dt+Λ (t∗1) ψV
(
qt∗1

, xt∗1

) .

�

Assuming that transition measure R(s,A) is a continuous
stochastic kernel, the map (q, x) →

∫
Γ f(y)R((q, x), dy) is

bounded uniformly continuous for every bounded and con-
tinuous function f [34]. Then, if V is continuous in X̄q(t0),
(4) is similar to the discounted cost criterion with a target set
of a standard stochastic diffusion [3]. The main difference is
that running cost LV (q, x) and terminal cost ψV (q, x) depend
on the value function. It should be noted that, since the SHS
satisfies the strong Markov property, the same procedure can be
repeated every time a jump occurs. Next, we show that, under
the nondegeneracy assumption, V is bounded and continuous.

Theorem 3: V is bounded and continuous in x on Γ̄.
Proof: The G operator defined by (3) can be written as

Gg(q, x) = Es


 t1∫

0

c(qt− , xt−)dp∗(t) + g (qt1 , xt1)


 .

Since the SHS satisfies the strong Markov property, we can
apply the same transformation as in Theorem 2 to get

Gg(q, x)=Es




t∗1∫
0

Λ(t)Lg(qt−, xt−)dt+Λ (t∗1) ψg
(
qt∗1

, xt∗1

)
(6)

and therefore

vn+1(q, x) = Gvn(q, x)

= Es

[ t∗n∫
0

Λ(t)Lvn

(qt− , xt−)dt

+ Λ(t∗1)ψ
vn

(qt∗n , xt∗n)

]
.

Because of the nondegeneracy assumption, the exit times t∗i are
continuous at the sample paths of the process [3]. Therefore,
all the functions in the sequence vn are continuous, and fur-
thermore, we have vn ≥ v0 for every n. By applying the results
in [34, Ch. 7], we can conclude that V = limn→∞ vn is lower
semicontinuous and bounded below.

Next, define a new function Ṽ : Γ̄ → R+ by

Ṽ (s) =




Es

[
I(s(τ−)∈∂U)

]
, s ∈ Γ

1, s ∈ ∂U
0, s ∈ ∂T .

Function Ṽ can be interpreted as the probability that a trajectory
starting at s will reach U before T , and it can be written as

Ṽ (s) = Es


 ∞∫

0

c̃(qt− , xt−)dp∗(t)




where

c̃(q, x) =
{

0, if x ∈ ∂T q ∪ ∂Xq

1, if x ∈ ∂Uq.
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From the nondegeneracy assumption, we have Ṽ = 1 − V (s).
By applying the argument given in the beginning of the proof
to Ṽ , it follows that Ṽ is lower semicontinuous and bounded
below; therefore, V = 1 + (−Ṽ ) is upper semicontinuous and
bounded above. Thus, V is continuous and bounded in Γ̄. �

Next, we prove the main result of this section that charac-
terizes V as the viscosity solution of a system of HJB equa-
tions. The HJB equations are derived based on the results of
[3] and [4].
Theorem 4: Assume that b and σ are continuously differen-

tiable with respect to x in Γq for each q and, for suitable C1 and
C2, satisfy |bx| ≤ C1, |σx| ≤ C1, and |b(q, 0)| + |σ(q, x)| ≤
C2. Then, V is the unique viscosity solution of the following
system of equations:

HV

(
(q, x), V,DxV,D2

xV
)

= 0 in Γq, q ∈ Q (7)

with boundary conditions

V (q, x) = ψV (q, x) on ∂Γq, q ∈ Q (8)

where

HV

(
(q, x), V,DxV,D2

xV
)

= b(q, x)DxV

+
1
2

tr
(
a(q, x)D2

xV
)
+λ(q, x)V +LV (q, x).

