
Precise Multi-Level Inclusive Cache Analysis for
WCET Estimation

Zhenkai Zhang Xenofon Koutsoukos

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN, USA

Email: {zhenkai.zhang, xenofon.koutsoukos}@vanderbilt.edu

Abstract—Multi-level inclusive caches are often used in multi-
core processors to simplify the design of cache coherence protocol.
However, the use of such cache hierarchies poses great challenges
to tight worst-case execution time (WCET) estimation due to the
possible invalidation behavior. Traditionally, multi-level inclusive
caches are analyzed in a level-by-level manner, and at each level
three analyses (i.e. must, may, and persistence) are performed
separately. At a particular level, conservative decisions need to
be made when the behaviors of other levels are not available,
which hurts analysis precision. In this paper, we propose an
approach which analyzes a multi-level inclusive cache by inte-
grating the three analyses for all levels together. The approach
is based on the abstract interpretation of a concrete operational
semantics defined for multi-level inclusive caches. We evaluate
the proposed approach and also compare it with two state-of-the-
art approaches. From the experimental results, we can observe
the proposed approach can significantly improve the analysis
precision under relatively small cache size configurations.

I. INTRODUCTION

When designing real-time systems, especially hard real-time

systems, worst-case execution time (WCET) estimation is an

essential task required by schedulability analysis. There are

two criteria in such a task – the WCET estimate must be safe,

namely it may not be lower than the actual WCET; and the

estimate should be as tight as possible to maximize system

resource utilization. To this end, we need to take into account

the underlying micro-architectural features, such as caches,

pipelines, and branch predictors, since their behavior has a

huge impact on the variation of execution time.

Over the past two decades, WCET estimation in the context

of single-level caches has been studied extensively [6], [19].

Recently, multi-level cache analysis has drawn much attention

[22], [9], [14], [3], [20], [10], since there is a rising need to use

high-performance processors in real-time systems, which are

often equipped with multi-level caches. However, compared to

single-level caches, the behavior of multi-level caches is much

more challenging to analyze. In addition to memory reference

sequences, there is also a need to take into account the effect of

one cache level’s behavior on other cache levels’ behavior (e.g.

filtering memory accesses and invalidating memory blocks),

which can be different depending on the type of the cache

hierarchy.

There are three cache hierarchy types: inclusive, exclusive,

and non-inclusive. Multi-level inclusive caches require that

the contents at upper cache levels must be a subset of the

contents at lower levels. Multi-level exclusive caches require

that the contents at a cache level should not be duplicated at

any other cache level. Multi-level non-inclusive caches allow

duplicated contents existing at any cache level, but they do

not strictly enforce the inclusion property. Moreover, there are

some hybrid cache hierarchies, which combine heterogeneous

cache level policies. In this paper, we call a cache hierarchy a

multi-level inclusive cache as long as it maintains the inclusion

property at some cache level(s).

While some methods have been proposed to analyze multi-

level non-inclusive caches precisely for WCET estimation [9],

[14], [3], [20], there is only little progress in terms of how to

precisely analyze the other two types of cache hierarchies, es-

pecially multi-level inclusive caches [10]. However, inclusive

cache hierarchies appear commonly in many multi-core archi-

tectures, since the inclusion property can significantly simplify

the maintenance of cache coherence [1]. Many commercial

processors are equipped with multi-level inclusive caches, such

as the IBM PowerPC and Intel Xeon. Thus, it is necessary to

have a multi-level cache analysis framework that can precisely

analyze cache hierarchies that enforce inclusion for WCET

estimation.

Most of the current approaches attempt to separately analyze

each cache level of a cache hierarchy, usually starting from

the topmost level and moving downward. For multi-level

non-inclusive caches, this analysis style does not have a

large impact on the precision, since the interactions between

different cache levels in such a hierarchy are only related to the

memory access filtering behavior which appears in a top-down
direction. However, for multi-level inclusive caches, such an

analysis style may have a big influence on the precision,

because some blocks may be invalidated by lower inclusive

levels (i.e., the invalidation behavior appears in a bottom-up
direction). Due to the unknown underlying invalidation behav-

ior, when analyzing an upper level, conservative decisions have

to be made in order to ensure safety [10]. In order to reduce

the number of conservative decisions, in our previous work,

we propose an approach to separately analyze all the inclusive

levels in a bottom-up direction [22]. However, as shown in this

paper, this bottom-up approach may not perform well when the

cache size is relatively small compared to the program size.

In this paper, we propose an approach that can precisely

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.40

350

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.40

350

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.40

350

analyze multi-level inclusive caches, even in the case when

the ratio of cache size to program size is low. The main idea

is to analyze a multi-level inclusive cache as a whole following

its concrete behavioral semantics, instead of analyzing it in a

level-by-level manner.

The main contributions of this paper are: (1) We define a

concrete operational semantics which formally describes how

a multi-level inclusive cache changes its state when a memory

reference occurs. (2) Based on the abstract interpretation of

this concrete semantics, we propose an approach that analyzes

a multi-level inclusive cache as a whole by integrating three

analyses (i.e., must, may, and persistence). (3) We evaluate the

proposed approach on a set of benchmarks, and the evaluation

results show significant precision improvements when the ratio

of cache size to program size is low, compared to the state-

of-the-art approaches.

The rest of the paper is organized as: Section II describes

the background on cache analysis; Section III gives the system

model; Section IV states why multi-level inclusive cache anal-

ysis is challenging; Section V presents the proposed approach

to multi-level inclusive cache analysis; Section VI evaluates

the proposed approach; Section VII describes the related work,

and Section VIII concludes this paper.

II. BACKGROUND

Cache analysis for WCET estimation is usually based on

abstract interpretation in order to make the analysis scalable.

Such approaches aim to assign a cache hit/miss classification
(CHMC) to each memory reference according to the abstract

cache states (ACSs) derived by three different analyses [6], [5].

The analyses are usually performed on the control-flow graph

(CFG) reconstructed from the low-level code of the program.

At a given program point, a must analysis is used to determine

a set of memory blocks that are definitely in the cache, so a

memory reference to a block being in the set can be classified

as always hit (AH); a may analysis is used to determine a set

of memory blocks that are possibly in the cache, so a memory

reference to a block not being in the set can be classified as

always miss (AM); a persistence analysis is used to determine

a set of memory blocks that stay in the cache once they are

loaded, and a memory reference to such a block is classified as

persistent (PS) or first miss (FM); and, if a memory reference

cannot be classified as AH, AM, or PS, it is classified as not
classified (NC).

Given a reference r to a memory block m, the effect of

this reference on the ACS θt, where t is either must, may, or

persistence, is defined by an update function Ut : Θt×M → Θt,

where Θt is the set of all the ACSs of the cache (i.e. θt ∈ Θt),

and M is the set of all the memory blocks w.r.t. the cache block

size (i.e. m ∈ M). In order to safely combine information at

a join point during the analysis on the CFG, a join function

J t : Θt×Θt → Θt is also defined. The definitions of the update
and join functions can be found in [6], [5].

Single-level caches are always accessed by each memory

reference, so we only need to consider the effects of memory

reference sequences in the analysis. However, in the case of

multi-level caches, it is also important to consider the effects

of other cache levels, in particular, cache access filtering

and memory block invalidation. For example, if we treat a

possible access at a level as always happening, the analysis

may become unsafe, since doing so may underestimate the set

reuse distances1 of memory blocks [9].

