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Learning Bayesian Network Structures to Augment
Aircraft Diagnostic Reference Models

Daniel L. C. Mack, Gautam Biswas, Fellow, IEEE, Xenofon D. Koutsoukos, Senior Member, IEEE, and
Dinkar Mylaraswamy

Abstract—Fault detection and isolation schemes are designed
to detect the onset of adverse events during operations of com-
plex systems, such as aircraft and industrial processes. The
state-of-the-art fault diagnosis systems on aircraft combine an
expert-created reference model of the associations between faults
and symptoms, and a Naïve Bayes reasoner. For complex systems
with many dependencies between components, the expert-gen-
erated reference models are often incomplete, which hinders
timely and accurate fault diagnosis. Mining aircraft flight data is
a promising approach to finding these missing relations between
symptoms and data. However, mining algorithms generate a
multitude of relations, and only a small subset of these relations
may be useful for improving diagnoser performance. In this paper,
we adopt a knowledge engineering approach that combines data
mining methods with human expert input to update an existing
reference model and improve the overall diagnostic performance.
We discuss three case studies to demonstrate the effectiveness of
this method.

Note to Practitioners—This paper takes a first step toward
combining information from adverse event logs matched with
real flight data to improve the accuracy and timeliness of diag-
noser systems used on commercial aircraft. We have developed a
knowledge engineering approach, which uses the results derived
from machine learning classifier algorithms to inform experts
about changes and additions that could be made to the existing
reference model, created by human experts, to improve diagnostic
performance. One of the primary constraints we face in this work
is not to alter the structure of the diagnostic reference model,
which would require changes in the reasoning algorithm for fault
diagnosis. With this in mind, we address a number of challenges
in developing our methodology. First, we extend the Naïve Bayes
learning schema by adopting the Tree Augmented Naïve Bayesian
(TAN) learning algorithm that captures some of the dependencies
among the monitors in the aircraft diagnostic system. This pro-
vides us with more accurate diagnostic results, and we then apply
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a transformation schema to generate classifier structures that
can be matched against existing reference model structures, thus
providing the experts a better understanding of the implications
of adding new knowledge and detectors to the reference model.
Second, we use real flight data to validate the new reference model
structure by determining the improvements in diagnostic accuracy
and timeliness of isolation using well-defined metrics. Our overall
approach shows promise for targeted fault analysis that may lead
to faster detection, and, therefore, avoidance of adverse events
such as an engine shutdown during flight. However, the task of
studying and refining large, centralized reference models for
aircraft systems is complex, especially for quantifying diagnostic
accuracy and false alarm rates across multiple fault modes. We
will address this larger task along with detection of previously
undetected faults (anomaly detection) in future work.

Index Terms—Aviation safety, classification algorithms, diag-
nosis, knowledge engineering, tree augmented Bayesian networks
(TANs).

I. INTRODUCTION

A N IMPORTANT challenge for aviation safety is the
early detection and mitigation of potential adverse events

caused by degradation and failures in system components. Con-
sider an aircraft with several interacting subsystems, such as
the propulsion, avionics, bleed, and flight control subsystems.
Degradation and faults in one component may affect other
components during flight operations. As a result, multiple fault
symptoms may be generated, i.e., sensors spread across the
system may report anomalous or faulty behaviors. Combining
this information in a way that leads to accurate and timely fault
detection and isolation is a challenging task.
Current Aircraft Diagnostic and Maintenance Systems

(ADMS) [1] use: 1) a system reference model that describes
causal relations between potential faults and symptoms that are
derived from sensor measurements and 2) reasoning software
that combines abductive [2] and Naïve Bayesian reasoning [3]
to infer and rank potential fault hypotheses. A widely used
ADMS in operation today is the Boeing 777 Central Mainte-
nance System (CMC) [4].
Separating the reference model from the reasoner software