Proof: Consider the function

v(q, x) =
{
Gg(q, x), in Γq

ψg(q, x), on ∂Γq

where g ∈ B(S)+ is a continuous and bounded function. From
(6), it follows that v(q, x) is the value function of an exit-time
problem in Γq for the diffusion (1), where Lg : Γ → R+ and
ψg : ∂Γ → R+ are bounded continuous functions. Under the
assumptions of f and σ, we can apply the results for standard
Markov diffusions [4, Th. V.2.1, Corollary V.3.1]; therefore,
v(q, x) is a viscosity solution of

Hg

(
(q, x), V,DxV,D2

xV
)

= 0 in Γq (9)

V (q, x) = ψg(q, x) on ∂Γq. (10)

By Theorem 3, V is bounded and continuous. Therefore

V̄ (q, x) =
{
GV (q, x), in Γq

ψV (q, x), on ∂Γq

is a viscosity solution of

HV

(
(q, x), V̄ ,DxV̄ ,D2

xV̄
)

= 0 in Γq

V̄ (q, x) = ψV (q, x) on ∂Γq

where V is considered to be known, and V̄ is unknown. How-
ever, V is a fixed point of G; thus, V = GV = V̄ in Γq, and
ψV =ψV̄ on ∂Γq, which means that V = V̄ is a viscosity solu-
tion of (7) and (8). Furthermore, V is continuous and therefore
is the unique viscosity solution, which is continuous on Γ̄. �

Equation (7) describes a set of coupled second-order par-
tial differential equations (one for each discrete state), with

boundary conditions given by (8), which can be viewed as a set
of HJB equations associated with the reachability problem for
the SHS. The coupling between the equations arises because
the value function in a particular mode depends on the value
function in the adjacent modes and is formally captured by
the dependence of the running and terminal costs LV (q, x) and
ψV (q, x) on value function V .

V. NUMERICAL METHODS FOR REACHABILITY ANALYSIS

A. Locally Consistent MCs

In this section, we employ the finite-difference method pre-
sented in [3] to compute locally consistent MCs that approx-
imate the SHS while preserving local mean and variance. We
consider a discretization of the state space denoted by S̄h =
∪q∈Q{q} × S̄h

q , where S̄h
q is a set of discrete points approximat-

ing Xq and h > 0 is an approximation parameter characterizing
the distance between neighboring points. By abuse of notation,
we denote the sets of boundary and interior points of S̄h

q as
∂Sh

q and Sh
q , respectively. By the boundness assumption, the

approximating MC will have finitely many states, which are
denoted by sh

n = (qh
n, ξh

n), n = 1, 2, . . . , N .
First, we consider the continuous evolution of the SHS

between jumps and assume that the state is (q, x). The local
mean and variance given by the SDE (1) on interval [0, δ] are

E [x(δ) − x] = b(q, x)δ + o(δ)

E
[
(x(δ) − x) (x(δ) − x)T

]
= a(q, x)δ + o(δ).

Let {qh
n = q, ξh

n} describe the MC on Sh
q ⊂ Xq with transition

probabilities denoted by ph
D((q, x), (q′, x′)). A locally consis-

tent MC must satisfy

E
[
∆ξh

n

]
= b(q, x)∆th(q, x) + o

(
∆th(q, x)

)
E
[(

∆ξh
n − E

[
∆ξh

n

]) (
∆ξh

n − E
[
∆ξh

n

])T
]

= a(q, x)∆th(q, x) + o
(
∆th(q, x)

)
where ∆ξh

n = ξh
n+1 − ξh

n, ξh
n = x, and ∆th(q, x) are appropri-

ate interpolation intervals (or the “holding times”) for the MC.
The diffusion transition probabilities ph

D((q, x), (q′, x′)) and
the interpolation intervals can be systematically computed from
the parameters of the SDE (details can be found in [3]). For
example, if the diffusion matrix a(q, x) is diagonal and we
consider a uniform grid, with ei denoting the unit vector in the
ith direction, the transition probabilities are

ph
D ((q, x), (q, x ± hei)) =

aii(q, x)/2 + hb±i (q, x)
Q(q, x)

and the interpolation intervals are ∆t(q, x)=h2/Q(q, x), where
Q(q, x)=

∑
i[aii(q, x)+h|bi(q, x)|], and a+=max{a, 0} and

a− = max{−a, 0} denote the positive and negative parts of a
real number, respectively.