For a reference r, a cache access classification (CAC) at a

cache level l is used to represent the possibility that l will be

accessed [9]. Let θt,il,r denote the ACS at this level immediately

before r, and let θt,ol,r denote the ACS at this level immediately

after r. Let mr
l denote the memory block w.r.t. the cache block

size at l containing the information needed by r. If the CAC

is always (A), the access will always occur, so r will always

affect the ACS:

θt,ol,r = Ut(θt,il,r,m
r
l)

On the other hand, if the CAC is never (N), the access will

never happen, so the ACS at l is not affected by r:

θt,ol,r = θt,il,r

If the CAC cannot be either A or N, it is uncertain (U), which

means the access may or may not happen. In order to ensure

safety, the updates of the ACS due to U accesses need to take

into account the two possible cases (access occurring and not

occurring) by joining them:

θt,ol,r = J t

access not occurring︷︸︸︷
(Ut(θt,il,r,m

r
l), θ

t,i
l,r)︸ ︷︷ ︸

access occurring

As described in [9], for a reference r that is possible to

access a cache level (i.e. its CAC is not N at this level), if r

can be safely classified as AH at this level, r will never need to

access all the lower levels, namely its CAC is N at any lower

level; if r can be safely classified as AM at this level, r is also

possible to access the next lower level, namely its CAC at the

next lower level is the same as the CAC at this level (i.e. A
or U). Note that if a reference always/never accesses a cache

level in reality, but its CAC at the level is U in the analysis,

the analysis is still safe but may not give a tight result.

III. SYSTEM MODEL

In this paper, we focus on a generalized cache hierarchy

model, in which the inclusion property is enforced at some

cache level(s). The model has n cache levels, represented by

L = {l1, · · · , ln}. Each cache level is either inclusive or non-

inclusive2. Let inc : L → {true, false} be an auxiliary function

that returns true if the level is inclusive and false otherwise.

The inclusive cache hierarchy model C is a two-tuple 〈L, inc〉.
Although we do not consider exclusive caches in the model,

we can easily add them into our analysis by using the approach

proposed in [10]. The exclusive cache levels can be collapsed

1In [9], the set reuse distance between two memory references to the same
block at a cache level is defined as the relative age of the memory block when
the second reference occurs.

2Note that it has no meaning for L1 cache to be inclusive/non-inclusive,
i.e., it can be either one.

351351351

by concatenating them to the end of the upper level to form a

single level for the analysis, as long as they all have the same

number of cache sets and the same cache block size.

For a cache level lx (where 1 ≤ x ≤ n), we assume that

the cache is set associative, and LRU (Least Recently Used)

replacement policy is used. The size of a cache block can be

different at different cache levels, and it is assumed the block

size does not increase as the level goes up. It is also assumed

the capacity decreases as the level goes up.

We also assume the time to access a cache level is bounded

and predictable, which can be achieved by using deterministic

interconnects to connect the caches, like TDMA buses [12].

Fig. 1 gives an example of the model focusing on a single

core and all the cache levels that can be affected by this core

in a multi-core architecture.

L3 inclusive

L2 inclusive

L1 …. L1

L2 inclusive

….
L1 …. L1

P P P P

Fig. 1. An example of the system model: only the cache levels that can be
affected by the first core are considered, i.e., L = {l1, l2, l3} and inc(l1) =
false, inc(l2) = true, and inc(l3) = true.

In this paper, we focus only on how to analyze multi-level

caches in the presence of invalidations caused by the inclusion

enforcement, so we simply consider instruction references in

terms of a single processor (i.e. no data references and inter-

core interferences). This work can serve as a basis for analysis

of multi-level data or unified caches, that enforce the inclusion

property, in terms of a multi-core processor.

IV. PROBLEM STATEMENT

In the case of multi-level non-inclusive cache analysis, the

CAC for a reference r at a cache level lx can be derived from

the CHMC and CAC for r at lx−1 (x > 1 is assumed, since

l1 is always accessed, i.e. the CAC is A at l1), and the cache

behavior at any level will not be affected by any lower cache

level. Thus, the cache hierarchy can be analyzed level-by-level

in a top-down direction.

However, in the case of analyzing cache hierarchies con-

taining inclusive caches, the CAC for r at lx cannot be safely

derived from CHMC and CAC for r at lx−1. The reason is

the behavior of lx depends not only on the behavior of lx−1,

but also on the invalidation behavior induced by some lower

inclusive cache level(s): When a memory block is evicted from

a lower inclusive cache level, all the contents that belong to

this memory block need to be invalidated from its upper cache

levels (these invalidated memory blocks are called inclusion
victims).

Example: Fig. 2 shows a 3-level inclusive cache, where L1

is 2-way set associative, L2 is 4-way set associative, and L3

is 4-way set associative (at each level, only one set is shown).

We assume L1 has the smallest cache block size and L3 has

the biggest, so a block in L1 is a sub-block of some block

in L2 and that block in L2 is a sub-block of some block in

L3. For a memory block m in L3, let ṁ denote a m’s sub-

block in L2, and let m̈ denote a ṁ’s sub-block in L1. For

example, we have m̈a ⊂ ṁa ⊂ ma. If the next reference needs

the information that is in mx (mx is also mapped to the shown

set of L3), the oldest ma in that set needs to be evicted. The

eviction of ma will also invalidate m̈a in L1 and ṁa in L2 to

maintain the inclusion property. Due to the invalidation, m̈b in

L1 can live longer, and depending on which sub-block of mx

is needed by the reference, there may be some “holes” left in

L1 and L2.

invalidate

ageage
L3

L2

L1

�a

�� b

�b �c �d

�x

�x �a �b �c �d

�� a �� d �� c

�� a �� b

�� b
�� a
�� d �� c

�� b
�� a
�� x

Fig. 2. Invalidation due to the maintenance of the inclusion property of L3

Due to the possible invalidation behavior and the induced

consequences (i.e., some blocks may live in the cache longer,

but some blocks may live in the cache shorter – being invali-

dated instead of being evicted), the traditional CAC derivation

method for multi-level non-inclusive cache analysis becomes

unsuitable for multi-level inclusive cache analysis. At a cache

level, it is challenging to safely classify a reference as AH or

AM without knowing the behavior of lower inclusive cache

level(s).
Since safely and tightly determining the CAC (i.e. trying to

derive A or N instead of U) for a reference at a cache level

relies on the safe CHMC at the upper levels, the approach

proposed in [10] decides to classify the CAC for every

reference at any level (except for the L1 which is always

accessed) as U. In this way, although the safety is ensured,

the tightness of the analysis may suffer considerably.3

A naive method may involve refining the ACSs of upper

levels when finishing a lower inclusive level analysis, which

also refines the CHMC and CAC for a reference at these levels.

However, such a method may not ensure the monotonicity so

that it may not guarantee termination.
The approach proposed in [22] can have the CACs for some

references at some levels classified as A instead of U. However,

it cannot have the CAC for any reference at the inclusive levels

classified as N, since it analyzes all of the inclusive levels in a

bottom-up direction (i.e. when analyzing an inclusive level, the

ACSs of its upper levels remain unknown). Moreover, as the

ratio of the cache size at an inclusive level to the program size

decreases, its ability to safely classify the CAC as A instead

of U at this level also decreases.
Thus, how to precisely analyze multi-level inclusive caches

is still a very challenging problem. Specifically, we need to

3The approach proposed in [10] also changes every reference’s AM CHMC
into NC at any level, and may also change some references’ AH or PS CHMC
into NC at a level depending on the analysis of lower inclusive levels.

352352352

find ways to safely determine the A or N instead of U CACs

for as many references as possible at a cache level.

V. PRECISE MULTI-LEVEL INCLUSIVE CACHE ANALYSIS

BASED ON ABSTRACT INTERPRETATION

The approach proposed in this paper is based on abstract

interpretation which is a framework for deriving sound anal-

yses (i.e., the results are sound approximations) [4]. In order

to make use of abstract interpretation, we first need to define

the concrete semantics. The concrete semantics for single-level

caches and multi-level non-inclusive caches have been given in

[6] and [20], respectively. In this section, we use an operational

semantics to describe how multi-level inclusive caches change

their states when a reference occurs. Based on the abstraction

of this concrete semantics, we propose an approach that can

more precisely analyze multi-level inclusive caches due to its

ability to determine A or N CACs for memory references at a

cache level. Since a cache level in an inclusive cache hierarchy

can be affected by two behaviors coming in two directions, i.e.

the memory access filtering behavior appearing in a top-down
direction and the invalidation behavior appearing in a bottom-
up direction, the intuition behind the approach is to analyze

a multi-level inclusive cache as a whole instead of level-by-

level in isolation so as to make both behaviors available at any

cache level4.

