
Transmission Control Policy Design for
Decentralized Detection in Sensor Networks

Ashraf Tantawy, Xenofon Koutsoukos, and Gautam Biswas
Institute for Software Integrated Systems (ISIS)

Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN, 37235, USA

{ashraf.tantawy, xenofon.koutsoukos, gautam.biswas@vanderbilt.edu}

Abstract—A Wireless Sensor Network (WSN) deployed for
detection applications has the distinguishing feature that sensors
cooperate to perform the detection task. Therefore, the decoupled
design approach typically used to design communication net-
works, where each network layer is designed independently, does
not lead to the desired optimal detection performance. Recent
work on decentralized detection has addressed the design of MAC
and routing protocols for detection applications by considering
independently the Quality of Information (QoI), Channel State
Information (CSI), and Residual Energy Information (REI) for
each sensor. However, little attention has been given to integrate
the three quality measures (QoI,CSI,REI) in the complete system
design. In this work, we pursue a cross-layer approach to design
a QoI, CSI, and REI-aware Transmission Control Policy (TCP)
that coordinates communication between local sensors and the
fusion center, in order to maximize the detection performance.
We formulate and solve a constrained nonlinear optimization
problem to find the optimal TCP design variables. We compare
our design with the decoupled approach, where each layer is
designed separately, in terms of the delay for detection and WSN
lifetime.

I. INTRODUCTION

The deployment of Wireless Sensor Networks (WSNs) in
decentralized detection applications is motivated by the avail-
ability of low cost sensors with computational capabilities,
combined with the advances in communication network tech-
nologies. In Decentralized Detection (DD), multiple sensors
collaborate to distinguish between two or more hypotheses. In
a typical configuration, sensors are distributed geographically
to sample the environment, pre-process the data, and commu-
nicate a summary of the information to the fusion center for
final decision-making.
The classical problem in DD is to find the local sensor

detection strategies (quantization rules) to minimize a system-
wide cost function using different network topologies and
channel models [1]. This classical quantization problem is
unlikely to play a major role in modern WSNs. The reason
is twofold: 1) performance loss due to quantization decays
rapidly with the number of information bits in the packet
payload [2], [3], and 2) the payload of a packet could be
considered large enough to represent local sensor information
with adequate accuracy, as additional bits in the payload
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are unlikely to affect power or delay, given the relatively
large packet overhead [4], [5] (e.g., IEEE 802.15 standard
has minimum overhead of 9 bytes, representing the frame
control, address information, and the frame check sequence
[6]). On the other hand, the deployment of WSNs in detection
applications brings new challenges to the field. In addition to
the design of signal processing algorithms at the application
layer that has been previously addressed [7], protocols for
other communication layers have to be designed to optimize
the detection performance.
The layered approach commonly adopted to design wireless

networks may not be appropriate for detection applications.
Although the layered approach provides simplicity in the de-
sign due to the decoupling of system layers, it neither provides
the optimal resource allocation nor exploits the application
domain knowledge. As an example, throughput is a com-
mon performance metric used to design media access control
protocols. In DD applications, maximizing the throughput
is not the prime objective, rather, maximizing the quality
of the information received that yields the best detection
performance is the prime objective. Accordingly, a cross-layer
design approach is desired for efficient implementation of
WSNs in decentralized detection applications.
In this work, we integrate the physical layer, MAC layer,

and the detection application layer in one unified model, that
captures three quality measures, namely the Quality of Infor-
mation (QoI), Channel State Information (CSI), and Residual
Energy Information (REI). Our objective is to design an opti-
mal Transmission Control Policy (TCP) that includes, not only
the transmission probabilities, but also the communication rate
and the power allocation for each sensor. Our approach is to
express the detection performance measure as a function of
the parameters and design variables of the integrated system
model, and solve a constrained optimization problem to obtain
the TCP variables that maximize the detection performance.
In making our modeling choices, we are motivated by the

desire to develop a system model that captures the basic
features of practical sensor networks, while being amenable
to analysis. Specifically, we make the following design as-
sumptions:
• Digital transmission. Although uncoded analog transmission
is optimal in a sensor network under certain conditions (see,



e.g., [8]), digital transmission is still the choice for cost-
effective, commercial off-the-shelf deployments of sensor
network applications. This also takes into account the fact
that sensor nodes are designed to work in a variety of environ-
ments, network configurations, and to accomplish different
tasks. The digital transmission promotes the ON/OFF channel
model (akin to the model developed in [5]), where the packet
is either received successfully or discarded.

• Slotted ALOHA MAC. The traditional assumption of a
dedicated orthogonal channel between each sensor node and
the fusion center may not be feasible in practice. Slotted
ALOHA multiaccess scheme, on the other hand, forms the
basis for many standard protocols (e.g., GPRS in 3G GSM
networks). Therefore, tuning of the protocol parameters to
optimize the detection performance can be done in practice
without a need to redesign the system. We use a simplified
version of the slotted ALOHA protocol, ignoring the protocol
specifics, to keep the analysis tractable.