Next, we consider the jumps with transition rate λ(q, x) and
transition measure R((q, x), A). Suppose that, at time t, the
state has just changed to {qh

n = q, ξh
n = x}. The probability that
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a jump will occur on [t, t + δ) conditioned on the past data can
be approximated by

P [(q, x) jumps on [t, t + δ)|q(s), x(s), w(s), s ≤ t]

= λ(q, x)δ + o(δ).

The ith jump of the approximating process is denoted by
ζ((q, x), ρi), where ρi are independent random variables with
distribution R̄ = {ρ : ζ((q, x), ρi) ∈ A} = R((q, x), A) with
compact support Π. Let ζh be a bounded measurable function
such that |ζh((q, x), ρ) − ζ((q, x), ρ)| → 0 as h → 0 uniformly
in x for each ρ, which satisfies ζh((q, x), ρ) ∈ S̄h.

If x ∈ Sh
q , then, with probability ph

jump(q, x) =
λ(q, x)∆th(q, x) + o(∆th(q, x)), there is a jump, and the
next state is (qh

n+1, ξ
h
n+1) = ζh((q, x), ρi); with probability

1 − ph
jump(q, x), the next state is determined by the diffusion

probabilities ph
D. Thus, the transition probabilities are given by

ph ((q, x), (q′, x′)) =
(
1 − ph

jump(q, x)
)
ph

D ((q, x), (q′, x′))

+ ph
jump(q, x)R̄

{
ρ : ζh ((q, x), ρ) = (q′, x′ − x)

}
. (11)

For points x ∈ ∂Sh
q in the boundary, the next state is determined

by ζh((q, x), ρi) with a probability of 1, and the transition
probabilities are given by

ph ((q, x), (q′, x′))=R̄
{
ρ : ζh ((q, x), ρ)=(q′, x′−x)

}
. (12)

B. Iterative Methods for Reachability Analysis

The previous section described how we can approximate an
SHS by a locally consistent MC. This section describes the
approximation of the value function, formulates the discrete
verification problem, and presents the convergence results for
the numerical methods based on the discrete approximations.

We consider the approximating MC {sh
n} = {(qh

n, ξh
n)} with

transition probabilities ph((q, x), (q′, x′)) defined in (11) and
(12). Let T̄h = S̄h ∩ T̄ and Ūh = S̄h ∩ Ū denote the dis-
cretized target and unsafe sets, respectively. We denote the
times of the jumps between modes as ni and the stopping time
representing (qh

n, ξh
n) ∈ T̄h ∪ Ūh as νh. Then, value function V

can be approximated by

V h(s) = Es

[
νh∑

n=0

c
(
qh
n, ξh

n

)
I(n=ni)

]
.

Function V h can be computed using a value iteration algo-
rithm. To show the convergence of the algorithm, we modify
the model to capture the termination of the process by con-
sidering a terminal state ∆ similar to Section IV. The state
space of the MC becomes S̃h = S̄h ∪ {∆}, and the transition
probabilities are defined, so that p̃h((q, x),∆) = 1 if x ∈ T̄h ∪
Ūh, p̃h(∆,∆)=1, and p̃h((q, x), (q′, x′))=ph((q, x), (q′, x′))
otherwise. This means that, when the state reaches T or U , it
transitions to ∆ and stays there forever. Consider the function

c̃ : S̃h → R+ with c̃(∆) = 1 and c̃(q, x) = 0 for every (q, x),
and the value function

Ṽ h(s) = Es

[ ∞∑
n=0

c̃
(
sh

n

)]
. (13)

Clearly, this sum is well-defined and bounded, and we have
Ṽ h = V h. The next proposition shows that function Ṽ h can
be computed using value iteration assuming appropriate initial
conditions.
1) Proposition 1: Let Ṽ h

0 (q, x) = 0 for every (q, x); then,
the iteration

Ṽ h
n+1(q, x) =


∑

q′,x′

p̃h ((q, x), (q′, x′)) Ṽ h
n (q′, x′)