A. Concrete Semantics

Since we focus only on instruction references, we just give

a concrete operational semantics to the multi-level inclusive

instruction caches. The semantics related to data references

and dirty blocks can be added (we leave this as our future

work).

The state s̄ of a multi-level inclusive cache 〈L, inc〉 is a n-

tuple (recall that L = {l1, · · · , ln}). Each tuple component is a

cache state slx of the cache level lx and they are ordered by

the level numbers: s̄ = 〈sl1 , · · · , sln 〉.
Given a cache level lx, let clx denote its capacity, let blx

denote its cache block size, and let klx denote its associativity.

Therefore, the cache at this level has dlx =
clx

blx×klx
cache sets.

The cache state slx of this cache level is a mapping:

slx : {1, · · · , dlx} →
(
{1, · · · , klx} →Mlx

)

where Mlx is the set of all of the memory blocks w.r.t. blx , and

we also assume there is an element I ∈Mlx which denotes the

memory block is invalid. The cache state maps a cache set

number to a cache set state and the cache set state is also a

mapping that maps a logical position (ordered by LRU ages)

to a memory block. For a reference r, let mr
lx
∈ Mlx denote

the memory block w.r.t. blx containing the information needed

by r. We have an auxiliary function set : Mlx → {1, · · · , dlx}
which gives us the cache set number to which mr

lx
is mapped.

When a reference r occurs, the multi-level inclusive cache

carries out a sequence of actions that may change the state of

4Level-by-level approaches can only make one of these two behaviors
available when analyzing a cache level, so conservative decisions have to
be made concerning the other unknown behavior.

a cache level intermittently. For a multi-level inclusive cache

〈L, inc〉, let s̄ = 〈sl1 , · · · , sln 〉 denote the cache hierarchy state

before r, and let s̄′ = 〈s′l1 , · · · , s′ln 〉 denote the state after r. The

operational semantics is described as follows:

(1) [Search Cache Levels] Starting from lx = l1, check

whether the needed information is at lx:

∃p ∈ {1, · · · , klx} : slx (set(mr
lx
))(p) = mr

lx

If it is true (i.e. cache hit at lx), stop searching and go to

step (2). Otherwise (i.e. cache miss at lx), if x < n, go

to the next cache level (i.e. increment x) to continue

searching; else (i.e. x is n which means the needed

information is absent from the whole cache hierarchy),

increment x (i.e. x becomes n+1 which denotes the main

memory) and go to step (3).

(2) [Update LRU Ages] Change the logical position (i.e. the

LRU age) of mr
lx

from p to 1 in the cache set it is mapped

to, and increment the positions of other blocks which

were smaller than p. The resultant cache state s′lx is:

∀i ∈ {1, · · · , dlx} : s′lx (i) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

slx (i) if i
= set(mr
lx
)

[1 �→ mr
lx
,

q �→ slx (i)(q − 1)|q = 2 · · · p, otherwise

q �→ slx (i)(q)|q = p+ 1 · · · klx]

When the updating is completed, go to step (3).

(3) [Move Upwards or Terminate] If 2 ≤ x ≤ n + 1, decre-

ment x and go to step (4). Otherwise, terminate (and

send the needed information to the processor).

(4) [Find New Position] Find the smallest logical position

p where slx (set(m
r
lx
))(p) = I, if there is any. Otherwise,

p is klx . Go to step (5).

(5) [Load Memory Block] Load the memory block mr
lx

into

slx (set(m
r
lx
))(p) to replace the previous memory block

m̂lx in that position. Go to step (6).

(6) [Invalidate Memory Blocks] If inc(lx) = false or m̂lx =

I, go back to step (2). Otherwise, for all cache levels

located above lx, check if any block in their states is a

sub-block of m̂lx , and invalidate it if so:

∀y ∈ {1, · · · , x− 1}, ∃i ∈ {1, · · · , dly}, ∃q ∈ {1, · · · , kly} :
sly (i)(q) ⊆ m̂lx ⇒ sly (i)(q) = I

When the invalidation is finished, go back to step (2).

Let S̄ = Sl1 × · · · × Sln denote the set of all the states of a

multi-level inclusive cache, where Slx (1 ≤ x ≤ n) denotes the

set of all the states of the cache level lx. Let R denote the set

of all the references the program can generate. We define a

function f : R× S̄ → 2L × S̄ as:

f(r, s̄) = 〈{l1, · · · , lz}, s̄′〉

where s̄′ is semantically updated from s̄ due to the reference

r and lz is the last cache level being updated by step (2) (i.e.

1 ≤ z ≤ n) during the process. We can also lift the f function

353353353

to deal with a sequence of references π = (r1, · · · , rh), i.e. we

sequentially apply f to each reference in π with its prior state,

and the result consists of the levels updated by rh and the state

at rh. The collecting semantics cs : R→ 2L × 2S̄ is defined as:

cs(r) =
⋃

π∈Πr

⋃
s̄∈S̄0

f(π, s̄)

where S̄0 is the set of all the initial states, and Πr is the set

of all the possible program reference sequences that reaches

r. Note that here we use a loose notation to avoid cluttering:

We treat the second component of f(π, s̄) (i.e. a state) as a

singleton, and we also treat
⋃

can realize the set union of the

first and second components respectively.

B. Abstract Semantics-Based Approach

Based on the concrete semantics, we propose an approach

which attempts to analyze the cache levels together. Given a

multi-level inclusive cache 〈L, inc〉, we define its abstract cache

hierarchy state domain Ω as:

Ω = Φl1 × · · · × Φln

where Φlx (1 ≤ x ≤ n) is the abstract state domain for the

cache level lx. Before giving the definition of Φlx and the

semantic functions on Φlx , we want to present the approach

first in order to give a general idea. To this end, we assume

the abstract state domain Φlx and the operations on Φlx meet

the conditions:

• From an abstract state φlx ∈ Φlx , we can safely derive a

set of memory blocks that are definitely in the cache.

• From an abstract state φlx ∈ Φlx , we can safely derive a

set of memory blocks that are possibly in the cache.

• From an abstract state φlx ∈ Φlx , we can safely derive a

set of memory blocks that may be out of the cache after

being loaded into the cache.

• An update function U : Φlx×Mlx → Φlx can safely update

the abstract states in the presence of possible “holes”

caused by invalidations.

• A join function J : Φlx × Φlx → Φlx can safely join the

abstract states in the presence of possible “holes” caused

by invalidations.

• An invalidate function I : Φlx × 2Mlx → Φlx can safely

perform invalidations on the abstract states.

Note that the first three conditions mean that we can safely

derive the CHMC for a reference at a cache level lx from

its φlx . Let us use an auxiliary function chmc : Φlx ×Mlx →
{AH, AM, PS, NC} to do this. In addition, we have another

auxiliary functions pout : Φlx → 2Mlx to acquire an over-

approximated set of memory blocks that may be out of the

cache after being loaded into the cache.

We also define a function domain Ψ that captures all the

mappings from references to CACs at all the cache levels:

Ψ = R→
(
L→ {U, A, N}⊥

)

In order to ensure the analysis update function monotone, we

establish a lattice on the lifted set of CACs {U, A, N}⊥ =

{U, A, N} ∪ {⊥} where ⊥ means there has not been any CAC

yet, and we also define a least upper bound operator �, as

shown in Fig. 3. This ensures that if the CAC for a reference at

a cache level becomes U, it will never be changed. A semantic

function F : Ψ×R× L× {U, A, N} → Ψ is defined as:

F(ψ, r, l, CAC) = ψ
[
r �→ ψ(r)[l �→ CAC � ψ(r)(l)]

]

which derives the least upper bound of all possible CACs for

a reference. Instead of having an abstract element of Ψ at each

program point, we have a global abstract object ψ ∈ Ψ for the

whole program which is initialized as ∀r ∈ R, l ∈ L : ψ(r)(l) =

⊥.