• Single hop networks. We focus on the case where sen-
sor nodes cannot communicate with each other to form a
multihop network to the fusion center, e.g., cellular nodes
communicating to a base station. Accordingly, the routing
problem is beyond the scope of this work.

We summarize the contributions of our work as follows:

• Integrated model for the detection system. We model the
wireless channel to capture the effect of the physical channel
parameters, i.e., communication rate and transmission power,
on the packet loss rate. Similarly, we model the multiaccess
communication protocol to capture the effect of collisions
on the packet loss rate. The sensing model integrates the
complete system model by capturing the effect of packet loss,
caused by the physical and MAC layers, on the detection
performance.

• Inclusion of QoI, CSI, and REI. We include the QoI in
the sensing model, by defining the detection performance
measure (equivalently, the QoI) as our objective function. The
CSI is included in the wireless channel model, where the state
of the channel defines the fading level that may cause packet
loss. The REI is included in the wireless channel model, by
linking it to the average transmission power used by each
sensor.

• Design of a complete transmission control policy. We
formulate a constrained optimization problem, with the objec-
tive function representing the detection performance measure.
The objective function is the outcome of the developed
integrated model. The design variables of the objective func-
tion are the TCP variables that include the retransmission
probability, communication rate, and transmission power for
each sensor. These design variables could be determined by
solving the optimization problem using a variety of existing
algorithms. Using the Karush-Kuhn-Tucker (KKT) necessary
conditions for optimality, we provide further results that limit
the number of candidate points for a local maximum. The
results also provide an educated guess for the initial point for
the optimization algorithm. This has the impact of speeding

up the convergence process of the algorithm, hence obtaining
the solution for the design variables in a more efficient way.

• Enhanced detection performance. We solve the formulated
optimization problem using the interior point algorithm for
an example sensor network. We show that the proposed
design approach has a significant detection performance
improvement over the classical decoupled design approach,
for different values of the delay for detection and network
lifetime constraints.
The rest of the paper is organized as follows: Section II is

a survey on the related work. Section III presents the problem
formulation. Section IV explains the system model. Section V
presents the solution of the optimization problem to obtain the
optimal TCP design. Section VI presents a numerical example,
and the work is concluded in Section VII.

II. RELATED WORK

The cross-layer design approach has been recently ex-
plored for the design of MAC and routing protocols for
detection applications. Cooperative MAC, where individual
sensor transmissions are superimposed in a way that allows
the fusion center to extract the relevant detection information
is considered in [9]. The communication channel under this
scheme is sometimes referred to as single-slot multiaccess
communication channel. This approach leads to significant
gains in performance when compared to conventional architec-
tures allocating different orthogonal channels for each sensor.
However, work proposed in the literature for cooperative MAC
protocols provides more of a theoretical study rather than
a practical scheme, due to certain technical issues such as
symbol and phase synchronization [4], [10].
Data-centric MAC, where existing protocols are tuned

and/or modified for optimal performance, by exploiting the
properties of the collected data, represents a viable alternative
to cooperative MAC, and therefore, has gained considerable
attention recently. Decision fusion over slotted ALOHA MAC
employing a collision resolution algorithm is studied in [11].
Identical sensors are considered, and the objective is to analyze
the performance, rather than design the MAC layer to optimize
the detection performance. A more thorough investigation of
the design of MAC transmission policies to minimize the error
probability has been considered in [12]. The system model
includes the MAC layer and the detection application layer,
excluding the physical channel model. Sensors are assumed
non-identical, and the MAC policy is assumed stochastic,
being dependent on the instantaneous observation values.
Although stochastic transmission policy results in performance
gains compared to deterministic policies, the extension of this
framework to include the channel state information is not
straightforward.
The integration of the channel model and the MAC layer

in the context of distributed estimation has been considered
in [13], where analog transmission of sensor data is assumed.
The cross-layer approach is also considered in [5] where an
integrated model for the physical channel and the queuing
behavior for sensors is developed. The design problem is to



choose the code rate and the number of sensors to minimize
the error probability for an FDMA system, where orthogonal
channels are used between sensors and the fusion center.
Routing for decentralized detection has been considered

separately from the MAC design problem. Energy-efficient
routing for signal detection in WSNs is considered in [14],
where the objective is to find the optimal route for local data
from a target location to the fusion center, to maximize the
detection performance or to minimize the energy consumption.
Cooperative routing for distributed detection in large sensor
networks is studied in [15] using a link metric that character-
izes the detection error exponent. For a survey on the interplay
between signal processing and networking in sensor networks,
see [16] and the references therein.
Our work differentiates from previous work in the follow-

ing main aspects: 1) We consider the three sensor quality
measures, QoI, CSI, and REI, in the design, 2) We design
the complete TCP including retransmission probabilities, com-
munication rates, and power allocation, and 3) We consider
the delay for detection and network lifetime as additional
constraints for the detection problem.