allows subsystem manufacturers to encode proprietary fault
models for individual subsystems into the reference models.
The system integrator (i.e., the aircraft manufacturer) designs
the integrated solution that combines information from the
subsystem reasoners to make global diagnostic inferences
[5]. Bayesian reasoning methods address the uncertainty in
the diagnostic relations and improve reasoner robustness in
the presence of missing evidence [6]. This results in a better
overall ranking of the potential fault hypotheses based on
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their likelihood of occurrence. However, the accuracy, robust-
ness, and timeliness of the reasoner are very much a function
of the accuracy of the system reference model. Experts use
their knowledge of subsystems and experiences derived from
previous aircraft operations, but gaps may arise because: 1)
components are periodically updated as newer, more improved
versions become available and 2) complex interactions between
subsystems are hard to model a-priori. Often, such knowledge
comes from years of experience, and abnormal situations are
typically understood only when a pattern emerges after multiple
occurrences.
Data mining methods applied to large sets of operational data

collected by the airlines and equipment manufacturers provide
means for targeted anomaly detection and fault diagnosis in air-
craft systems [7]–[9]. Similar methods have been developed for
diagnostics applications in other domains, e.g., [10]–[13]. This
paper develops an approach that employs targeted search tech-
niques with a Bayesian learning algorithm to detect and analyze
the onset of faults that may lead to adverse events during aircraft
flight operations. The challenges we address in this approach
are: 1) finding the right flight data segments that can inform the
diagnostic system about specific faults that occur during flight;
2) using machine learning to generate diagnostic structures that
are compatible with existing reference models; and 3) providing
the information derived by machine learning to the aircraft ex-
perts in a format that makes it easy for them to integrate the
information into existing reference model structures. The effec-
tiveness of this methodology is demonstrated using three case
studies: 1) engine overheating problem caused by a leak in a
fuel metering hydromechanical (HMA) unit; 2) engine shut-
down triggered by the fire alarm system of the engine; and 3)
excessive vibration that led the crew to shut down the engine
manually.
Many flight management and flight control functions on

aircraft are now handled by software [14]. This software has
to meet stringent certification requirements (DO-178 or Level
1 certification). In contrast, ADMS systems play an advisory
role during flight, therefore, they require less stringent Level 4
certification. Level 4 certification implies that only the ADMS
reasoner code is certified, and requires recertification only if
changes are made to that code. On the other hand, the system
reference model associated with the reasoners is treated as data,
and can be updated by system experts without recertification.
In this work, we operate under the constraints of improving
the ADMS, while avoiding expensive recertification costs.
Therefore, our data mining solutions are designed to support
system experts in their knowledge engineering tasks that can be
implemented without requiring reimplementation or updating
of the reasoner code.
In this paper, we focus on updating reference models for

aircraft engine systems using five years of flight data from
a U.S. regional airline that operated a number of identical
aircraft. The 0.7 terabytes of flight data was collected from a
large number of aircraft monitors and sensors, many of them
associated with the four engines on the aircraft.1 Data curation
methods were developed to extract relevant data for our tar-
geted knowledge engineering application [5]. Our knowledge

1The aircraft flight data set used in this study can be accessed at https://c3.
nasa.gov/dashlink/projects/85/

Fig. 1. Example reference model.

engineering framework includes four steps: 1) select relevant
data to derive new knowledge for targeted diagnostic analysis;
2) apply data mining algorithms to build targeted models asso-
ciated with specific faults; 3) utilize the derived models to help
domain experts update reference models to improve diagnostic
performance; and 4) perform experiments to demonstrate that
the augmentations lead to overall improvements in diagnostic
performance.2
The rest of this paper expands on the knowledge engineering

process. Section II briefly reviews on-board model-based diag-
nostic reasoner systems. Section III describes the implementa-
tion of the knowledge engineering approach for incorporating
information from learned Bayesian models to the ADMS ref-
erence model in a way that does not violate the assumptions
and properties of the reasoner. Section IV presents the results
of our three case studies that demonstrate how human experts
utilized the framework to interpret the information generated by
our Tree Augmented Bayesian Network (TAN) structures to up-
date existing reference models. Section V presents related work
and Section VI outlines possible extensions for generalizing the
case studies to other diagnostic applications.

