
19th Mediterranean Conference on Control and Automation 
Aquis Corfu Holiday Palace, Corfu, Greece 
June 20-23, 2011 

ThAT1.4 

PaNeCS: A Modeling Language for Passivity-based Design of Networked 
Control Systems 

Emeka Eyisi, Joseph Porter, Nicholas Kottenstette, Xenofon Koutsoukos, and Janos Sztipanovits 

Institute for Software Integrated Systems (ISIS) 

Department of Electrical Engineering and Computer Science 

Vanderbilt University, Nashville, TN 37235 USA 

emeka.eyisi, joe. porter, nicholas.e.kottenstette, xenofon.koutsoukos, janos.sztipanovits@vanderbilt.edu 

Abstract- The rapidly increasing use of information tech­
nology in constructing real-world systems has led to the urgent 
need for a sound systematic approach in designing networked 
control systems. Communication delays and other uncertainties 
complicate the development and analysis of these systems. This 
paper describes a prototype modeling language for the design of 
networked control systems using passivity to decouple control 
design from network uncertainties. The modeling language 
includes an integrated analysis tool to check for passivity and 
code generators for simulation in MATLAB/Simulink using the 
TrueTime platform modeling toolbox and for running actual 
experiments. The resulting designs are by construction robust 
to platform effects and implementation uncertainties. 

I. INTRODUCTION 

Complex engineered systems such as automotive vehicles, 
building automation systems, and groups of unmanned air 
vehicles are currently referred to as Cyber Physical Sys­
tems (CPS). CPS are characterized by intricate interactions 
between physical dynamics, computational dynamics and 
communication networks. CPS are often monitored and con­
trolled by networked control systems (NCS). Although the 
pervasive use of NCS offers exceptional opportunities for the 
way we build CPS, it also adds heterogenity and complexity. 
This heterogeneity makes it difficult to use existing design 
approaches to design CPS. 

Model-based design for embedded control systems in­
volves creating models and checking correctness at different 
stages in the development process [1]. Model-based design 
flow progresses along precisely defined abstraction layers, 
typically starting with control design followed by system­
level design for the specification of platform details, code 
organization, and deployment details, and the final stage of 
integration and testing on the deployed system. This design 
approach is ineffective for NCS because domain hetero­
geneity and tight coupling between design concerns create 
a number of challenges. Ensuring controller stability and 
performance for physical systems in the presence of network 
uncertainties (e.g. time delay, packet loss) couples the control 
and system-level design layers. In addition, downstream code 
modifications during testing and debugging invalidate results 
from earlier design-time analysis and any component change 
often results in "restarting" the design process. 

A number of research projects seek to address the prob­
lems of model-based design for NCS. The ESMoL mod-
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eling language for designing and deploying time-triggered 
control systems explicitly captures in model structure many 
of the essential relationships in an embedded design [2]. 
The ESMoL tools include schedule determination for time­
triggered communications, code generation, and a portable 
time-triggered virtual machine. AADL [3] is a similar tex­
tual language and standard for specifying deployments of 
control system designs in data networks [4]. The Metropolis 
modeling framework [5] aims to give designers tools to 
create verifiable system models. Metropolis integrates with 
scheduling, timing analysis, and verification tools. 

We propose an automated model-based approach based 
on passive control theory. We used Model-Integrated Com­
puting [1] to develop a domain specific modeling language 
(DSML) called the Passive Network Control Systems lan­
guage (PaNeCS). Our approach is based on the passive con­
trol architecture presented in [6] which provides robustness 
to network delays and packet loss. We will briefly describe 
the DSML, compositional passivity analysis, code generation 
for simulations using Matlab/Simulinkffruetime, and code 
generation of executables from nonlinear models for running 
actual experiments. 

Changes made during design, development, and testing 
cycles may cause extensive software revisions and force 
expensive re-verification. PaNeCS supports automated for­
ward generation of both platform-specific simulation models 
as well as deployable executables. PaNeCS enables rapid 
configuration and code generation while at the same time 
reduces the chances of introducing errors as compared to 
manually designing NCS in Simulink directly. It also inte­
grates passivity analysis of system components. 

