
19th Mediterranean Conference on Control and Automation
Aquis Corfu Holiday Palace, Corfu, Greece
June 20-23, 2011

ThAT1.4

PaNeCS: A Modeling Language for Passivity-based Design of Networked
Control Systems

Emeka Eyisi, Joseph Porter, Nicholas Kottenstette, Xenofon Koutsoukos, and Janos Sztipanovits

Institute for Software Integrated Systems (ISIS)

Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37235 USA

emeka.eyisi, joe. porter, nicholas.e.kottenstette, xenofon.koutsoukos, janos.sztipanovits@vanderbilt.edu

Abstract- The rapidly increasing use of information tech­
nology in constructing real-world systems has led to the urgent
need for a sound systematic approach in designing networked
control systems. Communication delays and other uncertainties
complicate the development and analysis of these systems. This
paper describes a prototype modeling language for the design of
networked control systems using passivity to decouple control
design from network uncertainties. The modeling language
includes an integrated analysis tool to check for passivity and
code generators for simulation in MATLAB/Simulink using the
TrueTime platform modeling toolbox and for running actual
experiments. The resulting designs are by construction robust
to platform effects and implementation uncertainties.

I. INTRODUCTION

Complex engineered systems such as automotive vehicles,
building automation systems, and groups of unmanned air
vehicles are currently referred to as Cyber Physical Sys­
tems (CPS). CPS are characterized by intricate interactions
between physical dynamics, computational dynamics and
communication networks. CPS are often monitored and con­
trolled by networked control systems (NCS). Although the
pervasive use of NCS offers exceptional opportunities for the
way we build CPS, it also adds heterogenity and complexity.
This heterogeneity makes it difficult to use existing design
approaches to design CPS.

Model-based design for embedded control systems in­
volves creating models and checking correctness at different
stages in the development process [1]. Model-based design
flow progresses along precisely defined abstraction layers,
typically starting with control design followed by system­
level design for the specification of platform details, code
organization, and deployment details, and the final stage of
integration and testing on the deployed system. This design
approach is ineffective for NCS because domain hetero­
geneity and tight coupling between design concerns create
a number of challenges. Ensuring controller stability and
performance for physical systems in the presence of network
uncertainties (e.g. time delay, packet loss) couples the control
and system-level design layers. In addition, downstream code
modifications during testing and debugging invalidate results
from earlier design-time analysis and any component change
often results in "restarting" the design process.

A number of research projects seek to address the prob­
lems of model-based design for NCS. The ESMoL mod-

978-1-4577-0123-8/11/$26.00 ©2011 IEEE

eling language for designing and deploying time-triggered
control systems explicitly captures in model structure many
of the essential relationships in an embedded design [2].
The ESMoL tools include schedule determination for time­
triggered communications, code generation, and a portable
time-triggered virtual machine. AADL [3] is a similar tex­
tual language and standard for specifying deployments of
control system designs in data networks [4]. The Metropolis
modeling framework [5] aims to give designers tools to
create verifiable system models. Metropolis integrates with
scheduling, timing analysis, and verification tools.

We propose an automated model-based approach based
on passive control theory. We used Model-Integrated Com­
puting [1] to develop a domain specific modeling language
(DSML) called the Passive Network Control Systems lan­
guage (PaNeCS). Our approach is based on the passive con­
trol architecture presented in [6] which provides robustness
to network delays and packet loss. We will briefly describe
the DSML, compositional passivity analysis, code generation
for simulations using Matlab/Simulinkffruetime, and code
generation of executables from nonlinear models for running
actual experiments.

Changes made during design, development, and testing
cycles may cause extensive software revisions and force
expensive re-verification. PaNeCS supports automated for­
ward generation of both platform-specific simulation models
as well as deployable executables. PaNeCS enables rapid
configuration and code generation while at the same time
reduces the chances of introducing errors as compared to
manually designing NCS in Simulink directly. It also inte­
grates passivity analysis of system components.