II. AIRCRAFT REFERENCE MODEL STRUCTURE AND
DIAGNOSTIC REASONERS

A traditional system reference model, such as the one used in
the Boeing 777 Central Maintenance Computer (CMC) [15]),
can be represented as a flat bipartite graph with two types of
nodes: 1) failure modes or hypotheses and 2) sensor andmonitor
nodes as evidence variables. Fig. 1 shows an example reference
model for an engine subsystem.
Diagnostic monitors represent the evidence nodes in the

system. Designing a monitor often requires deep domain
knowledge about the component or subsystem, but the com-
ponent manufacturer may not reveal this information to the
system integrator. The abstract view of a monitor exposed to
the system integrator is shown in Fig. 2. With few exceptions,
the output of a diagnostic monitor is derived by applying a
threshold to a time-series signal. This signal can be a raw sensor
value or be derived from a set of one or more sensor values. The
intermediate derived signals are labeled as condition indicators

2A more detailed description of this work appears in D. Mack’s Ph.D. disser-
tation: http://etd.library.vanderbilt.edu/available/etd-04092013–182409/
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Fig. 2. Abstraction of diagnostic monitor assuming conditional independence
of monitors given an fault.

(CIs), . Assuming a predefined threshold value , we set
. The binary output of the monitor makes

the computational framework of the corresponding diagnostic
reasoner easier to implement.
Given the set of distinct failure modes in the system, , each

failure mode variable takes a binary value3:

(1)

The a priori probability of failure mode is denoted by
. Failure modes are assumed to be independent,

i.e., given any two failure modes and ,
.

For a set of diagnostic monitors, , monitor
may indict, exonerate, or provide no evidence for or against
a subset of failure modes. This defines a monitor’s ambiguity
group, and each monitor in the system expresses indicting,
exonerating or unknown support for failure modes in its ambi-
guity group, i.e.,

(2)

Ideally, a monitor fires when at least one failure mode in its
ambiguity group is occurring. Given that the failure mode,

, is occurring in the system, , the conditional probability
of the monitor evidence given the failure mode is

(3)

False alarm probability, the probability that an indicting
monitor fires when the corresponding failure modes in its
ambiguity group are not occurring in the system, is given by

(4)

Typical ADMS reasoner algorithms simplify calculation by
making the Naïve Bayes assumption [3]. Therefore, fault hy-
potheses ( ’s) are independent of one another, and given

, monitors ( ’s) that support are considered to be

3A value of may be used to denote an unknown failure mode.

independent of one another. As monitors fire, the reasoner al-
gorithm first performs an elimination step where failure modes
exonerated by newly activated monitors are removed from the
set of probable failure hypotheses. For the remaining fault hy-
potheses, the likelihood of fault hypotheses are updated using
Bayes rule and the Naïve Bayes assumption

where is a normalizing constant. As additional monitors fire,
the failure mode set becomes smaller, and may reduce to a
single hypothesis. In situations where more than one failure
mode remains active, the reasoner ranks the active hypotheses
in the order of their likelihood of occurrence. The probability
of false alarms calculated in parallel, indicates the level of
uncertainty in the inferred fault modes, given the set of moni-
tors that have fired. This reasoning algorithm for aircraft fault
diagnostics is very similar to the one adopted for probabilistic
diagnosis of disease hypotheses in the Internist-1/QMR system
[16]. More recent work, e.g., [9], have relaxed the Naïve Bayes
assumption, to design diagnostic reasoners based on general
Bayes net schemes, but these approaches have only been ap-
plied in small case studies, e.g., software signal handling faults
in aircraft navigation systems. There has also been research on
Dynamic Bayes nets for modeling the evolving dynamics of
faults in continuous and hybrid systems (e.g., [17] and [18]),
but these methods have not been scaled up to apply to large,
complex systems.

III. THE KNOWLEDGE ENGINEERING APPROACH FOR
AUGMENTING REFERENCE MODELS

In this section, we elaborate on the four step knowledge en-
gineering process outlined in Section I.

