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Abstract
Attacks in cyber-physical systems (CPS) which
manipulate sensor readings can cause enormous
physical damage if undetected. Detection of attacks
on sensors is crucial to mitigate this issue. We study
supervised regression as a means to detect anoma-
lous sensor readings, where each sensor’s measure-
ment is predicted as a function of other sensors.
We show that several common learning approaches
in this context are still vulnerable to stealthy at-
tacks, which carefully modify readings of compro-
mised sensors to cause desired damage while re-
maining undetected. Next, we model the interac-
tion between the CPS defender and attacker as a
Stackelberg game in which the defender chooses
detection thresholds, while the attacker deploys a
stealthy attack in response. We present a heuris-
tic algorithm for finding an approximately optimal
threshold for the defender in this game, and show
that it increases system resilience to attacks without
significantly increasing the false alarm rate.

1 Introduction
Cyber-physical systems (CPS) form the foundation of much
of the critical infrastructure, including the electric power grid,
transportation networks, water networks, and nuclear plants,
among others. Malicious attacks on CPS can consequently
lead to major disruptions, from major blackouts to nuclear in-
cidents. Moreover, such attacks are no longer hypothetical,
with Stuxnet perhaps the best-known example of an attack
targeting physical infrastructure through cyber means. A cru-
cial aspect of the Stuxnet attack—and a feature that is central
to most attacks on CPS—is the corruption of sensor readings
to either ensure that an attack on the controller code is unde-
tected, or indirectly impact controller behavior. The power of
sensor corruption to impact control decisions is particularly
alarming: since controllers are commonly making decisions
directly as a consequence of readings from critical sensors,
for example, increasing or decreasing temperature to ensure it
stays within a target (safe) range, tampering with these read-
ings (e.g., temperature) can cause the controller itself to put
the system into an unsafe state. With no remediation, as soon
as a critical sensor is compromised, the attacker can cause

major system failure by directly manipulating sensor mea-
surements in essentially arbitrary ways.

Data-driven anomaly detection techniques have previously
been proposed to mitigate against arbitrary manipulations of
sensor data, both based on temporal statistics of single-sensor
measurements [Ghafouri et al., 2016], as well as by model-
ing joint measurements to obtain a prediction for each sen-
sor based on measurements of others [Ghafouri et al., 2017].
However, these have been limited in two ways: 1) they gen-
erally consider a specific anomaly detection method, such as
a Gaussian Process regression, and 2) they do not consider
attacks which can arbitrarily modify a collection of sensor
measurements.

To address these limitations, we present a general frame-
work for adversarial anomaly detection in the context of in-
tegrity attacks on a subset of sensors in CPS. We start with
a general anomaly detection framework based on a collec-
tion of supervised regression models which predict a mea-
surement for each sensor as a function of readings from other
sensors. We instantiate this framework with three regression
models: linear regression, neural network, and an ensemble
of the two. We then develop an optimization approach for
stealthy attacks on linear regression which aim to maximally
increase or decrease a reading for a collection of target sen-
sors (for example, those serving as direct inputs into a con-
troller which maintains the system in a safe state), and extend
these to consider a neural network detector, and the ensemble
of these.

Next, we model robust anomaly detection as a Stackelberg
game between the defender who chooses detection thresholds
for each sensor to balance false alarms with impact from suc-
cessful attacks, and the attacker who subsequently deploys a
stealthy attack. Finally, we develop a heuristic algorithm to
compute a resilient detector in this model. Our experiments
show that (a) the stealthy attacks we develop are extremely
effective, and (b) our resilient detector significantly reduces
the impact of a stealthy attack without appreciably increasing
the false alarm rate.