Control systems are often verified using complex op­
timization techniques such as linear matrix inequalities
(LMIs), which can model many important controller proper­
ties (e.g. stability, response time, reachability). In a system
built from the composition of multiple blocks, such analysis
quickly becomes intractable. In contrast, a passive design
ensures global stability compositionally by a combination
of component analysis and specific rules for composition of
passive components.

Control designers create models for both physical systems
and controllers using tools like Simulink and Stateflow.
Deployment of a control design such as a Simulink model

1002

to a networked architecture introduces uncertainties due to
time-varying delay, data rate limitations, jitter, and packet
loss. Current approaches extend Simulink models with plat­
form behaviors, as in TrueTime [7], which adds networks,
clocks, and schedulers. While platform-specific simulation is
a major step in validating NCS designs, it does not decouple
design layers as described above. A control designer can
factor in implementation effects (e.g., network delays), but
if the implementation changes the controller may need to be
redesigned. Our approach imposes passivity constraints on
the component dynamics, so that the design becomes robust
to network effects, establishing orthogonality (with respect
to controller stability) across the control and implementation
design layers.

The paper is organized as follows: Section II presents a
passive control architecture for NCS. Section III presents
our prototype modeling language. Section IV discusses an
integrated analysis tool for automatically checking passivity.
Section V presents automated code generators. Section VI
shows a case study. Section VII provides our conclusion.

II. PASSIVITy-BASED CONTROL OF NETWORKED

CONTROL SYSTEMS

Our NCS design approach is based on passivity theory.
Essentially all passivity definitions state that output energy
must be bounded so that the system does not produce more
energy than was initially stored [8]. Passive systems have
a unique property that when connected in either a parallel
or negative feedback manner the overall system remains
passive. Passive systems are robust to certain implementation
uncertainties [9], so passivity can be exploited in the design
of NCS. The main idea is that by imposing passivity con­
straints on the component dynamics, the controller becomes
robust to network effects. This allows the separation of
concerns between control properties and platform behavior.

We briefly discuss the passivity based control architecture
for multiple plants controlled by a single controller via
a network [6]. Fig. 1 depicts a simple networked control
system with only one plant shown. The Bilinear Transform
block, denoted b, represents a transformation between signals
and wave variables. Wave variables were introduced by
Fettweis in order to circumvent the problem of delay-free
loops and guarantee a realizable implementation for digital
filters [10]. Wave variables also allow systems to remain
passive while transmitting data over a network subject to
arbitrary fixed time delays and data dropouts [9]. In Fig. 1,
upk(i) (where k=2, ... ,n), can be thought of as sensor output
data in wave variable form from each plant, where n - 1 is
the total number of plants in the network. Likewise, Vcj(i)
(where}=l) can be thought of as a command output in wave
variable form from the controller.

The power junction, denoted PI in Fig. 1, is an abstraction
used to interconnect wave variables from multiple controllers
and multiple plants in parallel such that the total input power
is always greater than or equal to the total output power.
This provides a formal way to construct a NCS design. A
power junction makes it possible for a single controller to

978-1-4577-0123-8/11/$26.00 ©2011 IEEE

control multiple plants over a network and guarantee that the
overall system remains stable. In Fig. 1, the power junction
has waves entering and leaving as indicated by the arrows.
The blocks, z-ck and z-pk (k=1,2), represent network delays
incurred by the wave variables. Waves entering the power
junction from the controller are network-delayed versions of
waves leaving the controller, as indicated by the time delay
block. Waves entering the controller are delayed versions of
waves leaving the power junction. The other waves in the
diagram are similarly delayed.