Control systems are often verified using complex op­
timization techniques such as linear matrix inequalities 
(LMIs), which can model many important controller proper­
ties (e.g. stability, response time, reachability). In a system 
built from the composition of multiple blocks, such analysis 
quickly becomes intractable. In contrast, a passive design 
ensures global stability compositionally by a combination 
of component analysis and specific rules for composition of 
passive components. 

Control designers create models for both physical systems 
and controllers using tools like Simulink and Stateflow. 
Deployment of a control design such as a Simulink model 
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to a networked architecture introduces uncertainties due to 
time-varying delay, data rate limitations, jitter, and packet 
loss. Current approaches extend Simulink models with plat­
form behaviors, as in TrueTime [7], which adds networks, 
clocks, and schedulers. While platform-specific simulation is 
a major step in validating NCS designs, it does not decouple 
design layers as described above. A control designer can 
factor in implementation effects (e.g., network delays), but 
if the implementation changes the controller may need to be 
redesigned. Our approach imposes passivity constraints on 
the component dynamics, so that the design becomes robust 
to network effects, establishing orthogonality (with respect 
to controller stability) across the control and implementation 
design layers. 

The paper is organized as follows: Section II presents a 
passive control architecture for NCS. Section III presents 
our prototype modeling language. Section IV discusses an 
integrated analysis tool for automatically checking passivity. 
Section V presents automated code generators. Section VI 
shows a case study. Section VII provides our conclusion. 

II. PASSIVITy-BASED CONTROL OF NETWORKED 

CONTROL SYSTEMS 

Our NCS design approach is based on passivity theory. 
Essentially all passivity definitions state that output energy 
must be bounded so that the system does not produce more 
energy than was initially stored [8]. Passive systems have 
a unique property that when connected in either a parallel 
or negative feedback manner the overall system remains 
passive. Passive systems are robust to certain implementation 
uncertainties [9], so passivity can be exploited in the design 
of NCS. The main idea is that by imposing passivity con­
straints on the component dynamics, the controller becomes 
robust to network effects. This allows the separation of 
concerns between control properties and platform behavior. 

We briefly discuss the passivity based control architecture 
for multiple plants controlled by a single controller via 
a network [6]. Fig. 1 depicts a simple networked control 
system with only one plant shown. The Bilinear Transform 
block, denoted b, represents a transformation between signals 
and wave variables. Wave variables were introduced by 
Fettweis in order to circumvent the problem of delay-free 
loops and guarantee a realizable implementation for digital 
filters [10]. Wave variables also allow systems to remain 
passive while transmitting data over a network subject to 
arbitrary fixed time delays and data dropouts [9]. In Fig. 1, 
upk(i) (where k=2, ... ,n), can be thought of as sensor output 
data in wave variable form from each plant, where n - 1 is 
the total number of plants in the network. Likewise, Vcj(i) 
(where}=l) can be thought of as a command output in wave 
variable form from the controller. 

The power junction, denoted PI in Fig. 1, is an abstraction 
used to interconnect wave variables from multiple controllers 
and multiple plants in parallel such that the total input power 
is always greater than or equal to the total output power. 
This provides a formal way to construct a NCS design. A 
power junction makes it possible for a single controller to 
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control multiple plants over a network and guarantee that the 
overall system remains stable. In Fig. 1, the power junction 
has waves entering and leaving as indicated by the arrows. 
The blocks, z-ck and z-pk (k=1,2), represent network delays 
incurred by the wave variables. Waves entering the power 
junction from the controller are network-delayed versions of 
waves leaving the controller, as indicated by the time delay 
block. Waves entering the controller are delayed versions of 
waves leaving the power junction. The other waves in the 
diagram are similarly delayed. 

Due to bandwidth constraints, the controller typically runs 
at a slower rate than the sensors and actuators of the plants. 
In order to preserve passivity in the multi-rate digital control 
network we use the passive upsampler PUS:M and passive 
downs ampler PDS:M pair to handle the data rate transitions. 
The PUS:M and PDS:M as shown in Fig. 1 provide the 
upsampled and downs amp led versions of their respective 
wave variable inputs while preserving passivity. The block 
parameter M is the sampling ratio - the data rate of the faster 
side of the connection divided by the data rate on the slow 
side. Based on the architecture described in Fig. 1, we can 
now describe our prototype modelling language, PaNeCS. 