III. PROBLEM FORMULATION

Figure 1 illustrates the detection system architecture, where
a set of N wireless sensors denoted by the set S =
{S1, S2, . . . , SN}, and a fusion center denoted by FC, col-
laborate to detect the phenomenon of interest. Initially, the
fusion center broadcasts a message containing the location of
the phenomenon (target, smoke,...etc) to be detected, to solicit
information from different sensors. Each sensor responds with
the following information: 1) sensor location, 2) the average
signal to noise ratio of the measured phenomenon at the
sensor location, and 3) the energy the sensor will devote to
the detection process. This information could be achieved in
practice as follows: 1) the sensor location could be estimated
by different localization methods [17], and is used by the
fusion center, along with channel measurement techniques,
to estimate the CSI for the sensor. 2) The average signal to
noise ratio of the measured phenomenon, representing the QoI,
could be estimated by the sensor using the distance between
the sensor and the phenomenon location, prior information
about the phenomenon measured, and the information of the
channel state between the sensor and the phenomenon location.
3) Finally, the energy devoted for the detection process,
representing the REI, is estimated by the sensor from the
battery charging state and the desired remaining useful life
of the sensor.
The fusion center receives the information from different

sensors, calculates the optimal transmission control policy for
each sensor by solving a constrained nonlinear optimization
problem, and transmits the values of the TCP variables back
to the relevant sensors. Some sensors may not contribute to
the detection process, due to either low quality of information
(e.g. phenomenon is too far), low channel state (e.g. high noise
or long distance to the fusion center), or not enough energy to
transmit to the fusion center (e.g. not enough battery power or

long distance to the fusion center combined with bad channel
quality). The fusion center transmits the TCP variables only to
the sensors which are specified by the optimization algorithm
to be reliable to contribute to the detection task. The resulting
values of the TCP variables remain valid for the given location
as long as the quality measures for each sensor did not change
from the last run of the optimization algorithm.
After each sensor receives the optimal values of the TCP

variables, the detection process proceeds as follows: the fusion
center broadcasts a message to initiate a detection cycle at
the local wireless sensors. Each local sensor samples the
environment by collecting a number of observations xi, and
then forms a data packet and communicates its message
directly to the fusion center over a shared wireless link using
the slotted ALOHA multiaccess control scheme. Finally, the
fusion center makes a final decision after a fixed amount of
time representing the maximum allowed delay for detection.
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Fig. 1. System model for detection in one-hop sensor networks. Sensors
communicate periodically their observations to the fusion center over MAC.
At the end of the detection window, the fusion center makes a global final
decision regarding the true state of nature.

IV. SYSTEM MODEL

The detection scheme described above suggests a layered
approach to system modeling, as depicted in Figure 2. The
physical layer represents the wireless channel model, and
defines system parameters such as the communication bit rate
and the energy consumed in communicating sensor informa-
tion to the fusion center. The MAC layer represents the slotted
ALOHA protocol model, and defines the protocol-specific
parameters such as the transmission probability. Finally, the
application layer represents the sensing model, and defines
the model of the observations obtained by local sensors. We
seek a cross-layered design approach, where the parameters
of system layers are the decision variables that need to be
selected to optimize the detection performance.

A. Wireless Channel Model

We focus on the case where the sensor nodes and the
fusion center have minimal movement and the environment
changes slowly. Since detection applications typically have
low communication rate requirements, the coherence time
of the wireless channel could be considered much larger
than the transmission frame length. Accordingly, only the
slow fading component of the wireless channel is considered.
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Fig. 2. A layered approach to detection system modeling. The design
variables are coupled through the system-wide objective function and the
energy and delay constraints.
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Fig. 3. Block diagram for the wireless communication channel. The
transmitted signal is subject to large-scale fading and additive white Gaussian
noise.

Figure 3 shows the fading channel model, where w(t) is an
additive white Gaussian noise with power spectral density
N0/2. The term m(dc) represents the mean path attenuation
for a sensor node at a distance dc from the fusion center,
where the dependence on time t is dropped since slow fading
is considered. We use the Hata path-loss model for the mean
path attenuation, where the total dB power loss is given by
[18]:

PL = 20 log

�
4πd0
λp

�

+ 10ρc log(dc/d0)

� �� �

µc

+Xσc
dB (1)

where d0 is a reference distance corresponding to a point
located in the far field of the transmit antenna, λp is the
wavelength of the propagating signal, ρc is the path loss
exponent, and Xσc

is a zero-mean Gaussian random variable
with variance σ2

c . The power loss (in dB) is therefore a
Gaussian random variable with mean µc and variance σ2

c , i.e.
PL ∼ N (µc, σ

2
c ).