Due to bandwidth constraints, the controller typically runs
at a slower rate than the sensors and actuators of the plants.
In order to preserve passivity in the multi-rate digital control
network we use the passive upsampler PUS:M and passive
downs ampler PDS:M pair to handle the data rate transitions.
The PUS:M and PDS:M as shown in Fig. 1 provide the
upsampled and downs amp led versions of their respective
wave variable inputs while preserving passivity. The block
parameter M is the sampling ratio - the data rate of the faster
side of the connection divided by the data rate on the slow
side. Based on the architecture described in Fig. 1, we can
now describe our prototype modelling language, PaNeCS.

III. PANECS

The passivity-based modeling language (PaNeCS) is de­
veloped using the Generic Modeling Environment (GME),
from the Model Integrated Computing (MIC) tool suite [11].

A. Overview

PaNeCS encodes passive model constraints into the lan­
guage structure to achieve compositional design and reali­
azation. The prototype language defines the allowable con­
nections between components to ensure that any networked
control system model built using passive components will
be passive. PaNeCS provides the flexibility to easily model
networked control systems and configure the system parame­
ters. It also allows testing through simulations or by running
actual experiments under various network conditions by
simply adjusting parameters to generate appropriate software
for each scenario. Fig. 2 shows the design flow in PaNeCS.

1) Components: In PaNeCS, the top level consists of four
main components: the PlantSystem, the ControllerSystem,

the PowerJunction and the WirelessNetwork modelling
the components of an NCS. The modelling features of
NCS components can be different in PaNeCS based on the
goal of a NCS designer. For example, PlantSystem model
for generating code to run simulations is different from a
PlantSystem model for generating code for running real
experiments.

The PlantSystem represents all the sub-components on
the plant side of the network. Its components include Plant,

BilinearTransformP, PassiveUpSampler, PassiveDownSam­

pIer, Send and Receive. Plant represents the system to be
controlled. The Plant model can be any passive discrete
linear time-invariant (LTI) system and can approximate a
nonlinear system realized in the modeling and generation
path. We discuss nonlinear NCS modelling for robotic arms

1003

P.J

Fig. I. Networked Control Architecture

using PaNeCS in [12] we omit the details for that case here
for simplicity and brevity. The Plant dynamics are parameter­
ized by matrix attributes A, B, C, D, and a scalar Sampling­

Time, and are specified using any valid Matlab expression
evaluating to the proper dimensions. BilinearTransformP

represents a model for wave scattering, which transfonns the
wave variables received from the power junction into control
input to the plant and transfonns the plant output signal
into wave variables that are transmitted over the network.
PassiveUpSampler and PassiveDownSampler pair represent
the PUS:M and PDS:M pair discussed in Section II. Send

and Receive pair are used to represent the transmission of
data over the network. For creating models for running
actual experiments additional attributes are used to specify
the software components for sending and receiving data over
the network such as port numbers, data size and dimension.

ControllerSystem represents all the sub-components on
the controller side of the network. These include Digi­

talController, BilinearTransformC, ZeroOrderHold, Referen­

ce!nput, Send and Receive. DigitalController is a model
representing the algorithm for controlling the networked
plants. Similar to the model of the Plant in the PlantSystem,

the DigitalController is modeled as a passive LTI system.
Therefore, the DigitalController parameters have similar
attributes to the Plant for a LTI system case. BilinearTrans­

formC is similar to the BilinearTransformP described in the
PlantSystem. ZeroOrderHold represents a component that
holds its input for the time period specified in the sampling
time attribute. Reference!nput represents the desired signal to
be tracked by the plants. Similar to the PlantSystem, Send

and Receive pair are used to represent the transmission of
data over the network.

PowerJunction model component describes the power
junction. The Powerjunction can contain ports for the
connection of the plants and controllers. They are briefly de­
scribed as follows: PowerInputPowerOutput represents a port
through which the PlantSystem connects to the PowerJunc­

tion. Through it, the Powerjunction sends calculated control
signals to the PlantSystem and also receives sensor signals
from the PlantSystem. PowerOutputPowerlnput represents a
port through which the ControllerSystem can connect to the
PowerJunction. Through it, the Powerjunction sends the
averaged sensor signal to the ControllerSystem and receives
the calculated control signal from the ControllerSystem.