U

A N

⊥

� A N U ⊥
A A U U A
N U N U N
U U U U U
⊥ A N U ⊥

Fig. 3. CAC lattice and least upper bound operator

At a join point of CFG, we use a join function J : Ω×Ω→ Ω

to combine the abstract cache hierarchy states. Given two ab-

stract states ω1 = 〈φ1,1, · · · , φn,1〉 ∈ Ω and ω2 = 〈φ1,2, · · · , φn,2〉 ∈
Ω, the join function J : Ω× Ω→ Ω is defined as:

J (ω1, ω2) = 〈J (φ1,1, φ1,2), · · · ,J (φn,1, φn,2)〉

namely it independently combines each level’s abstract states.

An update function U : Ω×Ψ×R→ Ω×Ψ is used to take into

account the effect of a reference r on the abstract hierarchy

state and the ψ abstract object. The update function is defined

based on the concrete operational semantics regarding how a

multi-level inclusive cache changes its states when a reference

occurs, as described in Section V-A. The steps to perform this

update function are given in Algorithm 1.

The first loop (lines 3 – 15) abstracts the first step of the

concrete operational semantics. It starts from the cache level

l1 and moves downwards through L in sequence to check if a

cache level lx will be updated. Line 4 safely approximates the

first component of the collecting semantics cs for a reference

r (given cs(r) = 〈Lr, S̄r〉 where Lr is the set of all the cache

levels that can be updated due to r, if we have lx ∈ Lr, then

safety means we should have ψ(r)(lx)
= N when the analysis

reaches its fixed-point). Lines 5 – 13 performs the same CAC

derivation as described in [9]. Different from the traditional

multi-level cache analysis method, we do not use the resultant

CAC to update this cache level’s state directly but we use it

to derive the least upper bound for the reference’s CACs at

this level.

The second loop (lines 18 – 31) begins from the last cache

level ln and moves upwards through L in sequence to carry out

updating. It first acquires the least upper bound of the CACs

at a cache level lx (line 19) and updates the level’s abstract

state φlx according to the acquired CAC5. The abstract cache

5If the acquired CAC is A or N, it means the CAC for this reference at this
level is always the same (A or N) during the analysis iterations.

354354354

Algorithm 1: Definition of the update function U

Input: ω = 〈φ1, · · · , φn〉, ψ, r
Output: ω′ = 〈φ′

1, · · · , φ′
n〉, ψ

x← 1 ;1
CAC← A ;2
repeat3

ψ ← F(ψ, r, lx,CAC) ;4
CHMC← chmc(φlx ,m

r
lx

) ;5
if CAC = A then6

if CHMC = AH then CAC← N ;7
else if CHMC = AM then CAC← A ;8
else CAC← U ;9

else if CAC = U then10
if CHMC = AH then CAC← N ;11
else CAC← U ;12

else CAC is unchanged (i.e. N) ;13
x← x+ 1;14

until x > n ;15
x← n ;16
ω′ = ω ;17
repeat18

CAC← ψ(r)(lx) ;19
if CAC = A then φ′

lx
← U(φ′

lx
,mr

lx
) ;20

else if CAC = N then φ′
lx
← φ′

lx
;21

else φ′
lx
← J (U(φ′

lx
,mr

lx
), φ′

lx
)22

if inc(lx) then23
PO ← pout(φ′

lx
) ;24

foreach 1 ≤ y < x do25
PO′ ← ∅ ;26
foreach mlx ∈ PO do27

PO′ ← PO′ ∪ {mly ∈Mly |mly ⊆ mlx} ;28

φ′
ly
← I(φ′

ly
, PO′) ;29

x← x− 1;30
until x = 0 ;31

level state updating (lines 20 – 22) uses the traditional method

described in [9]. After updating the state, it checks whether lx
is an inclusive level, and tries to invalidate the memory blocks

in the abstract cache states of the levels located above lx if

it is inclusive (lines 23 – 29). Line 24 ensures that the set of

memory blocks that cause invalidations at upper levels is over-

approximated, and lines 26 – 28 extracts all the sub-blocks

w.r.t. the cache block size at an upper level. This loop abstracts

the behavior of step (3) and partial behavior of step (6) of the

concrete operational semantics. The rest of the behavior of the

steps is abstracted in the U and I functions.

C. Abstract Domain for A Cache Level

According to the conditions introduced in Section V-B for

the abstract cache level state domain, it is actually to perform

the three analyses (i.e. the may, must, and persistence) on each

level at the same time. Therefore, we define the abstract cache

state domain Φlx for a cache level lx as:

Φlx = Θmay
lx

×Θmust
lx

×Θpers
lx

×Δlx

where Θmay
lx

is the set of all the ACSs in terms of may analysis

of the cache level lx in isolation; likewise, Θmust
lx

and Θpers
lx

are that in terms of must and persistence analysis, respectively.

Note that the Θmay
lx

and Θmust
lx

we use are consistent with the

ones defined in [6], namely:

Θmay
lx

= Θmust
lx

= {1, · · · , dlx} →
(
{1, · · · , klx} → 2Mlx

)

However, there are different approaches to safe cache persis-
tence analysis, in which different abstract domains are used

[5], [11]. No matter which approach is used, for a cache set

i, there is an additional logical position �lx ≡ klx + 1. Given

a θperslx
∈ Θpers

lx
, θperslx

(i)(�lx) is an over-approximated set of

memory blocks that are possibly evicted after being loaded

into this cache set. The last component domain Δlx is defined

as:

Δlx = {1, · · · , dlx} → {1, · · · , klx ,�lx}

An element in the domain Δlx is used to capture the minimum

logical position in which there may be an invalidated memory

block for each cache set.

For simplicity, let us use Φ directly in the following without

its subscript lx. Three semantic functions need to be defined

as described in Section V-B.

Given two abstract states φ1 = 〈θmay
1 , θmust

1 , θpers1 , δ1〉 ∈ Φ and

φ2 = 〈θmay
2 , θmust

2 , θpers2 , δ2〉 ∈ Φ, the join function J : Φ×Φ→ Φ

is defined as:

J (φ1, φ2) = 〈Jmay(θmay
1 , θmay

2),

Jmust(θmust
1 , θmust

2),J pers(θpers1 , θpers2), δ⊥〉

where Jmay is the traditional join function used for single-

level cache may analysis (so are Jmust and J pers), and δ⊥ ∈ Δ

is defined as ∀i ∈ {1, · · · , dlx} : δ⊥(i) = �lx .

Given a set PO of possibly invalidated memory blocks, the

invalidate function I : Φ × 2M → Φ is defined in Algorithm

2. It (lines 7 – 10) removes any possibly invalidated memory

block from the must and persistence components and puts the

removed block into the corresponding � position. It (lines 4 –

6) also captures the minimum logical position in which there

may be an invalidated memory block for each cache set. Note

that we do not remove any block from the may component

since a block in PO may not cause invalidation.