Related Work A number of techniques have been pro-
posed for anomaly detection in CPS, aimed at identify-
ing either faults or attacks. Several of these consider sim-
plified mathematical models of the physical system, rather
than using past data of normal behavior to identify anoma-
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lies [Cárdenas et al., 2011; Urbina et al., 2016]. A number
of others use statistical and machine learning techniques for
anomaly detection [Nader et al., 2014; Junejo and Goh, 2016;
Ghafouri et al., 2016; 2017], but restrict attention to a specific
model, such as Gaussian Process regression [Ghafouri et al.,
2017], to a single sensor [Ghafouri et al., 2016], to unsuper-
vised techniques [Nader et al., 2014], or to directly predict
attacks based on normal and simulated attack data [Junejo
and Goh, 2016]. Ours is the first approach which deals with
a general framework for regression-based modeling of sensor
readings based on other sensors.

In addition, considerable literature has developed around
the general problem of adversarial machine learning, which
considers both attacks on machine learning methods and
making learning more robust [Lowd and Meek, 2005; Dalvi
et al., 2004; Biggio et al., 2014; Li and Vorobeychik, 2014;
Vorobeychik and Li, 2014; Li and Vorobeychik, 2018]. How-
ever, all focus on inducing mistakes in a single model—
almost universally, a classifier (Grosshans et al. [2013] is a
rare exception). In contrast, we study stealthy attacks on
sensor readings, where even the critical measurement can
be manipulated directly, but where multiple models used for
anomaly detection impose strong constraints on which sensor
manipulations are feasible. As such, our framework is both
conceptually and mathematically quite different from prior
research on adversarial learning.

2 Regression-Based Anomaly Detection
Consider a collection of d sensors, with y representing a vec-
tor of sensor measurements, where ys is the measurement of
a sensor s. In practice, such measurements often feed directly
into controllers which govern the state of critical system com-
ponents. For example, such a controller may maintain a safe
temperature level in a nuclear reactor by cooling the reactor
when the temperature reading becomes too high, or heating it
when it’s too low. If an attacker were to take control of the
sensor which measures the temperature of the nuclear reactor,
they can transmit low sensor readings to the controller, caus-
ing it to heat up the reactor to a temperature arbitrarily above
a safe level!

A way to significantly reduce the degree of freedom avail-
able to the attacker in this scenario is to use anomaly detec-
tion to identify suspicious measurements. To this end, we
can leverage relationships among measurements from multi-
ple sensors: if we can effectively predict a reading from a sen-
sor based on the measurements of others, many sensors would
need to be compromised for a successful attack, and even then
the attacker would face complex constraints in avoiding de-
tection: for example, slightly modifying the one sensor may
actually cause another sensor to appear anomalous.

We therefore propose the following general framework for
anomaly detection in a multi-sensor CPS. For each sensor
s, we learn a model fs(y−s) which maps observed readings
from sensors other than s to a predicted measurement of s.1
Learning can be accomplished by collecting a large amount
of normal system behavior for all sensors, and training the

1Note that it is direct to extend such models to use other features,
such as time and control outputs.

Symbol Description
S Set of sensors
ys Actual measurement of sensor s
ỹs Observed measurement value of sensor s af-

ter the attack
rs residual of sensor s ∈ S
Sc Set of critical sensors
δs Error added to sensor s ∈ S
B The maximum number of sensors that can

be attacked (attacker’s budget)
D Set of sensors with detectors
fs Regression-based predictor of detector s ∈

D
τs Threshold value of detector s ∈ D

Table 1: List of Symbols

model for each sensor. At operation time, we can then use
these predictions, together with observed measurements, to
check for each sensor s whether its measurement is anoma-
lous based on residual rs = |fs(y−s) − ys|, and a threshold
τs, where rs ≤ τs is considered normal, while rs > τs is
flagged as anomalous. For easy reference, we provide the list
of these and other symbols used in the paper in Table 1.

In principle, any supervised learning approach can be used
to learn the functions fs. We consider three illustrative exam-
ples: linear regression, neural network, and an ensemble of
the two.

Linear Regression In this case, for each detector s, we
let the predictor be a linear regression model defined as
fs(y−s) = wTs y−s + bs, where ws and bs are the parame-
ters of the linear regression model.

Neural Network In this case, for each sensor s, we let
the predictor fs be a feed-forward neural network model de-
fined by parameters θs, where the prediction fs(y−s; θs) is
obtained by performing a forward-propagation.