 (14)

converges pointwise and monotonically to Ṽ h = V h.
Proof: Consider the value function defined by (13). We

have Ṽ h(q, x) ∈ [0, 1] < ∞ and c̃(s) ≥ 0 for all s ∈ S̃h.
Therefore, computing Ṽ is a special case of the total expected
reward criterion for positive models [21]. If v is a fixed point of
the iteration (14), then v + k[1, . . . , 1]T , k > 0, is also a fixed
point. Thus, the iteration may have multiple fixed points, but
if we pick Ṽ h

0 = 0, it converges to the least fixed point Ṽ h

[21, Th. 7.2.12]. �

C. Convergence Results

Finally, we show that the value function V h obtained us-
ing the approximating MC converges to the value function
V of the SHS as h → 0. The proof of the convergence is
a straightforward extension to the SHSs of the results pre-
sented in [4].

Let g ∈ B(S)+ be a continuous and bounded function, and
suppose that V is the unique viscosity solution of (9) and (10)
that is bounded and continuous in Γ̄q. First, we show conver-
gence for V h when the boundary conditions are described by
function g.

We consider Σ̄h
q to be a discretization of Γ̄q and denote the

set of interior and boundary points as Σh
q and ∂Σh

q , respectively.
The dynamic programming equation can be written as

V h(q, x) =
{

Fh
g

[
V h(·)

]
(q, x), if x ∈ Σh

q

ψh
g (q, x), if x ∈ ∂Σh

q

where

Fh
g [V h(·)](q, x) =

(
1 − ph

jump(q, x)
)

×
∑
q′,x′

ph
D ((q, x), (q′, x′)) V h(q′, x′)

+
(
ph
jump(q, x)

) ∫
Π

g(ζh ((q, x), ρ)) R̄(dρ)

ψh
g (q, x) = c(q, x) +

∫
Π

g
(
ζh((q, x), ρ)

)
R̄(dρ).

Lemma 2: limy→x,h→0 V h(q, y) = V (q, x) uniformly in Γ̄q.
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Proof: V is the continuous and bounded viscosity solution
of (9) and (10), and ψg(q, x) is continuous. Therefore, for
each q, we have a standard exit problem from Γq for the SDE
(1), and by applying the results of [4, Sec. IX5], V h converges
uniformly to V . �

To show the convergence of V h for the SHS, we replace
g by V , and we follow an argument similar to the proof of
Theorem 4.
Theorem 5: Let

V h(q, x) =
{

Fh
V [V h(·)](q, x), if x ∈ Σh

q

ψh
V (q, x), if x ∈ ∂Σh

q

then limy→x,h→0 V h(q, y) = V (q, x).
Proof: Assume that V is given, and define

V̄ h(q, x) =
{

Fh
V

[
V̄ h(·)

]
(q, x), if x ∈ Σh

q

ψh
V (q, x), if x ∈ ∂Σh

q .

By Lemma 2, since V is bounded and continuous, we have
limy→x,h→0 V̄ h(q, y) = V̄ (q, x). Assume that, for each h, V̄ h

is computed by a value iteration algorithm with v0 = 0. Then,
V h is a fixed point of Fh

V ; therefore, V̄ h = V h for every h
and V̄ = V . �

D. Complexity Analysis

So far, we have proven that the iteration described by (14)
converges to the value function V h for zero initial conditions
and, furthermore, that V h converges to value function V , i.e.,
the viscosity solution for the original SHS problem, as the
discretization becomes finer. Next, we show that the proposed
computational algorithm is polynomial in the number of states
of the approximating discrete Markov process.

Analysis of the computational complexity of value iteration
algorithms is usually based on the contraction property of the
iteration operator. The iteration operator used for verification of
SHS corresponds to an undiscounted criterion, and showing that
it is a contraction mapping is more complex. In this section, we
prove first that the iteration operator restricted to an appropriate
set is a contraction mapping with respect to some weighted
infinity norm. Based on the contraction property, we conclude
the polynomial-time complexity of the algorithm. Our analysis
is based on the methodology presented in [32] and [35].