Algorithm 2: Definition of the invalidate function I
Input: φ = 〈θmay, θmust, θpers, δ〉, PO
Output: φ′ = 〈θmay′

, θmust′ , θpers
′
, δ′〉

φ′ ← φ ;1
δ′ ← δ⊥ ;2
foreach m ∈ PO do3

if m ∈ θmay′
(i)(j) then4

if j < δ′(i) then5
δ′(i) = j ;6

if m ∈ θmust′ (i)(j) then7
remove m from θmust′ (i)(j) ;8

if m ∈ θpers′ (i)(j) then9
remove m from θpers

′
(i)(j) and put it into θpers

′
(i)(
) ;10

According to the concrete operational semantics, we know

that if a memory block in the logical position p of a cache set

is invalidated, loading a new block into this cache set will not

increment the logical positions of the blocks which are greater

than p. When updating an abstract state, if we do not consider

this behavior, it will not affect the safety but only the precision

of the must and persistence analyses (both analyses stay safe

as long as the logical positions of memory blocks are not

underestimated). However, without considering this behavior

355355355

we can have an unsafe may analysis, since it is required not to

overestimate the logical positions of memory blocks in the may
analysis. Therefore, we extend the traditional update function

Umay to Umay
: Θmay ×M ×Δ→ Θmay for the may analysis to

take into account any possible invalidation behavior:

Umay
(θmay ,m, δ) =

⎧⎨
⎩
Umay(θmay ,m) if p ≥ j

θmay [set(m) �→ ε] otherwise

where

p = δ(set(m))
∧
j =

⎧⎨
⎩
h if m ∈ θmay(set(m))(h)

� otherwise

∧

ε =

[
ι1 �→ {m},
ιi �→ θmay(set(m))(ιi−1)|i = 2 · · · p,
ιp+1 �→ θmay(set(m))(ιp) ∪ (θmay(set(m))(ιp+1)\{m}),
ιi �→ θmay(set(m))(ιi)\{m}|i = p+ 2 · · · k]

If there is no invalidation possible in this cache set (i.e. p = �),

or if m is in θmay and its logical position is not behind the

minimum position p where an invalidated memory block may

reside, using the traditional Umay will not overestimate the

logical positions of memory blocks. Otherwise, we need to

consider there may be a “hole” behind p (including p) that

needs to be filled first; so we can only increment the logical

positions of the memory blocks until p, and keep the positions

of other blocks unchanged (excluding m which will be moved

to the first logical position if it is in the current θmay). Based

on this, given an abstract state φ = 〈θmay , θmust, θpers, δ〉 ∈ Φ,

we define the update function U : Φ×M → Φ as:

U(φ,m) = 〈Umay
(θmay ,m, δ),Umust(θmust,m),Upers(θpers,m), δ⊥〉

where Umust and Upers are the traditional update functions for

must and persistence analysis, respectively.

In [22], an abstract domain called aging barrier is proposed

to improve precision. Therefore, Φ can be extended by includ-

ing that domain as a component domain (and also extend the

update functions for must and persistence analyses). However,

there are two reasons why we do not include this domain: (1)

it is not necessary for safety of the analysis; (2) it may not be

useful in the absence of data references.

D. Concretization

The set of concrete cache hierarchy states represented by

an abstract cache hierarchy state ω = 〈φl1 , · · · , φln 〉 where

φlx = 〈θmay
lx

, θmust
lx

, θperslx
, δlx 〉 (1 ≤ x ≤ n) can be derived by

a concretization function conΩ : Ω → 2S̄ . This concretization

function is defined as:

conΩ(ω) = · · · ×
(
γmay
lx

(θmay
lx

) ∩ γmust
lx

(θmust
lx

) ∩ γperslx
(θperslx

)
)
× · · ·

where γmay, γmust, γpers are the well-defined concretization

functions in [6] for the may, must, and persistence abstract

states respectively. For an abstract cache level state, the set of

concrete cache level states is derived independently of other

levels. A concrete cache level state should satisfy the may,

must, and persistence meanings of the abstract cache level

state, so set intersection is used to guarantee this.

The meaning of the global abstract object ψ ∈ Ψ is given

by another concretization function conΨ : Ψ →
(
R → 2L

)
that

is defined as:

conΨ(ψ) =
[
r ∈ R �→ {l ∈ L|ψ(r)(l)
= N}

]

For each reference r, this concretization function determines a

set of cache levels that may be accessed by r. Given a cache

level l, if we have ψ(r)(l)
= N (i.e. A or U), r may access l

and l is in the derived set of cache levels for r.

E. Discussion on Data References

Since most of the inclusive caches are unified caches,

data references need to be taken into account eventually. As

always, one difficulty related to data references is to precisely

derive a set of possibly referenced memory addresses for each

dynamic load/store instruction [3], [11]. In addition, we need

to consider which write policy is used in the cache hierarchy.

For example, if write-back policy is used, a dirty block needs

to be written into a lower level when it is evicted, which

changes the cache state at that level. Thus, we need to safely

classify whether a memory block is dirty (like always, never,

or uncertainly dirty) and take into account the effect of eviction

of dirty blocks on lower cache level states.

VI. EVALUATION

In this section, we evaluate the approach proposed in this

paper and compare with state-of-the-art approaches to multi-

level inclusive cache analysis proposed in [10] and [22]. First,

we describe the evaluation setup and also some assumptions in

the experiments which nevertheless do not affect the validity of

the evaluation. Then, we present the evaluation results showing

the proposed approach improves precision, and we also show

the computational overhead associated with the evaluation.

A. Evaluation Setup

We have developed a research prototype tool that imple-

ments the three approaches that are proposed in this paper,

[10], and [22]. The tool takes MIPS R3000 compliant binaries

and reconstructs CFGs from them. It also computes context-

sensitive call graphs to improve the analysis precision. The

evaluations are carried out on a set of benchmarks (as shown in

Tab. II) maintained by the Mälardalen WCET research group

[7], and they are compiled for MIPS R3000 using gcc-3.4.4.

Due to the limitations of our current tool, we only take into

account the timing effects of multi-level inclusive instruction

caches and do not consider data references for now as argued

in Section III. We also do not consider the effects of other

micro-architectural features like pipelines and branch predic-

tors, so we assume there are no timing anomalies. Therefore, a

memory reference that is classified as NC can be safely treated

as a AM when used to estimate the WCET.

The IPET (Implicit Path Enumeration Technique) is used to

calculate the WCET bound [16]. It uses a set of integer linear

constraints to combine the flow information and timing effects

of multi-level caches [10], [14]. In terms of the flow informa-

tion, the structural constraints are generated automatically, but

356356356

currently the loop bounds are determined and input manually.

The CPLEX solver is used to solve the generated ILP (Integer

Linear Programming) problems.

We carry out the experiments on a two-level cache hierarchy

and set L2 as inclusive. The fixed parameters of the hierarchy

are shown in Tab. I. We also assume every needed information

can be found in the main memory with a 100-cycle latency.

TABLE I
FIXED PARAMETERS OF TWO-LEVEL CACHE HIERARCHY

Level Block Size Associativity Latency

L1 8B 2-way 1-cycle
L2 16B 4-way 10-cycle

Three experiments are performed for each benchmark under

different cache capacity configurations. Let size(L1) denote the

capacity of L1 cache, and let size(L2) denote the capacity of

L2 cache. Let us assume that L2 cache size is always four

times bigger than that of L1 cache, namely we have size(L1) =
size(L2)

4
. For a benchmark bm, let size(bm) denote the code

size of this benchmark. The cache size configurations for each

benchmark are shown in Tab. II, whose criteria are as follows:

Large: L2 cache size is not smaller than the code size,

and it satisfies size(L2) ≥ 2× size(bm) >
size(L2)

2
.

Medium: L2 cache size is not bigger than the code size,

and it satisfies size(L2) ≤ size(bm) < 2× size(L2).
Small: L2 cache size is not bigger than half the code size,

and it satisfies size(L2) ≤ size(bm)
2

< 2× size(L2).