Ensemble It has been shown in the adversarial learning lit-
erature that multiple detectors can improve adversarial ro-
bustness [Biggio et al., 2010]. We explore this idea for the
ML regression-based detector by considering an ensemble
model for the predictor. We consider an ensemble predictor
that contains a neural network and a linear regression model.
Different methods can be used for combining the results, but
we consider a bagging approach where the result is computed
as the average of the predictors’ outputs.

3 Attacking the Anomaly Detector
We have informally argued above that the anomaly detec-
tor makes successful sensor manipulation attacks challeng-
ing. For example, the trivial attack on the critical sensors is
now substantially constrained. We now study this issue sys-
tematically, and develop algorithmic approaches for stealthy
attacks on sensors which attempt to optimally skew measured
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values of target sensors without tripping an anomaly detec-
tion alarm. While arbitrary changes to the sensor readings are
no longer feasible, our experiments subsequently show that,
unfortunately, a baseline anomaly detector is still quite vul-
nerable. Subsequently, we develop an approach for making it
more robust to stealthy attacks.

3.1 Attacker Model
We define the attack model by describing the attacker’s ca-
pability, knowledge, and objective. Capability: The adver-
sary may compromise and make arbitrary modifications to
the readings from up to B sensors. Knowledge: We con-
sider a worst-case scenario where the attacker has complete
knowledge of the system and anomaly detectors. Objective:
The attacker’s objective is to maximize or minimize the ob-
served value for some critical sensor s̄ among a collection of
target sensors Sc. In addition, the attacker’s modifications to
the sensors it compromises must remain undetected (stealthy)
with respect to the anomaly detection model.

Formally, let ỹ be the sensor measurements observed af-
ter the attacker compromises a subset of sensors. We assume
that the attacker can compromise at most B sensors; conse-
quently, for the remaining d − B sensors, ỹs = ys. Addi-
tionally, the attacker cannot modify individual measurements
of compromised sensors arbitrarily (for example, constrained
by sensor-level anomaly detectors), so that |ỹs − ys| ≤ ηs;
ηs = ∞ is then a special case in which the attacker is not so
constrained. The final set of constraints faced by the attacker
ensures that the attack is stealthy: that is, it doesn’t trigger
alerts based on the anomaly detection model described in Sec-
tion 2. To accomplish this, the attacker must ensure that for
any sensor s, |ỹs− fs(ỹ−s)| ≤ τs, that is, the corrupted mea-
surements must simultaneously appear normal with respect
to the detector model described above and observed measure-
ments ỹs for all sensors (both attacked, and not). Note that
this is a subtle constraint, since corrupted measurements for
one sensor may make another appear anomalous.

For a given critical sensor s̄, the attacker’s goal is to max-
imize or minimize the corrupted measurement ỹs̄. Here we
focus on minimization of observed values of critical sensors;
approaches where the goal is to maximize these values are
essentially the same. The attacker’s optimization problem is
then

argmin
s̄∈Sc

min
ỹ
ỹs̄

s.t. |ỹs − fs(ỹ−s)| ≤ τs, ∀s ∈ D (1a)
|ỹs − ys| ≤ ηs, ∀s (1b)
‖ỹ − y‖0 ≤ B, (1c)

where Constraints (1a) capture evasion of the anomaly detec-
tor (to ensure that the attack is stealthy), Constraints (1b) limit
modifications of individual sensors, if relevant, and Con-
straint (1c) limits the attacker to attack at most B sensors.

Not surprisingly, the problem faced by the adversary is NP-
Hard.

Proposition 1. The Adversarial Regression Problem is NP-
Hard.

The proof can be found in the extended version at
https://arxiv.org/abs/1804.11022.

Despite the hardness result, we now present algorithmic
approaches for solving Problem (1) in the context of linear
regression and neural networks, as well as a simple ensemble
of these described in Section 2.