III. PANECS 

The passivity-based modeling language (PaNeCS) is de­
veloped using the Generic Modeling Environment (GME), 
from the Model Integrated Computing (MIC) tool suite [11]. 

A. Overview 

PaNeCS encodes passive model constraints into the lan­
guage structure to achieve compositional design and reali­
azation. The prototype language defines the allowable con­
nections between components to ensure that any networked 
control system model built using passive components will 
be passive. PaNeCS provides the flexibility to easily model 
networked control systems and configure the system parame­
ters. It also allows testing through simulations or by running 
actual experiments under various network conditions by 
simply adjusting parameters to generate appropriate software 
for each scenario. Fig. 2 shows the design flow in PaNeCS. 

1) Components: In PaNeCS, the top level consists of four 
main components: the PlantSystem, the ControllerSystem, 

the PowerJunction and the WirelessNetwork modelling 
the components of an NCS. The modelling features of 
NCS components can be different in PaNeCS based on the 
goal of a NCS designer. For example, PlantSystem model 
for generating code to run simulations is different from a 
PlantSystem model for generating code for running real 
experiments. 

The PlantSystem represents all the sub-components on 
the plant side of the network. Its components include Plant, 

BilinearTransformP, PassiveUpSampler, PassiveDownSam­

pIer, Send and Receive. Plant represents the system to be 
controlled. The Plant model can be any passive discrete 
linear time-invariant (LTI) system and can approximate a 
nonlinear system realized in the modeling and generation 
path. We discuss nonlinear NCS modelling for robotic arms 
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Fig. I. Networked Control Architecture 

using PaNeCS in [12] we omit the details for that case here 
for simplicity and brevity. The Plant dynamics are parameter­
ized by matrix attributes A, B, C, D, and a scalar Sampling­

Time, and are specified using any valid Matlab expression 
evaluating to the proper dimensions. BilinearTransformP 

represents a model for wave scattering, which transfonns the 
wave variables received from the power junction into control 
input to the plant and transfonns the plant output signal 
into wave variables that are transmitted over the network. 
PassiveUpSampler and PassiveDownSampler pair represent 
the PUS:M and PDS:M pair discussed in Section II. Send 

and Receive pair are used to represent the transmission of 
data over the network. For creating models for running 
actual experiments additional attributes are used to specify 
the software components for sending and receiving data over 
the network such as port numbers, data size and dimension. 

ControllerSystem represents all the sub-components on 
the controller side of the network. These include Digi­

talController, BilinearTransformC, ZeroOrderHold, Referen­

ce!nput, Send and Receive. DigitalController is a model 
representing the algorithm for controlling the networked 
plants. Similar to the model of the Plant in the PlantSystem, 

the DigitalController is modeled as a passive LTI system. 
Therefore, the DigitalController parameters have similar 
attributes to the Plant for a LTI system case. BilinearTrans­

formC is similar to the BilinearTransformP described in the 
PlantSystem. ZeroOrderHold represents a component that 
holds its input for the time period specified in the sampling 
time attribute. Reference!nput represents the desired signal to 
be tracked by the plants. Similar to the PlantSystem, Send 

and Receive pair are used to represent the transmission of 
data over the network. 

PowerJunction model component describes the power 
junction. The Powerjunction can contain ports for the 
connection of the plants and controllers. They are briefly de­
scribed as follows: PowerInputPowerOutput represents a port 
through which the PlantSystem connects to the PowerJunc­

tion. Through it, the Powerjunction sends calculated control 
signals to the PlantSystem and also receives sensor signals 
from the PlantSystem. PowerOutputPowerlnput represents a 
port through which the ControllerSystem can connect to the 
PowerJunction. Through it, the Powerjunction sends the 
averaged sensor signal to the ControllerSystem and receives 
the calculated control signal from the ControllerSystem. 

Additionally, for creating models for running real experi-
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ments port number attributes are used to specify ports for 
sending and receiveing data over the network. 