We consider the MC {sh
n = (qh

n, ξh
n), n = 1, 2, . . . , N} with

state space denoted by S̃h derived earlier in this section and
denote the iteration operator defined by (14) as F̃h. By con-
struction of terminal state ∆, if the chain reaches ∂Th or ∂Uh,
it transitions to ∆ with a probability of 1. States from which
∆ cannot be reached do not affect the convergence of the
value iteration algorithm. The value function for these states
is initialized to 0 and will remain 0 as the algorithm proceeds.
Without loss of generality, we index the states as follows: the
first state sh

1 is the terminal state ∆, states sh
n, n = 2, . . . , M are

the states from which ∆ can be reached, and sh
n, n = M + 1,

. . . , N are the states from which ∆ cannot be reached.
Lemma 3: The operator F̃h : R

N → R
N defined by (14) is a

contraction mapping with respect to some weighted norm
‖ · ‖w

∞ over X ={x∈R
N|x≥0, x1 =xM+1 = · · ·=xN =0}.

Proof: We consider the set Θ = {sh
n, n = 1, 2, . . . ,M},

and we construct the following partition:

Θ1 =
{
sh
1

}
Θk =

{
sh

n|sh
n �∈ Θ1 ∪ · · · ∪ Θk−1 and

∃sh
m ∈ Θ1 ∪ · · · ∪ Θk−1 s.t. p̃h

(
sh

n, sh
m

)
> 0

}
.

Clearly, for every state sh
n ∈ Θ, there exists some k such that

sh
n ∈ Θk. In addition, for every k and every state sh

n ∈ Θk, we
have sh

n ∈ Θ; therefore, there exists L such that
⋃L

k=1 Θk = Θ.
We define weights w2, . . . , wM as follows:

wn =
{

1 − η2k, ∀sh
n ∈ Θk, k = 1, . . . , L

1, otherwise

where η = minsh
m:p̃h(sh

n,sh
m)>0{p̃h(sh

n, sh
m) > 0}. Since η ∈

(0, 1), we have wn ∈ (0, 1) for every n = 1, . . . , M . Let γ =
(1 − η2L−1)/(1 − η2L+1) < 1. Consider state sh

n ∈ Θk, and let
sh

� ∈ Θ1 ∪ · · · ∪ Θk−1 such that p̃h(sh
n, sh

� ) > 0. We have
 ∑

sh
m∈Θ

p̃h
(
sh

n, sh
m

)
wm


/

wn

≤


 ∑

sh
m∈Θ\{sh

� }
p̃h

(
sh

n, sh
m

)
+ p̃h

(
sh

n, sh
m

)
w�


/

wn

=
(
1 + p̃h

(
sh

n, sh
m

)
(w� − 1)

)
/wn

≤ (1 + η(w� − 1)) /wn

≤ (1 − η2k−1)/wn

= (1 − η2k−1)/(1 − η2k)
≤ γ

where the first inequality follows from the fact that wm ∈
(0, 1), the second inequality follows from p̃h(sh

n, sh
m) ≥ η, and

the third inequality follows from w� ≤ 1 − η2k−2 since sh
� ∈

Θ1 ∪ · · · ∪ Θk−1.
This implies that, for any state sh

n and x, y ∈ X

F̃h[x]
(
sh

n

)
−F̃h[y]

(
sh

n

)
≤
∑
sh

m

p̃h
(
sh

n, sh
m

) (
x
(
sh

m

)
−y

(
sh

m

))
=

∑
sh

m �=sh
�
,�=1,M+1,...,N

p̃h
(
sh

n, sh
m

)
wm

(
x
(
sh

m

)
−y

(
sh

m

))
/wm

≤ γwn max
sh

m

{(
x
(
sh

m

)
−y

(
sh

m

))
/wm

}
.