3.2 Attacking Linear Regression
First, we replace the non-convex budget constraint using a
collection of linear constraints. Define αs as a binary vari-
able indicating whether the sensor s is attacked. Thus, Con-
straint (1c) can be re-written as

∑m
i=1 αi ≤ B. Now, for each

sensor s let ỹs = ys + δs, where δs represents the modifica-
tion made by the adversary. Since δs > 0 only if s has been
compromised (i.e., αs = 1), we add a constraint δs ≤ Mαs
where M is a sufficiently large number.

Next, we rewrite Constraints (1a). In the case of a linear
regression model for anomaly detection, Constraints (1a) be-
come |ỹs − wTs ỹ−s − bs| ≤ τs. These can be represented
using two sets of linear constraints: ỹs − wTs ỹ−s − bs ≤ τs
and −ỹs + wTs ỹ−s + bs ≤ τs. Finally, Constraints (1b) are
similarly linearized as δs ≤ ηs and −δs ≤ ηs.

Putting everything together, we obtain the following
mixed-integer linear programming (MILP) problem (actually,
a minimum over a finite number of these), which solves prob-
lem (1) for the linear regression-based anomaly detector:

argmin
s̄∈Sc

min
ỹ,δ,α

δs̄

s.t. ỹs − wTs ỹ−s − bs ≤ τs, ∀s (2a)

− ỹs + wTs ỹ−s + bs ≤ τs, ∀s (2b)
ỹs = ys + δs, ∀s (2c)
δs ≤Mαs, ∀s (2d)
δs ≤ ηs; −δs ≤ ηs, ∀s (2e)∑
s

αs ≤ B (2f)

ỹs, δs ∈ R, αs ∈ {0, 1} ∀s.

3.3 Attacking Neural Network Regression
Due to the non-linear structure of a neural network model,
Constraints (1a) now become non-linear and non-convex. To
tackle this challenge (1), we propose an iterative algorithm,
described in Algorithm 1. The algorithm solves the problem
by taking small steps in a direction of increasing objective
function. In each iteration, the algorithm linearizes all the
neural networks at their operating points, and replaces them
with the obtained linearized instances. Then, for each small
step, it solves the MILP (2) to obtain an optimal stealthy at-
tack in the region around the operating point. In each itera-
tion, in order to ensure that the obtained solution is feasible,
the algorithm tests the solution with respect to the actual neu-
ral network-based anomaly detectors. If it is infeasible, the
iteration is repeated using a smaller step size. Otherwise, the
same process is repeated until a local optimum is found or we
reach a desired maximum number of iterations.

The algorithm begins with the initial uncorrupted measure-
ment vector ỹ = y. For each neural network fs, it obtains a
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Algorithm 1 Adversarial Regression for Neural Network
Input: Measurements ỹ, critical sensors Sc, budget B, algo-
rithm parameters ε0, nmax

1: ỹ0 ← ỹ, δs̄∗ ← 0
2: for all s̄ ∈ Sc do
3: while number of iterations < nmax and ε > εmin do

// Linearize all neural networks at ỹ
4: [W, b]←TAYLORAPPROXIMATION(fs(·), ỹ)

// Solve MILP and check feasibility
5: ε← ε0
6: ỹ′ ←SOLVE MILP(W ,b,s̄,ỹ,ε)
7: for each sensor s do
8: if |ỹ′s − f (s)(ỹ′−s)| > τs then
9: ε← ε

2
10: go to Line 6
11: end if
12: end for
13: ỹ ← ỹ′

14: δs̄ ← ỹ′s̄
15: end while
16: if δs̄∗ < δs̄ then
17: s̄∗ ← s̄, δs̄∗ ← δs̄, ỹ∗ ← ỹ
18: end if
19: end for
20: return ỹ∗

linearized model using a first-order Taylor expansion around
the solution estimate ỹ in the current iteration, which yields
a matrix of weights W for the corresponding linear approxi-
mation. Given matrixW , we solve the problem by converting
it to the MILP (2), with a small modification: we introduce
a constraint that enforces that we only make small modifica-
tions relative to the approximate solution from the previous
iteration. More precisely, we let ε ∈ R+ be the parameter
representing the maximum step size. Then, we add the con-
straint |∆| < ε to the MILP, where ∆ = y + δ − ỹ and ỹ the
latest solution.