WirelessNetwork represents the network and its param­
eters for the NCS. The WirelessNetwork model provides 
modifiable parameters for simulation. Data rate sets the 
throughput for simulating network activity. DisturbancePack­

etSize configures the size of simulated disturbance attack 
packets on the network (introduces delays). This provides 
a way for simulating the NCS under non-optimal conditions. 
DisturbancePeriod configures the frequency of disturbance 
attacks on the network. 

Behavior Simulation 

SlmullnklTrueTime 

SlmulinkIBasb Scripts 

Fig. 2. PaNeCS Design Flow 

Executables 

2) Language Aspects: Our modeling language has two 
main aspects (GME aspects are similar to modeling views in 
other tools): Control Design Aspect and Platform Aspect. 

The Control Design Aspect visualizes the controller mod­
eling layer. This includes the plants, controller, and power 
junction, as well as their interconnections - indicating the 
flow of control and sensor signals. 
The Platform Aspect visualizes the physical platfonn com­
ponents of the NCS. This view includes plants, controllers, 
and the wireless network as well as their interconnections 
- indicating the flow of data packets over the network. 
Though the plants and controller appear in both aspects, in 
the Platfonn aspect they represent physical devices rather 
than control design concepts. 

In PaNeCS, when the design goal is for running actual 
experiments, an additional aspect, Processor Assignment 

Aspect, is used for depicting the mapping of software 
components to processors on which the computations and 
implementations are to be performed [12]. 
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3) Structural Semantics: Our main language design goal 
is to ensure "correctness-by-construction" for passive NCS 
designed using PaNeCS. To achieve this objective we impose 
constraints on the NCS component properties as well as their 
interconnections. The metamodel notations described above 
do not capture all the required structural constraints. Using 
the Object Constraint Language (OCL), we can add well­
formedness rules to precisely control the static semantics 
of the language. GME is embedded with an OCL engine 
- specified constraints are enforced at design time, giving 
direct feedback when the user attempts to create faulty 
connections in the model or violates any other constraints. 
In Section IV, we will describe an analysis tool for verifying 
that system components satisfy passivity constraints. 

We implemented three classes of constraints: Cardinality 

Constraints ensure that the correct number of components are 
used in the NCS design. For example, for each PlantSystem 

model there must be one Plant. Connection Constraints 

restrict the number of allowable connections between com­
ponents. For example, in the PlantSystem model there can 
only be one bidirectional connection between the Plant and 
BilinearTransformP. Unique Name Constraints ensure the 
uniqueness of the names of components in the Plant and 
Controller subsystems as well as in the top level model of 
the NCS. 

The sample OCL constraint below specifies that the num­
ber of connections from a BilinearTransformC model to a 
DigitalController must be at most one. 

D e s c r i p ti o n : There  must be o n l y  one b i d i r e c t i o n a l  
c o n n e ct i o n  betw e e n  B i l i n e a r T r a n s f o r mC t o  t h e  
D i g i  t a l  C o n  t r o  lIe r 

Equatio n :  l e t  d stC ount  = . . .  

s e l f . attac h i n g C o n n e c t i o n s  ( "  s r c " • . . .  

C o n t r o l l e r  _B i l i n e a r )->s i z e  i n  
dstC o u n t  <> 0 implies d stCount  = I 

IV. PASSIVITY ANALYSIS 

In passive designs, we have to analyze the system compo­
nents to make sure they satisfy passivity constraints. Using 
the analysis tool integrated in PaNeCS, we can currently an­
alyze the passivity properties of any LTI system component 
modelling the plant or digital controller. 

The analysis of the Plant and DigitalController com­
ponents of the networked control system for passivity is 
done automatically by an integrated Matlab analysis function. 
Each component is assumed to have a linear time-invariant 
(LTI) discrete-time model, so we use LMIs together with the 
CVX semidefinite programming tools for Matlab [13] [14]. 
On invocation (Le. the modeler presses a button), a C++ 
model interpreter within GME visits each component, and 
invokes the analysis function. Any components failing the 
passivity test are reported to the user. 