TABLE II
LARGE, MEDIUM, AND SMALL SIZE CONFIGS FOR EACH BENCHMARK

Benchmark Code Size
Large Medium Small

L1 L2 L1 L2 L1 L2

bs 320B 256B 1KB 64B 256B 32B 128B
insertsort 440B 256B 1KB 64B 256B 32B 128B

janne 324B 256B 1KB 64B 256B 32B 128B
cnt 944B 512B 2KB 128B 512B 64B 256B

expint 888B 512B 2KB 128B 512B 64B 256B
fir 600B 512B 2KB 128B 512B 64B 256B
ns 588B 512B 2KB 128B 512B 64B 256B

prime 556B 512B 2KB 128B 512B 64B 256B
qurt 1328B 1KB 4KB 256B 1KB 128B 512B

select 1580B 1KB 4KB 256B 1KB 128B 512B
compress 3564B 2KB 8KB 512B 2KB 256B 1KB

edn 3576B 2KB 8KB 512B 2KB 256B 1KB
jfdctint 2580B 2KB 8KB 512B 2KB 256B 1KB

lms 2588B 2KB 8KB 512B 2KB 256B 1KB
ludcmp 2276B 2KB 8KB 512B 2KB 256B 1KB
minver 3052B 2KB 8KB 512B 2KB 256B 1KB
ndes 3392B 2KB 8KB 512B 2KB 256B 1KB

adpcm 7612B 4KB 16KB 1KB 4KB 512B 2KB
statemate 10296B 8KB 32KB 2KB 8KB 1KB 4KB
nsichneu 40036B 32KB 128KB 8KB 32KB 4KB 16KB

B. Experimental Results

Tab. III shows the experimental results. For a benchmark,

WCET1 is derived by the approach proposed in [10], WCET2

is derived by the approach proposed in [22], and WCET3 is

derived by the approach proposed in this paper. The estimates

are reported in clock cycles. The precision improvement com-

pared to the approach proposed in [10] and [22] is calculated

by WCET1
WCET3

− 1 and WCET2
WCET3

− 1 respectively. We also report the

computation time overhead in seconds, along with the reported

WCET. The experiments are performed on a Linux machine

with a 1.2GHz quad-core processor and 12GB memory.

As shown by the results, the proposed approach dominates

the other two approaches in most cases. Under the large cache

size configuration, the proposed approach performs almost

the same as the approach proposed in [22]. For only a few

benchmarks, WCET3 is strictly lower than WCET2 but the

precision improvement is only within 3%. However, both the

approaches perform better than the approach proposed in [10].

This is expected and reasonable, since the approach proposed

in [10] does not try to classify any access as A or N instead

of U at a lower level than L1.

A striking difference appears under the medium and small

configurations. Under both configurations, the approach pro-

posed in this paper gives above 10% improvement in most

cases. For some benchmarks, the precision improvement is

very significant (over 100%). Due to this large improvement,

we also analyze some small benchmarks by hand to find out

the reasons. For example, under the medium configuration, for

insertsort, the approach proposed in this paper can achieve

more than 170% improvement compared to the other two ap-

proaches. The reason for this is explained as follows: insertsort
has two nested loops, and the total size of the two nested loops

is 228 bytes which is smaller than the L2 cache size under the

medium configuration which is 256 bytes; thus, if a reference

in the loops cannot be classified as L1 AH, it should at least be

classified as L2 PS if not L2 AH. While the approach proposed

in this paper achieves this (i.e. it gives L2 AH or L2 PS to the

references in the loops if they cannot be classified as L1 AH),

the other two approaches fails to give such L2 classifications

to the references in the loops (they assign L2 NC to them).

When applying the proposed approach, an interesting phe-

nomenon is that a smaller cache size configuration may result

in a tighter estimate (e.g. bs, qurt, select, compress, statemate).

As observed from the results of bs benchmark, the calculated

bound under the large cache size configuration (4027 clock

cycles) is higher than that under the medium one (3757 clock

cycles). The reason for such a phenomenon is as follows: The

code size of bs’s loop is 208 bytes which is smaller than 256

bytes, so most of the blocks of the loop are at least persistent if

they are not always in both L1 and L2 caches under the large

configuration; whereas, most of the blocks are persistent in L2

cache under the medium configuration, but their sub-blocks

will be evicted from L1 cache along with the loop iterations

(since L1 cache size under the medium configuration is only

64 bytes and the shortest path in the loop involves 128 bytes).

Thus, there are several references which are classified as L1

PS & L2 PS under the large configuration, and are classified

as L1 AM & L2 PS under the medium configuration. Given

such a reference under the large configuration, L1 PS & L2

PS means that the corresponding L2 block is not in the θmust
l2

and its L2 CAC is U; and it cannot bring the corresponding

L2 block into the θmust
l2

; thus, its subsequent references to the

same L2 block can only be classified as L2 PS (if not L1

AH) but not L2 AH; namely, such subsequent ones can add

additional main memory access latencies (100 clock cycles)

357357357

TABLE III
EXPERIMENTAL RESULTS: WCET ESTIMATES AND COMPUTATION TIME OVERHEADS

Benchmark Configuration
Approach in [10] Approach in [22] Approach proposed WCET1

WCET3
-1

WCET2
WCET3

-1
WCET1 Overhead WCET2 Overhead WCET3 Overhead

bs
Large 4827 0 4027 0.1 4027 0.1 19.87% 0.00%

Medium 7357 0 6857 0 3757 0.1 95.82% 82.51%
Small 10079 0 9579 0 6679 0 50.90% 43.42%

insertsort
Large 17229 0.1 15929 0.2 15929 0.2 8.16% 0.00%

Medium 187559 0 186359 0.1 68959 0.1 171.99% 170.24%
Small 187559 0 186359 0.1 110859 0.1 69.19% 68.10%

janne
Large 5863 0 4963 0.1 4963 0.1 18.13% 0.00%

Medium 20577 0 20077 0.1 15077 0.1 36.48% 33.16%
Small 33767 0 33267 0 24167 0 39.72% 37.65%

cnt
Large 27176 0.4 25176 0.8 25176 0.7 7.94% 0.00%

Medium 362188 0.2 358308 0.4 277508 0.6 30.51% 29.12%
Small 537178 0.1 533298 0.3 289198 0.3 85.75% 84.41%

expint
Large 30737 0.2 29537 0.4 29337 0.3 4.77% 0.68%

Medium 183462 0.1 171262 0.2 109162 0.3 68.06% 56.89%
Small 474762 0.1 473162 0.2 322262 0.2 47.32% 46.83%

fir
Large 15643 0.2 14443 0.4 14443 0.5 8.31% 0.00%

Medium 196536 0.1 170586 0.2 136786 0.3 43.68% 24.71%
Small 380736 0.1 379636 0.1 213936 0.1 77.97% 77.45%

ns
Large 33601 0.3 31601 0.4 31601 0.4 6.33% 0.00%

Medium 164491 0.1 162591 0.2 162291 0.2 1.36% 0.18%
Small 1473161 0.1 1472305 0.2 972305 0.2 51.51% 51.42%

prime
Large 38044 0.3 36644 0.5 36644 0.4 3.82% 0.00%

Medium 190664 0.1 189164 0.2 185064 0.3 3.03% 2.22%
Small 1690694 0.1 1689194 0.2 612594 0.1 175.99% 175.74%

qurt
Large 43705 3.3 40905 6.2 39897 5.4 9.54% 2.53%

Medium 175156 1.3 168176 2.5 150276 2.8 16.56% 11.91%
Small 182356 1.0 179556 2.0 114056 1.5 59.88% 57.43%

select
Large 43264 3.0 42264 5.5 41064 6.6 5.36% 2.92%

Medium 237114 1.0 236194 1.8 168594 3.2 40.64% 40.10%
Small 237114 0.5 202594 1.1 153394 1.7 54.58% 32.07%

compress
Large 217433 13.0 213333 25.2 212933 26.7 2.11% 0.19%

Medium 1624044 5.1 1614444 9.5 1472344 11.7 10.30% 9.65%
Small 1624044 2.9 1614444 5.5 1299144 6.7 25.01% 24.27%

edn
Large 217583 19.1 211483 25.8 211483 35.6 2.88% 0.00%

Medium 740873 5.7 734663 9.4 602663 9.8 22.93% 21.90%
Small 2360263 2.8 2354263 5.3 2254963 5.3 4.67% 4.40%