The given wireless channel represents an unreliable bit pipe
for the data link layer, with instantaneous Shannon capacity
given by:

C = W log2

�

1 +
Pr

N0W

�

bps (2)

whereW is the channel bandwidth, and Pr is the signal power
received by the fusion center. Using Shannon coding theorem,
the data link layer could achieve arbitrary communication
rates R up to the channel capacity using appropriate coding
schemes. Given the state of the art coding schemes that
approach the Shannon capacity, we can approximately assume
that the fusion center can perform error-free decoding for any
transmission with bit rate R < C. Therefore, the channel is
considered “ON” when R < C and “OFF” otherwise, giving

rise to the two-state channel model akin to the one presented
in [5]. Using (1), this condition is equivalent to:

Pr
ON
≷
OFF

N0W
�

2
R

W − 1
�

(3)

and noting that Pr = Pt10
−PL/10, where Pt is the average

signal power transmitted by the local sensor, we get:

PL
OFF
≷
ON

10 log




Pt

N0W
�

2
R

W − 1
�



 (4)

Using the result that PL ∼ N (µc, σ
2
c ), we get the probability

of the channel being “ON” during a transmission:

P [ON] = λc = Φ

�

1

σc

�

10 log
Pt

N0W (2
R

W − 1)
− µc

��

(5)

where Φ(.) is the cumulative distribution function for the
standard normal PDF.
The equation in (5) represents the probability of a successful

packet transmission from the sensor node to the fusion center,
provided that the local sensor node successfully gained the
channel access. In Section IV-B, we show that this probability
is further reduced due to the collisions resulting from the
random access to the channel.

B. Media Access Control Protocol Model

We assume a slotted ALOHA multiaccess communication
protocol, where each packet requires one time slot for the
transmission, all time slots have the same length, and all
transmitters are synchronized. When it is desired to detect
the phenomenon of interest, the fusion center broadcasts a
message to all sensors, triggering the detection cycle. The
detection cycle, demonstrated in Figure 4, has length τ ,
which defines the delay for detection, and is composed of
L transmission slots, each of time τ/L. Each local sensor i
collects a number of observations ni and forms an information
packet for transmission over the wireless channel. The sensor
i then attempts to transmit to the fusion center with probability
qi and communication rate Ri, given by:

Ri =
bLni

τ
(6)

where b is the number of encoding bits for each observa-
tion. Sensors attempt transmission in every slot during the
detection cycle, despite the state of their last transmission.
The decision takes place at the end of the detection cycle,
using the information received during that detection cycle.
The process repeats for every detection request initiated by
the fusion center. We note that in the above description for
the MAC protocol, we ignored the packet overhead, which is
a reasonable approximation for practical WSN protocols with
large packet payload. Now, we calculate the overall probability
of a successful packet transmission. At any given time slot, the
probability of a single packet transmission by sensor i is given
by qi

�

j �=i(1 − qj). Further, this packet will be successfully
received by the fusion center if the state of the physical
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Fig. 4. Detection cycle is composed of L slots, where each sensor attempts
transmission with proability qi and bit rate Ri. A final decision is taken by
the fusion center at the end of the detection cycle.

channel between the sensor and the fusion center is “ON”
during this time slot. Therefore, from (5), the total probability
of a successful packet transmission by sensor i is given by:

λi = qi
�

j �=i

(1− qj)Φ

�

1

σi
c

�

10 log
P i
t

N0W (2
Ri

W − 1)
− µi

c

��

(7)

C. Energy Model

To formulate the energy model for each sensor, we first
introduce the following definition for the network lifetime.
The network lifetime L could be defined as the average time
span from the deployment to the instant when the network can
no longer perform the task, which could be expressed as [16]:

L =
E0 − Ew

frEr
(8)

where E0 =
�N

i=1 e
0
i is the total initial energy in all sensors

at the time of deployment, Ew =
�N

i=1 ewi is the total wasted
energy remaining in sensor nodes when the network cannot
perform the assigned task, fr is the average sensor reporting
rate defined here as the number of detection cycles per unit
time, and Er =

�N
i=1 eri is the expected reporting energy

consumed by all sensors in one detection cycle. The total
wasted energy could be defined for our detection problem
as the energy required to achieve a minimum pre-specified
value for the adopted detection measure. If the total energy
remaining in the sensor nodes is below the total wasted energy
value, the obtained detection performance is less than the
minimum acceptable level, and the sensor network is no longer
able to perform the detection task.
In general, we can include the energy allocation problem in

our formulation, i.e. finding optimal eri values for all sensors
that maximize the detection performance while guaranteeing
a minimum network lifetime. In this work, however, we focus
on the optimal TCP problem, and therefore we resort to a
simpler energy formulation. First, we assume that ewi is the
energy remaining in the sensor battery when the sensor is not
capable of operating its electronic circuits for computations
and communication, which is fixed and known for each sensor.
Second, we assume that the reporting energy for each sensor
eri is a fixed percentage of the net useful energy at the time
of sensor deployment, i.e.:

eri = α(e0i − ewi ) 0 < α < 1 (9)

where α is the same for all sensors. Accordingly, from (8) we
obtain:

L =

�N
i=1(e

0
i − ewi )

fr
�N

i=1 eri
=

�N
i=1(e

0
i − ewi )

frα
�N

i=1(e
0
i − ewi )

=
1

frα
(10)

From (9) and (10), we get:

eri =
e0i − ewi
frL

∀i (11)

which could be calculated for each sensor and for any desired
network lifetime L. Finally, using this reporting energy value,
and by noting that the expected number of transmissions by
sensor i during a detection cycle is Lqi, we get:

P i
t =

(eri /τ)

qi
=

(e0i − ewi )