The dynamics of the Plant and DigitalController models 
can each be defined by a state space representation and are 
characterized by the matrices A, B, C, D of size compatible 
with the number of inputs and outputs in the system and the 
number of states in the model. The passivity constraints for 
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these models is defined by Linear Matrix Inequality (LMI) 
constraints [15]. For example, a LMI formula for strict output 
passivity for an LTI digital controller is given by 

Q = CT QC, S = CT S + CT QD 
R = DTQD+ (DTS +STD) +R 

3c: > 0, Q = -c:I R = 0 S = � I 3P = pT > 0 , , 2 '  

(1) 

The CVX semidefinite programming (SDP) tool is used in a 
Matlab script to solve the LMI for each component. 

Due to the "correct-by-construction" approach we use in 
designing networked control, we only analyze the Plant and 
DigitalController elements for passivity. If those components 
satisfy the passivity constraints, the network control system 
as a whole also satisfies the passivity principles. 

The component interconnections are restricted in such 
a way that they are "correct-by-construction". Only valid 
(parallel) connections are allowed to the power junction, 
so any interconnected system of passive components in the 
language will be globally passive. The modeling language 
and its constraints encode the passive composition seman­
tics, greatly reducing the analysis burden for determining 
passivity (and hence stability [6]) of the composed system 
design. 

V. CODE GENERATION 

The main objective of the code generators is to generate 
code that maps the models designed using the modeling lan­
guage to Simulink models and network scripts that represent 
the networked control system. Fig. 2 shows the two code 
generators one for generating code for running simulation 
and for generating executables for running actual experi­
ments. We will briefly discuss the two code generators used 
in PaNeCS. 

We developed a model interpreter that synthesizes simula­
tion code from PaNeCS models. The interpreter is developed 
in C++ using the Builder Object Network (BON2) API 
provided with GME [11]. The interpreter traverses all the 
entities of a particular networked control system instance 
model and extracts model parameters. These parameters and 
model structure are used to generate MATLAB files for 
configuring and building Simulink and TrueTime models to 
simulate the NCS. The PlantSystem and ControllerSystem 

are modelled as Simulink subsystems, which contain the 
respective Plant and DigitalController behavior blocks. Each 
generated system-level component is connected to a True­
Time Kernel block. The TrueTime Kernel models a process­
ing node with a scheduler and liD. Our models execute on 
periodic schedules within TrueTime. For this version of our 
language, the PowerJunction is implemented as a task in the 
TrueTime Kernel connected to the ControllerSystem. The 
task that implements the power junction is triggered by data 
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arrival events. Each True Time kernel has an initialization 
script and a function script specifying timing for 1/0 and task 
execution. The TrueTime Wireless network block simulates 
the transfer of data packets over a wireless network from one 
node to another. 

Similar to the case of synthesizing simulation code, we 
developed a code generator that can be used to synthesize 
software for integration, deployment, and testing of the net­
worked system. The code generator implements translation 
rules from the model elements to Simulink blocks realizing 
the system behavior. For the experiments, the Simulink 
models alone are not sufficient to set up the network in­
frastructure for nonlinear experiments. A deployment model, 
which can be visualized through the Processor Assignment 

Aspect, describes assignments of models to processors. The 
integrated code generator also produces bash shell scripts 
in order to set up the networking infrastructure and run 
the experiments. The network infrastructure utilizes Netcat 
(a standard computer networking service tool) and SSH to 
build internet tunnels for system testing. The powerjunction 
is configured as a server, and plant and controller models use 
client sockets to attach to the power junction. The network 
system follows a globally asynchronous locally synchronous 
execution model. The controller and plant receivers execute 
periodically. 

VI. CASE STUDY 

Fig. 3 shows a model for a simple passive linear con­
troller regulating two passive linear plants to track a speci­
fied reference signal. Fig. 3a denotes the Control Design 

Aspect describing the control design concepts while Fig. 
3b denotes the Platform Aspect describing the physical 
platform components. The Powerjunction does not appear 
in Fig. 3b because it is implemented on the the same 
physical component as the ControllerSystem, as described 
in Section III the Platform Aspect only shows the physical 
platform components. In this experiment, the goal is to model 
the NCS and generate a simulation of its behavior. Although 
this case study models two discrete-time plants, PaNeCS can 
model and simulate an arbitrary number of plants. 

The two plants in the experiment (Fig. 3) are simple 
integrators (corresponding to models of inertial masses of 
2kg and .25kg respectively) which are discretized in time. 
The plants' dynamics were modeled in state space form 
and the corresponding A, B, C, and D matrices as well 
as sampling time (Ts) were provided as parameters to the 
instance model. 