jfdctint
Large 42825 11.9 42225 14.7 42125 20.9 1.66% 0.24%

Medium 164895 3.2 164295 4.8 48195 4.1 242.14% 240.90%
Small 265895 1.9 197895 3.2 107895 1.8 146.44% 83.41%

lms
Large 480987 8.9 479187 18.0 479187 16.2 0.38% 0.00%

Medium 10438520 4.7 10414720 8.8 10410720 10.4 0.27% 0.04%
Small 25358756 2.7 25047856 5.5 21404296 8.7 18.48% 17.02%

ludcmp
Large 40885 3.9 39285 7.2 39285 6.8 4.07% 0.00%

Medium 61245 2.4 59645 4.3 59645 4.5 2.68% 0.00%
Small 293163 1.4 292263 2.8 290063 3.8 1.07% 0.76%

minver
Large 56314 6.7 53914 11.9 53914 12.9 4.45% 0.00%

Medium 73759 3.4 71159 6.1 70759 7.3 4.24% 0.57%
Small 228073 2.1 224333 3.9 215233 5.7 5.97% 4.23%

ndes
Large 204676 12.1 202376 21.6 202076 25.4 1.29% 0.15%

Medium 2967930 5.6 2926910 10.0 2926010 14.4 1.43% 0.03%
Small 5615987 3.2 5497527 6.4 4845877 11.0 15.89% 13.45%

adpcm
Large 388500 105.1 385600 199.5 384300 233.0 1.09% 0.34%

Medium 1262808 37.4 1251888 71.3 1127392 111.2 12.01% 11.04%
Small 1640818 24.9 1600638 49.9 1524568 45.3 7.63% 4.99%

statemate
Large 102633 124.0 96733 230.9 96533 233.6 6.32% 0.21%

Medium 159710 54.5 153150 93.9 133530 143.8 19.61% 14.69%
Small 160220 33.1 153560 58.5 119560 112.0 34.01% 28.44%

nsichneu
Large 610498 3023.7 610198 6327.7 608598 8880.6 0.31% 0.26%

Medium 1096788 897.3 1096688 1491.0 1088088 5675.8 0.80% 0.79%
Small 1144988 528.6 1144888 887.3 1138288 3725.9 0.59% 0.58%

to the total estimate6. On the contrary, such a reference under

the medium configuration is classified as L1 AM & L2 PS, so

its L2 CAC is A which enables it to bring the corresponding

L2 block into the θmust
l2

; some of its subsequent references to

the same L2 block can be classified as L2 AH instead of L2

PS. Thus, the number of L1 misses under the medium one is

6If a reference is not classified as L1 AH and is classified as L2 PS, it can
contribute at most one main memory access latency even it is in a loop.

proportional to the number of the iterations and can be much

more than that under the large one; however, the number of

overestimated L2 misses under the medium one can be less

than that under the large one. Given the loop bound is only

4 and the difference between the latency of L2 access and

main memory access is big, this phenomenon occurs. This

phenomenon also shows the proposed approach can tightly

analyze multi-level inclusive caches.
Compared to the other two approaches, the proposed one

358358358

requires more analysis time, especially in the case of nsichneu
benchmark (the biggest one we use). This is because the pro-

posed approach needs to perform more iterations due to the

CACs for many references at L2 changing from A or N to U.

VII. RELATED WORK

The first multi-level (non-inclusive) cache analysis is pro-

posed in [18], which is an extension to a well-established

single-level cache analysis method called static cache simu-

lation [19]. Later, in [9], it is pointed out that this method is

actually unsafe for analyzing multi-level set associative caches,

and it is proposed to use cache access classification (CAC) to

filter the references at each level and defines an update strategy

to take into account the uncertain accesses.

Based on the work in [9] which does not take into account

data caches, a method for analyzing multi-level non-inclusive

data caches is proposed in [14], and a method for analyzing

non-inclusive cache hierarchies with unified caches is pro-

posed in [3]. In [20], an abstract domain called live caches

is used to model the relationships between cache levels and

the analysis based on this domain can handle unified caches

using write-back policy.

Cache hierarchies are natural in multi-core processors, for

which the analysis needs to take into account the inter-core

interferences. In [21], a dual-core processor with a shared L2

cache model is considered. In [15], task lifetime information is

computed and utilized to refine possible interferences. In [8],

a method for identifying and bypassing the static single usage

memory blocks so as to reduce the number of interferences is

proposed. In [17], abstract interpretation based cache analysis

is combined with model checking based bus analysis to

achieve more precise interference analysis. In [2], a WCET

analysis framework that covers different micro-architectural

components in a multi-core processor is presented. All these

works assume multi-level non-inclusive caches are used.

In [10], the methods to analyze cache hierarchies of different

types (non-inlucisve, inclusive, and exclusive) are presented.

It shows the difficulties in deriving a tight WCET estimation

for systems using multi-level inclusive caches and non-LRU

replacement policies. It considers different multi-level instruc-

tion cache types separately without taking into account hybrid

types like a combination of non-inclusive and inclusive caches.

In [22], an approach is proposed to improve the tightness of

the estimation when analyzing cache hierarchies that contain

inclusive cache levels. It first analyzes all the inclusive levels in

a bottom-up direction, and then analyzes the rest of the levels

in a top-down direction. By doing this bidirectional analysis,

partial invalidation behavior caused by an inclusive level can

become visible when analyzing any of its upper levels.

In order to avoid using too pessimistic estimation, proba-

bilistic timing analysis (PTA) techniques have been proposed

to produce multiple estimations with the probabilities that they

can be exceeded. In [13], a measurement-based PTA approach

is proposed to estimate probabilistic WCET in the presence of

multi-level caches. In this paper, we want to guarantee safety,

and consider PTA as a complementary methodology.

VIII. CONCLUSION

In this paper, we propose an approach that can safely and

more precisely analyze multi-level inclusive caches for WCET

estimation. We first define a concrete operational semantics for

multi-level inclusive caches. Based on this concrete semantics,

the proposed approach analyze a multi-level inclusive cache

as a whole by integrating three analyses together. We evaluate

the proposed approach using a set of benchmarks. From the

experimental results, we can observe the proposed approach

can significantly tighten the WCET bound under relatively

small cache size configurations, compared to other approaches.

ACKNOWLEDGMENT

This work is supported in part by the NSF (CNS-1035655).

REFERENCES

[1] J.-L. Baer and W.-H. Wang. On the inclusion properties for multi-level
cache hierarchies. In ISCA ’88, pages 73–80, 1988.

[2] S. Chattopadhyay, C. L. Kee, A. Roychoudhury, T. Kelter, P. Marwedel,
and H. Falk. A unified wcet analysis framework for multi-core platforms.
In RTAS ’12, pages 99–108, 2012.

[3] S. Chattopadhyay and A. Roychoudhury. Unified cache modeling for
wcet analysis and layout optimizations. In RTSS ’09, pages 47–56, 2009.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In POPL ’77, pages 238–252, 1977.

[5] C. Cullmann. Cache persistence analysis: Theory and practice. ACM
Trans. Embed. Comput. Syst., 12(1s):40:1–40:25, Mar. 2013.

[6] C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior
prediction for real-timesystems. Real-Time Syst., 17(2-3):131–181, Dec.
1999.

[7] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen
WCET benchmarks - past, present and future. In WCET ’10, 2010.

[8] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten wcet estimates
for multi-core processors with shared instruction caches. In RTSS ’09,
pages 68–77, 2009.

[9] D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-
associative instruction caches. In RTSS ’08, pages 456–466, 2008.

[10] D. Hardy and I. Puaut. Wcet analysis of instruction cache hierarchies.
J. Syst. Archit., 57(7):677–694, Aug. 2011.

[11] B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-aware data cache
analysis for wcet estimation. In RTAS ’11, pages 203–212, 2011.