Similarly

F̃h[y]
(
sh

n

)
−F̃h[x]

(
sh

n

)
≤γwn max

sh
m

{(
x
(
sh

m

)
−y

(
sh

m

))
/wm

}
.

Therefore∥∥∥F̃h[x]
(
sh

n

)
− F̃h[y]

(
sh

n

)∥∥∥w

∞
≤ γ ‖x − y‖w

∞

where ‖x‖w
∞ = ‖(x1, x2/w2, . . . , xM/wM , xM+1, . . . , xN‖∞,

i.e., the operator F̃h is a contraction mapping with
modulus γ. �
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Fig. 2. Navigation benchmark.

Theorem 6: The iteration defined by (14) converges to the
desired value function in a number of steps that are polynomial
in the number of states N of the discrete approximation process
{sh

n, n = 1, . . . , N} and the number of bits used to represent
the parameters of the process.

Proof: By the previous lemma, F̃h is a contraction map-
ping, and the successive estimates Ṽ h

n geometrically converge
to a fixed point Ṽ h. By Theorem 5, Ṽ h is the desired solution
since it converges as h → 0 to the viscosity solution V that
characterizes the safety of the SHS. Since F̃h is a contraction
mapping, by applying the results in [35, Lemma 1], the value
function converges in a number of steps that are polynomial in
the number of states N of the discrete approximation process
and the number of bits used to represent the parameters of the
process. �

Reachability analysis of SHSs is polynomial in the number of
states of the approximating Markov process; however, this num-
ber exponentially grows with the dimension of the continuous
state space. Therefore, application of the approach is limited
to low-dimensional systems. Although scalability is a limiting
factor, using parallel methods, the approach is feasible for
realistic systems. For example, the approach has been applied
for safety analysis of sugar cataract development to a 7-D
biochemical system for which the approximating process has
approximately 700 million states [31].

VI. BENCHMARKS

This section presents experimental results for two bench-
marks that have been proposed for verification of hybrid
systems.

A. Navigation Benchmark

We first illustrate our approach using a stochastic version
of the navigation benchmark presented in [5]. The benchmark
describes an object moving within a bounded 2-D region parti-
tioned into cells Xq, q ∈ {0, 1, . . . , Nc}, as shown in Fig. 2.
Let x = [x1, x2]T and v = [v1, v2]T denote the position and
velocity of the object, respectively. The behavior is defined
by the ordinary differential equation v̇ = A(v − vq

d), where

Fig. 3. Value function for the navigation benchmark.

A ∈ R
2×2 and vq

d = [sin(qπ/4), cos(qπ/4)]T . Selecting matrix
A and adding a diffusion term, the dynamics of the object are
described by the SDE

dx =
(
Ãx + B̃uq

d

)
dt + Σdw

where x = [x1, x2, v1, v2]T , uq
d = [0, 0, vq

d]T , and w(t) is an
R

4-valued Wiener process

Ã =
[

0 I2

0 A

]
A =

[
−1.2 0.1
0.1 −1.2

]
Σ = 0.1I4

Consider the target set T and the unsafe set U shown in
Fig. 2. Given an initial state s0 = (q0, x0), we want to compute
the probability that the state will reach T while avoiding U .
Fig. 2 also shows sample trajectories. In order to apply the
approach described in this paper, we underapproximate each
cell Xq by X̃q by considering a smooth boundary ∂X̃q. We also
define a transition measure R((q, x), A), so that the state jumps
into an adjacent cell if it hits an “inner” boundary and jumps
into the same cell if it hits an “outer” boundary. The transition
rate is assumed to be zero. We discretize the state space using
a uniform grid with approximation parameter h > 0 and apply
the method described in Section V to compute V h(q, x). As
h → 0, V h(q, x) converges to the solution V (q, x) of the
stochastic approximation of the benchmark problem.

Since the continuous state space of the example is 4-D, we
select to plot a projection of V h for initial velocity v0 = [0, 0]T .
Fig. 3 shows this projection for h = 0.1 that describes the
probability that a trajectory starting from (q, [x1, x2, 0, 0]T )
will reach T while avoiding U . The computational performance
of the algorithm is illustrated in Table I. All data were collected
using a 3.0-GHz desktop computer with 1-GB random access
memory, and they are consistent with the polynomial-time
complexity of the algorithm.