We used a digital proportional controller to command the 
plants to track the user-specified reference. We also used 
state-space form for the controller (A, B, C, D, and Ts). 

The parameters values for the plant and controller dynamics 
are given in Table I. The analysis tool checked and verified 
that the Plant and DigitalControlier models satisfied the 
passivity constraints. Then the code generator was used to 
create a platform-specific Simulink simulation model using 
the specified parameters and model structure. 
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(a) Control Design Aspect 

(b) PlatformAspect 

PassivaUpSampler 

(c) Plant Subsystem 

� /"---------' 
N 8�r I O--J BiJineorTransfomtC 

Receive 

(d) Controller Subsystem 

Fig. 3. Sample Model of a Networked Control System 

Using PaNeCs, we tested the dynamics of an NCS by run­
ning experiments under different network conditions. Table II 
shows the parameters for the simulations. 

A. Nominal Conditions 

This experiment operates the sytem without disturbance 
attacks for three sample periods (O.ls, 0.5s and Is). We only 
present plots for the results of the NCS having a sample 
period of O.ls. Fig. 4a shows that the plants closely tracked 
the reference velocity. The round trip delay for each plant 
seemed to have very little effect on the stability of the plants' 
velocity response. The delay can be attributed to the internal 
processing of the plants and controllers rather than network 
delay itself. 

TABLE I 

PLANT AND CONTROLLER DYNAMICS. 
A B C  D Ts 

Plant! 1 1 .005 .0025 .01s 
Plant2 .996 1 .04 .02 .01s 

Controller 0 0 0 1O7l' .1s 

Sample Periods 
Plantl,M 
Plant2,M 

Disturbance 

TABLE II 

SIMULATI ON PARAM ETERS SUMMARY. 
O.01s 0.05s 

10 50 
10 50 

Ts = 0.01 Packet size = 110,000bits 

O.ls 
100 
100 
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Nominal Velocity response over wireless network (Sampling Tlme=0.1s) 
0.03 ,----�-�---,-_______ ....,_�_____, 

0.02 

-0.02 

- Reference Velocity 
........ Plant 1 Output Velocity 

-0.03L---�-�-�-�-�-�-�---' 
o 10 15 20 25 30 35 40 

Time(s) 

(a) Nominal velocity response. 

Velocity response with disturbance attack (Sampling Tlme=0.1s) 
0.03,----�--:-:::c-'"_========;_�...,_::_] 

-0.01 

-0.02 

(c) Velocity response with disturbance attack. 

Nominal time delay for Plant 1 (Sampling Time=0.1s) 

�;I � � � � 
� 

�� � I 
o 10 15 20 25 30 35 40 

Tlme(s) 

Nominal time delay for Plant 2 (Sampling Tlme=0.1s) 

��jl � � � � 
� 

�� � I 0
0 10 15 20 25 30 35 40 

Time(s) 

(b) Time delays . 

Time delay for Plant 1 with disturbance attack(Samplfng Time=O.1s) 

10 15 20 25 30 35 
Time(s) 

Time delay for Plant 2 with disturbance attack(Sampling Time=0.1s) 

(d) Time delays with disturbance attack. 

Fig. 4. Velocity and Delay Plots. 

B. Network disturbances 

This experiment introduces a disturbance attack in the 
network using parameters on the wireless network block. 
Similar to nominal experiment, three different sample rates 
were tested, but we only present the results for the O.ls 
sample period. Fig. 4c and 4d shows the velocity response 
and the time delay respectively for each plant. The results 
show that even with disturbance attacks, the plants remain 
stable in tracking the reference velocity although the perfor­
mance is relatively affected as can be seen from the plots. 
This demonstrates the advantage of the passivity approach 
which guarantees the stability of the NCS in the presence of 
uncertainties due to network effects. 

VII. CONCLUSION 

Our model-based approach simplifies the process of de­
signing passive networked control systems. We present 
PaNeCS, a prototype modeling language for designing, ana­
lyzing and generating code for simulations and executables. 
We use a case study to demonstrate our design approach. 
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