[12] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoud-
hury. Bus-aware multicore wcet analysis through tdma offset bounds.
In ECRTS ’11, pages 3–12, 2011.

[13] L. Kosmidis, J. Abella, E. Quiones, and F. J. Cazorla. Multi-level unified
caches for probabilistically time analysable real-time systems. In RTSS
’13, pages 360–371, 2013.

[14] B. Lesage, D. Hardy, and I. Puaut. WCET Analysis of Multi-Level
Set-Associative Data Caches. In WCET ’09, pages 1–12, 2009.

[15] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing
analysis of concurrent programs running on shared cache multi-cores.
In RTSS ’09, pages 57–67, 2009.

[16] Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In DAC ’95, pages 456–461, 1995.

[17] M. Lv, W. Yi, N. Guan, and G. Yu. Combining abstract interpretation
with model checking for timing analysis of multicore software. In RTSS
’10, pages 339–349, 2010.

[18] F. Mueller. Timing predictions for multi-level caches. In ACM SIGPLAN
Workshop on Language, Compiler, and Tool Support for Real-Time
Systems, pages 29–36, 1997.

[19] F. Mueller. Timing analysis for instruction caches. Real-Time Syst.,
18(2/3):217–247, May 2000.

[20] T. Sondag and H. Rajan. A more precise abstract domain for multi-level
caches for tighter wcet analysis. In RTSS ’10, pages 395–404, 2010.

[21] J. Yan and W. Zhang. Wcet analysis for multi-core processors with
shared l2 instruction caches. In RTAS ’08, pages 80–89, 2008.

[22] Z. Zhang and X. Koutsoukos. Top-down and bottom-up multi-level
cache analysis for wcet estimation. In RTAS ’15, pages 24–35, 2015.

359359359

APPENDIX

Theorem 1. The proposed approach to multi-level inclusive
cache analysis is safe.

Proof: Given a reference r, the collecting semantics cs

where cs(r) = 〈Lr, S̄r〉, the derived global abstract object ψ,

and the derived abstract cache hierarchy state ω at r, if the

analysis is safe, it should satisfy the following condition:

Lr ⊆ conΨ(ψ)(r)
∧
S̄r ⊆ conΩ(ω)

We prove this by mathematical induction.

Base case: At the beginning of an execution, no memory

block is loaded and the first reference needs to access all the

cache levels. The abstract cache hierarchy state at the entry

point derived by the analysis is empty. By the definition of

the function U the first reference is certainly classified as AM
at each cache level, so the ψ maps the first reference to A at

each cache level. The condition holds.

Inductive hypothesis: Let T be the set of all the predecessor

references of r. In the last iteration of the analysis, we have

∀t ∈ T : Lt ⊆ conΨ(ψ)(t)
∧
S̄t ⊆ conΩ(ω

′) where cs(t) = 〈Lt, S̄t〉.
For simplicity, let us assume r only has one predecessor t, so

we have ω = U (ω′, ψ, t). If r has more than one predecessor,

we can use the J function, which is safe by construction,

to combine the abstract cache hierarchy states. Therefore, we

need to prove ω′ updated by t is safe and ψ updated by r is

also safe.

Inductive step: When updating ω′, since the CAC for t at

each level is safe (given by the hypothesis Lt ⊆ conΨ(ψ)(t)),

updating the components of the last level in ω′ will be safe.

Let us assume the last level is inclusive: Since its components

are safely updated, the set of possibly evicted blocks will be

overestimated. According to the definition of the I function

which remove blocks in the must and persistence state com-

ponents, over-removal in these two state components made by

the I function will not make the analysis unsafe. As described

in Section V-C, the update function U can safely update an

abstract cache level state. By using mathematical induction on

levels, we can prove the component for each level in ω′ can

be safely updated. Therefore, the ω′ updated by t is also safe,

i.e. the abstract cache hierarchy state ω is safe. Thus, we have

S̄r ⊆ conΩ(ω). When updating ψ(r), r’s CHMC at each level is

derived from the ω which is safe as proven above. Since we

have S̄r ⊆ conΩ(ω), the CHMC for r at each level is safe, so is

the deduced CAC. The F function uses the least upper bound

operator to derive the reference’s possible CAC. Thus, the ψ

updated by r is safe, i.e. Lr ⊆ conΨ(ψ)(r).

In order to prove the proposed approach terminate, we

need a well-defined partial ordering on each abstract domain.

Given two abstract cache hierarchy states ω1 = 〈φ1,l1 , · · · , φ1,ln 〉
and ω2 = 〈φ2,l1 , · · · , φ2,ln 〉, the partial ordering �Ω on the the

abstract cache hierarchy state domain Ω is defined as:

ω1 �Ω ω2 ⇐⇒ φ1,l1 �Φ φ2,l1

∧
· · ·

∧
φ1,ln �Φ φ2,ln

where �Φ on the abstract cache level state domain Φ is defined

naturally as the conjunction of the orders on the corresponding

components in the Θmay, Θmust, Θpers, and Δ respectively. The

partial orderings on the Θmay, Θmust and Θpers abstract cache

state domains are already well-defined, so we define the partial

ordering �Δ on the domain Δ. Given two elements δ1 and δ2

of the domain Δ, the partial ordering �Δ on the domain Δ is

defined as:

δ1 �Δ δ2 ⇐⇒ ∀i ∈ {1, · · · , d} : δ1(i) ≥ δ2(i)

We also need to define the partial ordering on the domain

Ψ. Given two elements ψ1 and ψ2 of the domain Ψ, the partial

ordering �Ψ on the domain Ψ is defined as:

ψ1 �Ψ ψ2 ⇐⇒ ∀r ∈ R, ∀l ∈ L : ψ1(r)(l) �CAC ψ2(r)(l)

where �CAC on the CAC domain is defined by the lattice as

shown in Fig. 3.

Theorem 2. The proposed approach to multi-level inclusive
cache analysis terminates in finite iterations.

Proof: The abstract cache hierarchy state domain Ω and

the Ψ domain are finite and partially ordered, so if both J and

U functions are monotone, the proposed analysis is guaranteed

to terminate in finite iterations.

The J function only applies the monotone join functions

of the may, must, and persistence analyses independently to

the corresponding components of two abstract cache hierarchy

states, so it is monotone by construction.

The U function is composed of four functions F , I, U , and

J : (1) For any reference, the F function uses the � operator

on the reference’s all possible CACs to derive a least upper

bound. Thus, given ψ1 �Ψ ψ2, for any reference r at a cache

level l with its CAC c, we have F(ψ1, r, l, c) �Ψ F(ψ2, r, l, c).

(2) The I function removes blocks only from θmust and θpers

of an abstract cache level state. Thus, given φ1 �Φ φ2 and

PO1 ⊆ PO2, we can easily verify the resultant θmust
1 from

I(φ1, PO1) and the resultant θmust
2 from I(φ2, PO2) have the

relation: θmust
1 �must θmust

2 ; also the resultant θpers1 and θpers2

have the relation: θpers1 �pers θpers2 . Since the θmay
1 and θmay

2

are not changed by the I function (i.e. θmay
1 �may θmay

2 still

holds) and PO1 ⊆ PO2, we can also easily verify the resultant

δ1 and δ2 have the relation: δ1 �Δ δ2. (3) The U function is

composed of the Umay
function and the well-defined monotone

update functions Umust and Upers. Thus, the U function is

monotone as long as the Umay
function is monotone. Given

a memory block m, θmay
1 �may θmay

2 , and δ1 �Δ δ2, we

can verify Umay
(θmay

1 ,m, δ1) �may Umay
(θmay

2 ,m, δ2), since

δ1 �Δ δ2 means we have δ1(set(m)) ≥ δ2(set(m)) such that age

increasing in θmay
2 is more conservative by the definition of

the Umay
function. (4) The J function is monotone as shown

above. Since the functions F , I, U , and J are all monotone,

the U function is monotone.

360360360