Additionally, for creating models for running real experi-

978-1-4577-0123-8/11/$26.00 ©2011 IEEE

ments port number attributes are used to specify ports for
sending and receiveing data over the network.

WirelessNetwork represents the network and its param­
eters for the NCS. The WirelessNetwork model provides
modifiable parameters for simulation. Data rate sets the
throughput for simulating network activity. DisturbancePack­

etSize configures the size of simulated disturbance attack
packets on the network (introduces delays). This provides
a way for simulating the NCS under non-optimal conditions.
DisturbancePeriod configures the frequency of disturbance
attacks on the network.

Behavior Simulation

SlmullnklTrueTime

SlmulinkIBasb Scripts

Fig. 2. PaNeCS Design Flow

Executables

2) Language Aspects: Our modeling language has two
main aspects (GME aspects are similar to modeling views in
other tools): Control Design Aspect and Platform Aspect.

The Control Design Aspect visualizes the controller mod­
eling layer. This includes the plants, controller, and power
junction, as well as their interconnections - indicating the
flow of control and sensor signals.
The Platform Aspect visualizes the physical platfonn com­
ponents of the NCS. This view includes plants, controllers,
and the wireless network as well as their interconnections
- indicating the flow of data packets over the network.
Though the plants and controller appear in both aspects, in
the Platfonn aspect they represent physical devices rather
than control design concepts.

In PaNeCS, when the design goal is for running actual
experiments, an additional aspect, Processor Assignment

Aspect, is used for depicting the mapping of software
components to processors on which the computations and
implementations are to be performed [12].

1004

3) Structural Semantics: Our main language design goal
is to ensure "correctness-by-construction" for passive NCS
designed using PaNeCS. To achieve this objective we impose
constraints on the NCS component properties as well as their
interconnections. The metamodel notations described above
do not capture all the required structural constraints. Using
the Object Constraint Language (OCL), we can add well­
formedness rules to precisely control the static semantics
of the language. GME is embedded with an OCL engine
- specified constraints are enforced at design time, giving
direct feedback when the user attempts to create faulty
connections in the model or violates any other constraints.
In Section IV, we will describe an analysis tool for verifying
that system components satisfy passivity constraints.

We implemented three classes of constraints: Cardinality

Constraints ensure that the correct number of components are
used in the NCS design. For example, for each PlantSystem

model there must be one Plant. Connection Constraints

restrict the number of allowable connections between com­
ponents. For example, in the PlantSystem model there can
only be one bidirectional connection between the Plant and
BilinearTransformP. Unique Name Constraints ensure the
uniqueness of the names of components in the Plant and
Controller subsystems as well as in the top level model of
the NCS.

The sample OCL constraint below specifies that the num­
ber of connections from a BilinearTransformC model to a
DigitalController must be at most one.

D e s c r i p ti o n : There must be o n l y one b i d i r e c t i o n a l
c o n n e ct i o n betw e e n B i l i n e a r T r a n s f o r mC t o t h e
D i g i t a l C o n t r o lIe r

Equatio n : l e t d stC ount = . . .

s e l f . attac h i n g C o n n e c t i o n s (" s r c " • . . .

C o n t r o l l e r _B i l i n e a r)->s i z e i n
dstC o u n t <> 0 implies d stCount = I

IV. PASSIVITY ANALYSIS

In passive designs, we have to analyze the system compo­
nents to make sure they satisfy passivity constraints. Using
the analysis tool integrated in PaNeCS, we can currently an­
alyze the passivity properties of any LTI system component
modelling the plant or digital controller.

The analysis of the Plant and DigitalController com­
ponents of the networked control system for passivity is
done automatically by an integrated Matlab analysis function.
Each component is assumed to have a linear time-invariant
(LTI) discrete-time model, so we use LMIs together with the
CVX semidefinite programming tools for Matlab [13] [14].
On invocation (Le. the modeler presses a button), a C++
model interpreter within GME visits each component, and
invokes the analysis function. Any components failing the
passivity test are reported to the user.