Let ỹ′ be the solution obtained by solving the MILP.
We check whether this solution is feasible by performing
forward-propagation in all the neural networks and checking
that no stealth constraint is violated. If a stealth constraint
is violated, which means that our linearized model was not
a good approximation of the neural network, we discard the
candidate solution, reduce the maximum step size parame-
ter ε to improve the approximation, and re-solve the MILP.
We repeat this process until a feasible solution is found, in
which case the same steps are repeated for a new operating
point, or until we reach the maximum number of iterations
nmax. Finally, we check whether the solution that is found
for the current target sensor s̄ outperforms the solution for
the best target sensor found so far. The algorithm terminates
after considering all the target sensors and returns the best
attack vector found.

3.4 Attacking the Ensemble Model
We can view the ensemble as a single neural network that
connects a perceptron (i.e., the linear regression model) with
our initial neural network at the output layer. Thus, to solve
the adversarial regression problem, we can use the same ap-
proach as in the case of neural networks by modifying Al-

gorithm 1 to obtain linear approximation parameters W =
1
2 (WNN + WLR) and b = 1

2 (bNN + bLR), where WLR and
bLR are the parameters of the linear regression model in the
ensemble, and WNN and bNN the parameters of the Taylor
approximation of the neural network piece of the ensemble.

4 Resilient Detector
Having developed stealthy attacks on the anomaly detection
system we described earlier, we now consider the problem
of designing robustness into such detectors. Specifically, we
allow the defender to tune the thresholds τs to optimize ro-
bustness, accounting for stealthy attacks. More precisely, we
model the game between the defender and attacker as a Stack-
elberg game in which defender first commits to a collection of
thresholds τs for the anomaly detectors, and the attacker then
computes an attack following the model in Section 3. The de-
fender aims to minimize the impact of attacks D(ỹ(τ)), sub-
ject to a constraint that the number of false alarms is within
γ of that for a baseline τ̄ , typically set to achieve a target
number of false alarms without consideration of attacks. The
constraint reflects the common practical consideration that we
wish to detect attacks without increasing the number of false
alarms far beyond a target tolerance level. We seek a Stackel-
berg equilibrium of the resulting game, which is captured by
the following optimization problem for the defender:

min
τ

max
s∈Sc

Ds(ỹ(τ))

s.t. : FA(τ) ≤ FA(τ̄) + γ, ỹ(τ) solves Problem (1),
(3)

where FA(τ) is the number of false alarms when the thresh-
old vector is τ .

Given thresholds τ , we define the impact of attack on a sen-
sor s as the mean value of problem (1) over a predefined time
period T : Ds(ỹ) =

∑T
t=1(ỹts − yts). Similarly, we compute

FA(τ) as the total number of false alarms over T time steps:
FA(τ) =

∑
s

∑T
t=1 1|yts−fs(yt−s)|>τs .

The key way to reduce the attack impact D(ỹ(τ)) is by
decreasing detection threshold. This can effectively force
the attacker to launch attacks that follow the behavior of the
physical system more closely, limiting the impact of attacks.
On the other hand, smaller values of the threshold parame-
ters may result in a higher number of false alarms. Next, we
present a novel algorithm for resilient detector threshold se-
lection as defined in Problem (3).

Let τ be initialized based on a target number of false
alarms. In each iteration, given threshold values τ computed
in the previous iteration, we find the (approximately) optimal
stealthy attack ỹ(τ), with associated impact D(ỹ(τ)). Let A∗
be the set of critical sensors upon which the attack ỹ has the
largest impact, and let Amin be the set of sensors with the
smallest stealthy attack impact. To reduce DA∗(ỹ(τ)), we re-
duce τs̄ for each s̄ ∈ A∗. Then, to minimize the change in
the number of false alarms, we increase the threshold τs for
each s ∈ Amin to compensate for the false alarms added by
detectors of sensors in A∗. These steps are repeated until we
reach a local optimum. We formalize this in Algorithm 2.
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Algorithm 2 Resilient Detector
Initialize: Initial threshold setting τ̄ , and initial ε