τLfrqi
(12)

where eri /τ is the average power over the detection cycle,
which summarizes the Residual Energy Information (REI)
for each sensor. Therefore, the problem here is to optimally
allocate the power across sensors. Using (12) in (7), we get:

λi = qi
�

j �=i

(1− qj)Φ

�

ai −

�
10

σi
c

�

log qi

�

2
Ri

W − 1
��

(13)

where

ai =
1

σi
c

�

10 log
eri

N0W
− 10 log τ − µi

c

�

(14)

=
1

σi
c

�

10 log
(e0i − ewi )

frN0W
− 10 logLτ − µi

c

�

(15)

where (14) is used in delay for detection performance com-
parisons, and (15) is used in network lifetime performance
comparisons. We note that in the above discussion, we ne-
glected the energy consumed by each sensor to report its
quality measures to the fusion center. This energy component
could be included in the analysis by subtracting it from the
initial sensor energy in (9). However, for slowly-varying envi-
ronments, where the sensor characteristics need to be updated
less frequently, this energy component could be neglected
compared to the periodic sensor reporting energy.

D. Sensing Model

We consider a detection application where a set of sensors
are randomly placed in a surveillance area to detect the
presence of an object. Sensors have fixed positions, which
could be estimated using different localization algorithms. The
surveillance area is divided into a number of range resolution
cells that are probed by local sensors upon receiving a com-
mand from the fusion center. The fusion center determines
the subset of sensors that contribute to the detection process
in each resolution cell, such that the detection performance
is maximized. The determination of sensors and their design
variables is accomplished by the fusion center by solving a
nonlinear constrained optimization problem involving the QoI,
CSI, and REI for each sensor, as explained in section V.
We focus our work on detection using signal amplitude

measurements. Therefore, when there is an object at a specific



resolution cell, the observation at sensor i, located at di
distance from the object, could be expressed as:

xi =
�

d
η/2
i

+ wi (16)

where � is the amplitude of the emitted signal at the object, η
is a known attenuation coefficient, typically between 2 and
4, and wi is an additive white Gaussian noise with zero
mean and variance σi2

s . We note that the above observation
model considers passive sensing. In the active sensing case,
the observation model is given by:

xi = ζ
�tr

(2di)η/2
+ wi (17)

where ζ is a known reflection coefficient at the object, �tr is
the amplitude of the signal transmitted by the active sensor
(illuminating signal), and 2di is the round trip distance trav-
elled by the signal. We note that the two observation models
differ only in the scaling factor ζ/2η/2. Therefore, without
loss of generality, we assume the passive sensing model in
the following discussion.
The detection problem could be defined as the following

binary hypothesis testing problem, for each time slot k:

H0 : xi[j, k] = wi[j, k] j = 1, 2, . . . , ni

H1 : xi[j, k] = µi + wi[j, k] j = 1, 2, . . . , ni (18)

where µi = �/d
η/2
i , and ni is the number of observa-

tions obtained by sensor i at each time slot. We note that
noise samples are independent across sensors, i.e., the ob-
servations at local sensors are independent across time and
space, but not necessarily identically distributed since some
sensors may be closer to the measured phenomenon, and
noise variances are assumed unequal. In the following, we
designate the vector of sensor observations at time slot k
by xi[k] =

�
xi[1, k] xi[2, k] . . . xi[ni, k]

�
. We note that

xi has the multivariate Gaussian distribution N (0,C) under
hypothesis H0 and N (µ,C) under hypothesis H1, where
µ =

�
µ1 µ2 . . . µN

�T , and C = σi2

s I.
Proposition 1: The optimal test statistic at the fusion center

for the given system description is given by:

V =

L�

k=1

N�

i=1

ni�

j=1

�
µi

σi2
s

�

ri[k]xi[j, k] (19)

where ri[k] is a Bernoulli random process representing the
success (ri = 1) or failure (ri = 0) of receiving a packet
from sensor i in communication slot k. The sample space and
probability measure of ri are defined as Ωri = {0, 1} and
P [ri = 1] = λi, respectively.

Proof: See Appendix A.
We adopt the deflection coefficient as a detection perfor-

mance measure, defined as [19]:

D2 =
(E[V ;H1]− E[V ;H0])

2

var[V ;H0]
(20)

which provides more tractable results in our study. The deflec-
tion coefficient is also closely related to other performance

measures, e.g., Receiver Operating Characteristics (ROC)
curve. In general, the detection performance monotonically
increases with increasing the deflection coefficient.