The dynamics of the Plant and DigitalController models
can each be defined by a state space representation and are
characterized by the matrices A, B, C, D of size compatible
with the number of inputs and outputs in the system and the
number of states in the model. The passivity constraints for

978-1-4577-0123-8/11/$26.00 ©2011 IEEE

these models is defined by Linear Matrix Inequality (LMI)
constraints [15]. For example, a LMI formula for strict output
passivity for an LTI digital controller is given by

Q = CT QC, S = CT S + CT QD
R = DTQD+ (DTS +STD) +R

3c: > 0, Q = -c:I R = 0 S = � I 3P = pT > 0 , , 2 '

(1)

The CVX semidefinite programming (SDP) tool is used in a
Matlab script to solve the LMI for each component.

Due to the "correct-by-construction" approach we use in
designing networked control, we only analyze the Plant and
DigitalController elements for passivity. If those components
satisfy the passivity constraints, the network control system
as a whole also satisfies the passivity principles.

The component interconnections are restricted in such
a way that they are "correct-by-construction". Only valid
(parallel) connections are allowed to the power junction,
so any interconnected system of passive components in the
language will be globally passive. The modeling language
and its constraints encode the passive composition seman­
tics, greatly reducing the analysis burden for determining
passivity (and hence stability [6]) of the composed system
design.

V. CODE GENERATION

The main objective of the code generators is to generate
code that maps the models designed using the modeling lan­
guage to Simulink models and network scripts that represent
the networked control system. Fig. 2 shows the two code
generators one for generating code for running simulation
and for generating executables for running actual experi­
ments. We will briefly discuss the two code generators used
in PaNeCS.

We developed a model interpreter that synthesizes simula­
tion code from PaNeCS models. The interpreter is developed
in C++ using the Builder Object Network (BON2) API
provided with GME [11]. The interpreter traverses all the
entities of a particular networked control system instance
model and extracts model parameters. These parameters and
model structure are used to generate MATLAB files for
configuring and building Simulink and TrueTime models to
simulate the NCS. The PlantSystem and ControllerSystem

are modelled as Simulink subsystems, which contain the
respective Plant and DigitalController behavior blocks. Each
generated system-level component is connected to a True­
Time Kernel block. The TrueTime Kernel models a process­
ing node with a scheduler and liD. Our models execute on
periodic schedules within TrueTime. For this version of our
language, the PowerJunction is implemented as a task in the
TrueTime Kernel connected to the ControllerSystem. The
task that implements the power junction is triggered by data

1005

arrival events. Each True Time kernel has an initialization
script and a function script specifying timing for 1/0 and task
execution. The TrueTime Wireless network block simulates
the transfer of data packets over a wireless network from one
node to another.

Similar to the case of synthesizing simulation code, we
developed a code generator that can be used to synthesize
software for integration, deployment, and testing of the net­
worked system. The code generator implements translation
rules from the model elements to Simulink blocks realizing
the system behavior. For the experiments, the Simulink
models alone are not sufficient to set up the network in­
frastructure for nonlinear experiments. A deployment model,
which can be visualized through the Processor Assignment

Aspect, describes assignments of models to processors. The
integrated code generator also produces bash shell scripts
in order to set up the networking infrastructure and run
the experiments. The network infrastructure utilizes Netcat
(a standard computer networking service tool) and SSH to
build internet tunnels for system testing. The powerjunction
is configured as a server, and plant and controller models use
client sockets to attach to the power junction. The network
system follows a globally asynchronous locally synchronous
execution model. The controller and plant receivers execute
periodically.