1: τ ′ = τ = τ̄
2: ỹ ← ATTACK(τ)
3: I =∞
4: while number of iterations < nmax do
5: if maxs∈Sc Ds(ỹ) ≤ I then
6: τ ← τ ′

7: else
8: ε← ε

2
9: end if

10: I ← maxs∈Sc Ds(ỹ)
11: A∗ ← argmaxs∈Sc

Ds(ỹ)
12: Amin ← argmins∈Sc

Ds(ỹ)
13: for all s ∈ A∗ do
14: τ ′s ← τs − ε
15: end for
16: ∆FP ← FP (τ ′)− FP (τ)
17: for all s ∈ Amin do
18: τ ′s ← FP−1

s (FPs(τs)− 1
|Amin|

∆FP )

19: end for
20: ỹ ← ATTACK(τ ′)
21: end while
22: return τ

5 Experiments
We evaluate our contributions using a case study of the well-
known Tennessee-Eastman process control system (TE-PCS)
First, we design regression-based anomaly detectors for the
critical sensors in the system (e.g., pressure of the reactor,
level of the product stripper). Then, we consider scenarios
where an adversary launches sensor attacks in order to drive
the system to an unsafe state. Finally, we evaluate the re-
silience of the system against such attacks using baseline de-
tectors and the proposed resilient detector.

5.1 Tennessee-Eastman Process Control System
We present a brief description of the Tennessee-Eastman Pro-
cess Control System (TE-PCS). TE-PCS involves two simul-
taneous gas-liquid exothermic reactions for producing two
liquid products [Downs and Vogel, 1993]. The process has
five major units: reactor, condenser, vapor-liquid separator,
recycle compressor, and product stripper. The chemical pro-
cess consists of an irreversible reaction which occurs in the
vapor phase inside the reactor. Two non-condensible reac-
tants A and C react in the presence of an inert B to form a
non-volatile liquid product D. The feed stream 1 contains A,
C, and trace of B; feed stream 2 is pure A; stream 3 is the
purge containing vapors of A, B, and C; and stream 4 is the
exit for liquid product D.

There are 6 safety constraints that must not be violated
(e.g, safety limits for the pressure and temperature of reac-
tor). These safety constraints correspond to 5 critical sensors:
pressure, level, and temperature of the reactor, level of the
product stripper, and level of the separator. Further, there
are several control objectives that should be satisfied, e.g.,
maintaining process variables at desired values and keeping
system state within safe operating conditions. The monitor-
ing and control objectives are obtained using 41 measurement
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Figure 1: Pressure of the reactor when a sensor attack starts at t =
0.5. After 2 hours the pressure reaches an unsafe state.

outputs and 12 manipulated variables.
We use the revised Simulink model of TE-PCS [Bathelt et

al., 2015]. We consider the implementation of the decentral-
ized control law as proposed by Ricker [1996]. To launch sen-
sor attacks against TE-PCS, we update the Simulink model to
obtain an information flow in which the adversary receives all
the sensor measurements and control inputs, solves the adver-
sarial regression problem, and then adds the error vector to
the actual measurements.

Figure 1 shows how a sensor attack may drive the system
to an unsafe state. In this scenario, the pressure of the reactor
exceeds 3000 kPa which is beyond the safety limit and can
result in reactor explosion.

5.2 Regression-Based Anomaly Detector
To protect the system against sensor attacks, we build a de-
tector for each critical sensor. To train the detectors we run
simulations that model the system operation for 72 hours, and
collect the sensor measurements and control inputs. Each
simulation consists of 7200 time steps and thus, for each sim-
ulation scenario, we record 7200×53 datapoints. To make
sure that the dataset represents different modes of operation,
we repeat the same steps for different initial state values. We
consider a total of 20 different initial state values which gives
us 20×7200×53 ≈ 7.5 million datapoints.