Proposition 2: The deflection coefficient for the detector in
(19) is given by:

D2 = L

N�

i=1

ni

�
µi

σi
s

�2
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ci

λi (21)

Proof: See Appendix B

We note that the quantity Di = ni

�
µi

σi
s

�2

represents
the signal to noise ratio at sensor i, and we adopt it as a
measure of the sensor Quality of Information (QoI). From
(21), we note that the overall deflection coefficient at the
fusion center is simply a weighted sum of the individual
deflection coefficients for each sensor, where the weights are
the probabilities of successful packet transmission for each
sensor, and the deflection coefficient in case of a collision is
set to 0.
Combining (6), (13), and (21) we obtain the objective

function:

D2 =
τ

b

N�

i=1

ciRiqi
�

j �=i

(1− qj)

× Φ

�

ai −

�
10

σi
c

�

log qi

�

2
Ri

W − 1
��

(22)

The trade-off in selecting the communication rate for each
sensor is reflected in (22). Increasing the communication rate
R results in higher QoI while reducing the probability of
successful packet transmission.
One note about the effect of the amplitude of the emitted

signal by the object is in order. We note that ci = �2/σi2

s dηi ,
therefore the signal amplitude at the object to be detected
appears as a scaling factor only in the objective function.
This means that the signal amplitude does not affect the
optimal operating point for the system. However, the amplitude
does affect the detection performance, as intuitively expected.
We further note that the objective function does not depend
directly on L and ni. Rather, from the optimal communication
rates and (6), L and ni could be arbitrarily chosen such that:

Lni =
τRi

b
(23)

We note that for any nonzero communication rate, i.e. Ri > 0,
ni ≥ 1, and consequently L ≤ τRi

b .
Table I lists the model parameters and their description. The

third column classifies each parameter according to its method
of calculation as either given from the application knowledge,
estimated online, calculated, or as a design parameter. The
fourth column highlights the parameters that are a measure
of the REI, CSI, or QoI for each sensor. The last column
classifies each parameter according to its relevant layer in the
system model. A complete nomenclature for the system model
is included in Appendix C.



TABLE I
MODEL PARAMETERS

Parameter Description Calc. Notes Layer
W Channel bandwidth G

Ph
ys
ic
al

L
ay
er

N0 Noise PSD E CSI
µc Mean path loss C (1) CSI
σ2
c Path loss variance E CSI

Pt Transmission power D
R Communication bit rate D
L Num. of comm. slots C (6)

M
A
C

L
ay
er

b Num. of encoding bits/obs. G
q Retransmission probability D
τ Delay for detection G

A
PP
.

L
ay
ern Number of observations C (6)

c = ( µ

σs
)2 Signal to noise ratio G QoI

er Energy/detection cycle G REI

E: Estimated, G: Given, C (): Calculated (eq. number), D: Design

V. TCP DESIGN FOR OPTIMAL DETECTION

The optimization problem could be summarized as follows:

max
τ

b

N�

i=1

ciRiqi
�

j �=i

(1− qj)

× Φ

�

ai −

�
10

σi
c

�

log qi

�

2
Ri

W − 1
��

s.t. 0 ≤ qi ≤ 1, Ri ≥ 0 i = 1, 2, . . . , N (24)

By denoting the decision variables by x =
�
q1 q2 . . . qN R1 R2 . . . RN

�
, where x ∈ R

2N ,
and the objective function by J(x), the optimization problem
could be rewritten on the form:

min
x

− J(x)

subject to Ax ≥ b (25)

where

A =





I 0

−I 0

0 I



 , b = −





0

1

0



 (26)

I is the identity matrix, and 0(1) is the vector/matrix of
all zeros (ones) with appropriate dimensions. Although the
objective function is not, in general, convex, the inequality
constraints are linear. Therefore, the KKT conditions represent
a necessary condition for a local maximizer of the objective
function [20]. We first form the Lagrangian:

L(x,ν) = −J(x)− νT (Ax− b) (27)

where ν is the vector of Lagrange multipliers, defined as:

νT = [ νq0
1

νq1
1

. . . νq0
N

νq1
N

νR1
. . . νRN

]

where νq0
i

is the Lagrange multiplier for the constraint qi ≥
0, νq1

i

is the Lagrange multiplier for the constraint qi ≤ 1,
and νRi

is the Lagrange multiplier for the constraint Ri ≥ 0.
We denote the primal and dual optimal points by x∗ and ν∗,
respectively. The KKT conditions are thus given by:

−∇J(x∗)−ATν∗ = 0 (Stationarity) (28)

ν∗T

(Ax∗ − b) = 0 (Comp. slackness) (29)
(Ax∗ − b) � 0 (Primal feasibility) (30)

ν∗ � 0 (Dual feasibility) (31)

−ZT∇2J(x∗)Z � 0 (32)

where Z is a null-space matrix for the matrix of active
constraints at x∗, and � represents componentwise inequality
for vectors and positive-semidefiniteness for matrices. Further,
the KKT conditions are sufficient for a strict local maximizer
if the following condition holds:

−ZT
+∇

2J(x∗)Z+ � 0 (33)

where Z+ is a null-space matrix for the matrix of nondegen-
erate active constraints at x∗, i.e. constraints with Lagrange
multipliers �= 0.
This optimization problem could be solved efficiently using

a variety of existing algorithms, e.g. interior-point method.
However, the result may be a local maximum. To guarantee
a global maxima over the function domain, we need to
enumerate all possible combinations of the active and inactive
constraints, which becomes infeasible for large number of sen-
sors. However, by exploiting the problem nature, the number
of combinations can be reduced considerably. The following
proposition limits the number of candidate points for a local
maximum.