VI. CASE STUDY

Fig. 3 shows a model for a simple passive linear con­
troller regulating two passive linear plants to track a speci­
fied reference signal. Fig. 3a denotes the Control Design

Aspect describing the control design concepts while Fig.
3b denotes the Platform Aspect describing the physical
platform components. The Powerjunction does not appear
in Fig. 3b because it is implemented on the the same
physical component as the ControllerSystem, as described
in Section III the Platform Aspect only shows the physical
platform components. In this experiment, the goal is to model
the NCS and generate a simulation of its behavior. Although
this case study models two discrete-time plants, PaNeCS can
model and simulate an arbitrary number of plants.

The two plants in the experiment (Fig. 3) are simple
integrators (corresponding to models of inertial masses of
2kg and .25kg respectively) which are discretized in time.
The plants' dynamics were modeled in state space form
and the corresponding A, B, C, and D matrices as well
as sampling time (Ts) were provided as parameters to the
instance model.

We used a digital proportional controller to command the
plants to track the user-specified reference. We also used
state-space form for the controller (A, B, C, D, and Ts).

The parameters values for the plant and controller dynamics
are given in Table I. The analysis tool checked and verified
that the Plant and DigitalControlier models satisfied the
passivity constraints. Then the code generator was used to
create a platform-specific Simulink simulation model using
the specified parameters and model structure.

978-1-4577-0123-8/11/$26.00 ©2011 IEEE

(a) Control Design Aspect

(b) PlatformAspect

PassivaUpSampler

(c) Plant Subsystem

� /"---------'
N 8�r I O--J BiJineorTransfomtC

Receive

(d) Controller Subsystem

Fig. 3. Sample Model of a Networked Control System

Using PaNeCs, we tested the dynamics of an NCS by run­
ning experiments under different network conditions. Table II
shows the parameters for the simulations.

A. Nominal Conditions

This experiment operates the sytem without disturbance
attacks for three sample periods (O.ls, 0.5s and Is). We only
present plots for the results of the NCS having a sample
period of O.ls. Fig. 4a shows that the plants closely tracked
the reference velocity. The round trip delay for each plant
seemed to have very little effect on the stability of the plants'
velocity response. The delay can be attributed to the internal
processing of the plants and controllers rather than network
delay itself.

TABLE I

PLANT AND CONTROLLER DYNAMICS.
A B C D Ts

Plant! 1 1 .005 .0025 .01s
Plant2 .996 1 .04 .02 .01s

Controller 0 0 0 1O7l' .1s

Sample Periods
Plantl,M
Plant2,M

Disturbance

TABLE II

SIMULATI ON PARAM ETERS SUMMARY.
O.01s 0.05s

10 50
10 50

Ts = 0.01 Packet size = 110,000bits

O.ls
100
100

1006

Nominal Velocity response over wireless network (Sampling Tlme=0.1s)
0.03 ,----�-�---,-_______,_�_____,

0.02

-0.02

- Reference Velocity
........ Plant 1 Output Velocity

-0.03L---�-�-�-�-�-�-�---'
o 10 15 20 25 30 35 40

Time(s)

(a) Nominal velocity response.

Velocity response with disturbance attack (Sampling Tlme=0.1s)
0.03,----�--:-:::c-'"_========;_�...,_::_]

-0.01

-0.02

(c) Velocity response with disturbance attack.

Nominal time delay for Plant 1 (Sampling Time=0.1s)

�;I � � � �
�

�� � I
o 10 15 20 25 30 35 40

Tlme(s)

Nominal time delay for Plant 2 (Sampling Tlme=0.1s)

��jl � � � �
�

�� � I 0
0 10 15 20 25 30 35 40

Time(s)

(b) Time delays .

Time delay for Plant 1 with disturbance attack(Samplfng Time=O.1s)

10 15 20 25 30 35
Time(s)

Time delay for Plant 2 with disturbance attack(Sampling Time=0.1s)

(d) Time delays with disturbance attack.

Fig. 4. Velocity and Delay Plots.