Linear Regression-Based Detector Using our collected
data, we train linear regression models for the critical sensors.
We use the current value of the remaining 36 non-critical sen-
sors as well as the 9 non-constant control inputs as features
of the model. Figure 2a shows the performance of the linear
regression predictor on training and test data. Note that since
the data is sequential, the train and test data cannot be ran-
domly sampled and instead, we divide the data in two blocks.
Also, to be able to compare the performance of predictors
trained for different variables, we compute the MSE for nor-
malized values instead of the actual values.

Neural Network-Based Detector Next, we train the neu-
ral network regression models for the critical sensors. Unlike
linear regression models, neural networks require several hy-
perparameters to be selected (e.g., network architecture, acti-
vation function, optimization algorithm, regularization tech-
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(a) (b) (c)

Figure 2: (a) MSE of Linear Regression, Neural Network, and Ensemble Model. All metrics are computed using Normalized Data. (b)
Stealthy attack solution for the five critical sensors and different detectors. (c) Stealthy attack solution for the pressure of the reactor consid-
ering varying budgets.

(a) (b)

Figure 3: Resilient Detector for Linear Regression. (a) Impact of Resilient Detector compared to baseline. (b) False positive of Resilient
Detector compared to baseline. (c) Trade-off between stealthy attack impact and false positive rate.

nique). We considered neural networks with 2 to 4 hidden
layers and 10 to 20 neurons in each layer. All the neurons
in the hidden layers use tanh activation functions. We also
experimented with ReLU activation functions but tanh per-
forms better. We trained the networks in Tensorflow for 5000
epochs using Adam optimizer with β1 = 0.9, β2 = 0.999,
and ε = 10−8, and a learning rate of 0.01. Figure 2a shows
the MSE for training and test data, which outperforms the lin-
ear regression model. Finally, Figure 2a shows the result for
the ensemble model.

5.3 Attacking Anomaly Detection

Figure 2b shows the attack solution for each critical sensor
considering different detectors. As it can be seen, the temper-
ature of the reactor is the least critical sensor while the level of
the stripper is the most critical. Interestingly, neural network
models, as well as ensembles, tend to be more vulnerable—
often significantly—then the linear regression-based detec-
tors. This is reminiscent of the observed vulnerability of neu-
ral network models to adversarial tampering [Goodfellow et
al., 2015], ours is the first observation that neural networks
can be more fragile than simple linear models.

5.4 Resilient Detector
We use the resilient detector algorithm to find threshold val-
ues that reduce the stealthy attack impact as described in Sec-
tion 4. We do this in the context of linear regression. Let
T ∗ = 1 hour, be the desired value for the expected time be-
tween false alarms for all detectors. As a baseline, for each
detector s, we set threshold values τs = FP−1

s (T
∗

d ).
Then, we use Algorithm 2 to change thresholds in order

to obtain better resilience. In the first iteration, stripper level
is the most critical sensor, and reactor temperature the least
critical. Therefore, we decrease the threshold corresponding
to stripper level and increase the value of threshold for re-
actor temperature. We repeat these steps using Algorithm 2
until we obtain results shown in Figure 3. As we can see, we
can significantly reduce the impact of the stealthy attack com-
pared to the baseline (Figure 3a) without increasing the total
number of false alarms (Figure 3b, where the total number of
false alarms is the sum over all sensors).

6 Conclusions
We studied the design of resilient anomaly detection systems
in CPS. We considered a scenario where the CPS is monitored
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by machine learning regression-based anomaly detectors, and
an omniscient adversary capable of perturbing the values of a
subset of sensors. The adversary’s objective is to lead the sys-
tem to an unsafe state (e.g., raising the pressure of a reactor
in a process control system beyond its safety limit) without
being detected. We compute an optimal stealthy attack for
linear regression, neural network, and a simple ensemble of
these. Finally, we present an approach to mitigate the impact
of stealthy attacks through resilient configuration of detector
thresholds. We demonstrated the effectiveness of our meth-
ods using a case study of a process control system.
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