B. Room Heater Benchmark

A modeling benchmark of a room-heating problem has been
presented for a simple three-room system in [5]. The bench-
mark models the temperature dynamics of a building with
three rooms and two mobile heaters. The temperature in each
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TABLE I
PERFORMANCE DATA

Fig. 4. Automaton for the room heater benchmark.

room xi depends on the temperature of the adjacent rooms, the
outside temperature u, and whether a heater is in the room and
turned on.

We have generated a stochastic version of the benchmark.
The SDE describing the continuous dynamics of the system is

dx = (Ax + Bu + Cq)dt + Σdw

where

A =

[
−.9 .5 0
.5 −1.3 .5
0 .5 −.9

]
B =

[
.4
.3
.4

]
.

C = diag(6, 7, 8), u = 4, Σ = diag(0.1), q is a vector con-
sisting of 0s and 1s representing the position and state of the
heaters, and w(t) is an R

3-valued Wiener process.
The discrete states of the system describe the position and

condition of the heaters in the rooms. If a heater is in a room
and turned on, then a 1 is placed in the corresponding position
of that room. If the heater is not in the room or is in the room but
turned off, then a 0 is placed in the corresponding position. The
heating benchmark has 12 heater modes, as shown in Fig. 4.
Mode transitions are denoted by the arcs between nodes and
are defined using a control policy for moving the heater. The
control policy is captured by the invariants of the discrete states.
We consider the following control policy for rooms i and j. If
a heater is present in room i but is turned off, it is switched on
if xi ≤ 19 and a heater that is on is switched off if xi ≥ 20.
A heater is moved from room j to an adjacent room i if the

Fig. 5. Room heater benchmark safe states for q = [110]T .

following conditions are true: 1) room i is without a heater;
2) room j currently has a heater; 3) xi≤17; and 4) xj−xi≥1.

We discretized the continuous state space by assuming that
the safe set is described by xi = (10, 20), i = 1, 2, 3, and the
approximation parameter was set to h = 0.25. Since there are
12 discrete modes, the number of states of the approximating
process is 12 × 423 = 889 056 (including the boundary of the
safe set). The room heater benchmark evolves in a 3-D continu-
ous state space; hence, it is difficult to visualize the value func-
tion. To illustrate our results, we have set a predefined threshold
(0.1) that describes the acceptable probability of reaching the
unsafe set. Then, for each initial mode, we plot the “safe” set
as the set of states that have a probability below the threshold to
reach the unsafe set. Fig. 5 shows the safe set. The iterative
algorithm executed in approximately 49 min on a 3.0-GHz
desktop computer.

An important characteristic of the room heater benchmark is
that it can be easily scaled up to an arbitrary number of rooms
that determine the dimension of the continuous state space.
Using parallel methods for dynamic programming [32], we
have verified a 6-D version of the room heater benchmark. For
approximation parameter h = 0.25, the discrete approximation
was verified in approximately 103 min in a high-performance
computer cluster with four processors.

VII. CONCLUSION AND FUTURE WORK

This paper characterizes the reachability and safety of SHSs
as a viscosity solution of a system of coupled HJB equations
and employs a numerical method based on discrete approx-
imations for verification of reachability properties. The main
advantage of the approach is that it guarantees the convergence
of the solution based on the discrete approximation to the solu-
tion of the original problem. The approach can be extended to
controlled SHSs by imposing appropriate conditions for ad-
missible controls. Convergence of the discrete approximation
methods can be investigated using relaxed controls. Charac-
terization of error bounds as a function of the approximation
parameter is a challenging problem under investigation. An-
other fundamental challenge is to develop scalable numerical
methods that can be applied to large systems. Toward this
goal, we are currently investigating methods based on variable
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resolution grids and parallel algorithms as well as methods
based on value function approximation.
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