Proposition 3: The maximum value of the objective func-
tion in (24) occurs either when one sensor transmits with
probability one and all other sensors remain silent, or at a
stationary point of the objective function, i.e. at x∗ where
∇J(x∗) = 0.

Proof: The formal proof is omitted for space limitation.
However, the result could be derived directly from the KKT
conditions. We give here an informal argument justified by
intuition about the problem. We divide the problem into two
cases:

• qi = 1 for one sensor. If qj �= 0 where j �= i for any
other sensor, then a collision is guaranteed when sensor
j attempts transmission. Therefore, the fusion center will
not receive any information from sensor j. Clearly, qj
should be set to 0 ∀j �= i, i.e. all other sensors have to
be silent. Therefore, the set of N points (qi = 1, qj =
0, j �= i) are candidates for a local maximum.

• 0 ≤ qi < 1 ∀i. if qi > 0 ∀i, then all sensors partici-
pate in the detection process, and the point is a candidate
for a local maximum. Since all constraints are inactive in
this case, the candidate point is a stationary point for the
objective function, i.e. x∗ where ∇J(x∗) = 0. If qi = 0
for some number of sensors k, then this is essentially
the same original problem with k sensors eliminated, i.e.
with N − k sensors. This point could also be shown to
satisfy the stationarity condition for the original problem.
Therefore all candidate points in this case are stationary
points.



Since we may have multiple stationary points in the interior of
the objective function domain, the proposition does not guar-
antee obtaining the global maximum. However, the proposition
is still useful for the following reasons: 1) it avoids the case
where the optimization algorithm may terminate at the local
maximum qi = 1, qj = 0, while a better local maximum
maybe at one of the stationary points, and 2) it provides
some information about the choice of the initial point for the
optimization algorithm, where initial points near the corner
points qi = 1, qj = 0 have to be avoided.
We note that the result obtained in proposition 3 is due

to the problem nature, i.e., the sharing of the communication
channel between multiple sensors. Therefore, the result carries
out to similar problem structures, e.g., tree wireless networks
with shared channels between sibling nodes.

VI. NUMERICAL EXAMPLE

We consider the problem of 10 wireless sensors de-
ployed for detection. The small-scale network is chosen
for demonstration-purposes only. Large-scale sensor networks
could be used as well, due to the scalability of the optimization
algorithm. The system parameters are shown in Table II, which
replicates the structure of Table I for easy reference. We use
the interior-point algorithm to calculate the optimal solution.
For the given problem data, the optimal point is always at the
stationary point, i.e. qi, Ri �= 0 ∀i.
We compare our design approach with the decoupled ap-

proach, where each layer is designed separately. In the con-
ventional slotted ALOHA, The MAC sublayer is designed to
minimize the probability of collision, without regard to the
QoI or CSI of each node. Minimum probability of collision
occurs at qi = 1/N , and consequently P i

t = eriN/τ . The
physical layer is designed to guarantee a minimum probability
of successful packet transmission, λ. Using (5), we obtain:

Ri = W log2

�

1 + 10[0.1σ
i

c
(ai−Φ−1[λ])+logN]

�

(34)

and using (22), the deflection coefficient is given by:

D2 =
τλW

bN

�

1−
1

N

�N−1

×
N�

i=1

ci log2

�

1 + 10[0.1σ
i

c
(ai−Φ−1[λ])+logN]

�

(35)

In practice, λ is pre-specified independent from the applica-
tion. However, to make a fair comparison, we use the value
of λ that maximizes the deflection coefficient in (35), i.e.:

λ = argmax
λ

D2 0 ≤ λ ≤ 1 (36)

We note that the deflection coefficient is smaller for both
small and large values of λ. For small λ values, not enough
observations are transmitted, while for large values of λ, more
collisions occur, hence less observations are received at the
fusion center.
We compare the detection performance against two system

design parameters; delay for detection and network lifetime.
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Fig. 5. Deflection coefficient as it varies with the delay for detection.

1) Delay for detection: In this case, we vary the delay for
detection τ , and calculate numerically the optimal deflection
coefficient for each design approach. We assume a fixed
network lifetime L, or equivalently a fixed reporting energy eri
for each sensor. We use (14) along with the objective function
in (22).
Figure (5) shows the deflection coefficient versus the delay

for detection. The cross-layer design approach clearly out-
performs the decoupled design even when using the optimal
success probability λ for each delay for detection value. We
also note that the deflection coefficient saturates much faster
in the decoupled design case. The saturation value is given by
limτ→∞ D2, where D2 is given by (35). From the problem
constraints, the deflection coefficient saturates also in the
case of the cross-layer design. This is true since the energy
allocated by each sensor for a single detection cycle is finite.
Therefore, increasing the delay for detection over a certain
value would not contribute to the detection performance. The
saturation value in the cross-layer design case, however, cannot
be obtained in a closed form.