B. Network disturbances

This experiment introduces a disturbance attack in the
network using parameters on the wireless network block.
Similar to nominal experiment, three different sample rates
were tested, but we only present the results for the O.ls
sample period. Fig. 4c and 4d shows the velocity response
and the time delay respectively for each plant. The results
show that even with disturbance attacks, the plants remain
stable in tracking the reference velocity although the perfor­
mance is relatively affected as can be seen from the plots.
This demonstrates the advantage of the passivity approach
which guarantees the stability of the NCS in the presence of
uncertainties due to network effects.

VII. CONCLUSION

Our model-based approach simplifies the process of de­
signing passive networked control systems. We present
PaNeCS, a prototype modeling language for designing, ana­
lyzing and generating code for simulations and executables.
We use a case study to demonstrate our design approach.

REFERENCES

[I] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, " Model-integrated
development of embedded software," Proc. of the IEEE, vol. 91, no. I,
Jan. 2003.

[2] J. Porter, G. Karsai, P. Vlgyesi, H. Nine, P. Humke, G. Hemingway,
R. Thibodeaux, and 1. Sztipanovits, "Towards model-based integration
of tools and techniques for embedded control system design, verifica­
tion, and implementation."

[3] AS-2 Embedded Computing Systems Committee, "Architecture anal­
ysis and design language (AADL)," Society of Automotive Engineers,
Tech. Rep. AS5506, Nov. 2004.

978-1-4577-0123-8/11/$26.00 ©2011 IEEE

[4] J. Hudak and P. Feiler, "Developing AADL models for control
systems: A practitioner's guide," CMU SEI, Tech. Rep. CMU/SEI-
2007-TR-014, 2007.

[5] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Paserone, and
A. Sangiovanni-Vincentelli, "Metropolis: an integrated electronic sys­
tem design environment," IEEE Computer, vol. 36, no. 4, pp. 45-52,
Apr. 2003.

[6] N. Kottenstette, J. Hall, X. Koutsoukos, P. Antsaklis, and J. Szti­
panovils, "Digital control of multiple discrete passive plants over
networks," Inti. Journal of Systems, Control and Communications,

Special Issue on Progress in Networked Control Systems, vol. 3, no. 2,
pp. 194 - 228, 2011.

[7] M. Ohlin, D. Henriksson, and A. Cervin, TrueTime 1.5 Reference
Manual, Dept. of Automatic Control, Lund University, Sweden, Jan.
2007, http://www.control.lth.se/truetime/.

[8] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties. Orlando, FL, USA: Academic Press, Inc., 1975.

[9] P. Berestesky, N. Chopra, and M. W. Spong, "Discrete time passivity
in bilateral teleoperation over the internet," in IEEE International
Conference on Robotics and Automation, 2004, pp. 4557 - 4564.

[10] A. Fettweis, "Wave digital filters: theory and practice," Proc. of the

IEEE, vol. 74, no. 2, pp. 270 - 327, 1986.
[II] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, 1. Garrett, C. Thomason,

G. Nordstrom, J. Sprinkle, and P. Volgyesi, "The generic modeling
environment," Workshop on Intelligent Signal Processing, May 2001.

[12] X. Koutsoukos, N. Kottenstette, J. Hall, E. Eyisi, H. LeBlanc, J. Porter,
and J. Sztipanovits, "A passivity approach for model-based composi­
tional design of networked control systems," ACM TECS special issue
on the Synthesis of Cyber-Physical Systems (SCPS), To Appear.

[13] M. Grant and S. Boyd, "CVX: MATLAB software for disciplined
convex programming," Feb 2009. [Online]. Available: http://stanford.
edu/�boyd/cvx

[14] M. Grant and S. Boyd, "Graph implementations for nonsmooth convex
programs," Lecture Notes in Control and Information Sciences, vol.
371, pp. 95-110, 2008.

[15] N. Kottenstette and P. Antsaklis, "Relationships between positive
real, passive dissipative, & positive systems," in American Control
Conference, 7 2010, pp. 409 -416.

1007