2) Network Lifetime: In this case, we vary the network
lifetime L, and calculate numerically the optimal deflection
coefficient for each design approach. We assume a fixed delay
for detection τ = 100 sec. We use (15) along with the objective
function in (22).
Figure (6) shows this relationship for the given example

network, with average sensor reporting rate r = 200 times
per day. The cross-layer design approach outperforms the
decoupled approach for all given network lifetimes. The
horizontal line represents the minimum acceptable detection
performance, which subsequently defines the maximum effec-
tive network lifetime.

VII. CONCLUSION

We presented a cross-layer design approach for the TCP
of wireless sensors deployed for detection applications. The
TCP includes the transmission probabilities, communication
rate, and power allocation for each sensor. The approach
outperforms the decoupled approach ,where each layer is
designed independently, for arbitrary delay for detection and
network lifetimes. The extension of this approach to multihop



TABLE II
MODEL PARAMETERS FOR THE NUMERICAL EXAMPLE. DESIGN VARIABLES ARE SHOWN IN BOLD.

Parameter Description Value
W Channel bandwidth 2× 103 Hz
N0 Noise power spectral density 10−10 W/Hz
µc Mean path loss

�

42 44 37 40 45 42 44 39 43 45
�

dB
σc Path loss std. dev.

�

4 6.5 5 4.5 7 4 6.5 5 4.5 7
�

dB
Pt Transmission power eri /τqi
R Communication bit rate Design variable
L Number of comm. slots Lni = τRi/b
b Number of bits/observation 16 bits
q Retransmission probability Design variable
τ Delay for detection 0:250 sec.
n Number of observations Lni = τRi/b

ci = (µi/σi
s)

2 Signal to noise ratio
�

0.05 0.071 0.04 0.03 0.075 0.05 0.07 0.04 0.03 0.075
�

er Energy/detection cycle
�

1 1.1 0.9 1.15 0.8 1 1.1 0.8 1.15 0.8
�

× 10−3 J

200 300 400 500 600 700 800 900 1000
20

40

60

80

100

120

140

Network lifetime L (days)

D
ef

le
ct

io
n 

co
ef

fic
ie

nt
 D

2

Cross−layer design
Decoupled design

Minimum detection performance

Effective lifetime
Decoupled design

Effective lifetime
Cross layer design

Fig. 6. Deflection coefficient as it varies with the network lifetime. The cross-
layer design approach outperforms the decoupled approach for all values of
the network lifetime.

sensor networks is currently under research. In addition, the
application of the proposed approach on the correlated obser-
vations case, and the study of the dependency of the system
design on the degree of correlation between sensors represent
one of the future research directions.

APPENDIX
A. Proof of Proposition 1

Proof: At the fusion center, the LLR ratio is the sum of
the individual LLR’s received at each time slot. Therefore, the
test could be expressed as:

L�

k=1

N�

i=1

ri[k]l(xi[k])
H1

≷
H0

ln γ (37)

where:

l(xi[k]) = ln
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s
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(38)

The LR test then reduces to:

V =
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ni�
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s
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1

2
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k=1

N�

i=1

niri[k]

�
µi

σi
s

�2

+ ln γ = γ� (39)

B. Proof of Proposition 2

Proof: To calculate the deflection coefficient for the
detector in (19), we use the fact that both ri[k] and xi[j, k]
are strict-sense stationary random processes (being IID) and
independent of each other. Therefore:

E[V ;H0] = L

N�
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niE[ri]E[xi]

�
µi

σi2
s

�

= 0 (40)

E[V ;H1] = L
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(41)
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TABLE III
NOMENCLATURE

Param. Description
λp Wavelength of the propagating signal
dc Distance between sensor and fusion center
ρc Channel path loss exponent
µi
c Mean path loss for sensor i

σi
c Path loss std. deviation for sensor i

W Communication channel bandwidth
P i
t Transmission power for sensor i

P i
r Signal power received at the fusion center from sensor i

N0 Noise power spectral density
Ri Communication rate for sensor i
b Number of encoding bits/observation
L Number of transmission slots
ni Number of observations sampled by sensor i
τ Delay for detection
λi Successful packet transmission probability for sensor i
qi Retransmission probability for sensor i
L Sensor network lifetime
e0i Initial energy in sensor i battery
ewi Wasted energy remaining in sensor i battery
eri Reporting energy for sensor i
fr Reporting frequency for the sensor network
α Percentage of net useful energy used in reporting
� Amplitude of emitted signal at detected object
di Distance between sensor i and the object
η Attenuation coefficient for object signal
ζ Reflection coefficient at the object

xi[j, k] Observation number j at time slot k for sensor i

ci = ( µi

σi
s

)2 Detected object signal to noise ratio at sensor i

V Test statistic at the fusion center
N Total number of wireless sensors

ri[k] Success or failure of sensor i transmission in slot k
D2 Deflection coefficient

and noting that E[ri1ri2 ] = 0 for i1 �= i2, and E[r2i ] = λi, we
get:

var[V ;H0] = L
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s
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From (40), (41), and (42), we get:

D2 = L
N�

i=1

ni

�
µi

σi
s

�2

λi (43)

C. Nomenclature

Nomenclature for the complete system model is shown in
Table III
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