A. Building Relevant Flight Segments
The set of monitor and condition indicator values relevant

to the fault was obtained by analyzing the reference model and
by seeking expert input for additional features. The flight data
segments with failures, identified by information gleaned from
the FAA Aviation Safety Information Analysis and Sharing
(ASIAS)4 database, provided information about the aircraft
tail number, the date, and the flight when the adverse event
occurred, and additional information about the fault mode that
caused the adverse event. To ensure that we captured indicators
that imply early onset of the failure, we went back flights
from the flight where the adverse event was reported to facil-
itate early detection and repair, and thus avoid adverse events
during flight. The number depended on the nature and type
of fault.
1) Aircraft Flight Data: The aircraft flight data was gener-

ated from a fleet of identical four engine aircraft that com-
posed a U.S. regional airline. The data covered about five years
of flight operations, with each aircraft involved in 2–5 flights
each day. The Aircraft Condition Monitoring System (ACMS)

4http://www.asias.faa.gov/pls/apex/f?p=100:1:13807616980905
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TABLE I
STARTUP FEATURES TRANSFORMED FROM THE RAW DATA

associated with these aircraft collected sensor data from the
propulsion, airframe, aircraft bleed, and flight management sys-
tems in a central location on the aircraft during flight to sup-
port fault analysis by the on board diagnoser and maintenance
operations on the ground. The sensors had different precision
levels and different sampling rates, therefore, the data samples
collected by each sensor per flight was different. This data was
stored in raw, uncompressed form as binary files. On landing,
the ACMS recorded data was transferred to permanent storage
(in our case, the data was stored on CDs). This initial step in-
dexed the flight data by the aircraft tail identification number
and date and time of flight.
In addition to the flight data, we had independent access

through the ASIAS database to a collection of adverse events
reported by various airline operators to the FAA. Examples
of adverse events in our flight data included events, such as
loss of an engine and engine on fire. Many of these incidents
resulted in the affected aircraft abandoning their flight plan,
and making an emergency landing at the nearest airport. Our
three case studies were derived from incidents reported in the
ASIAS database.5
2) Brief Overview of Case Studies: Two of our three case

studies were computer-aided engine shutdown events during
flight, and the third was an excessive engine vibration event that
resulted in a crew-initiated shutdown of that engine. From the
ASIAS records, we identified the tail numbers of the affected
aircraft and the exact flight in which the adverse event occurred.
The first case study is an engine overheating problem, which

5In developing our case studies, we ignored ASIAS events like sprinkler in-
cidents in the main cabin, because they did not have serious implications on
aircraft flight safety.

triggered an engine shutdown event on the belief that the engine
was in imminent danger of catching fire. The second event in-
volved excessive vibration in an engine, which forced the crew
to shut the engine down manually. The third event was an en-
gine shutdown triggered by the fire alarm system on the engine.
After the fact, FAA investigators determined that the cause was
a leaking fuel manifold but the leak was not detected by existing
sensors and monitors on the aircraft.
3) Curation of Flight Segments: Our case studies, focused

primarily on the aircraft engine subsystem and fuel flow into
the engines. A set of condition indicators (CIs) related to engine
health were extracted as time series data, and then annotated by
the three primary modes of operation of the engines: 1) startup;
2) takeoff; and 3) shutdown. Our experts surmised that the en-
gines were most stressed during takeoff, and knowing the state
of the engine at the start and end of a flight, was more important
for diagnosing incipient faults. Therefore, we did not include
data from the other phases: climb, cruise, and descent/landing
in our analyses. The flight segment data was obtained in two
steps: 1) data from all flights for the selected condition indica-
tors was collected into the curated database for all four aircraft
engines and 2) the labeled flight segments, representing nominal
and faulty situations were extracted into individual data sets for
the classifier studies. Table I lists the CI’s used for each flight
segment.

B. Classifier Methods for Deriving Diagnostic Relations in
the System

1) Learning Tree Augmented Naïve Bayesian Networks:
For aircraft systems, it is well known that the CIs may not be
independent given a fault hypothesis: 1) CIs may be based on
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dependent measurements, e.g., a CI derived from a pressure
measurement at the end of a pipe is not independent of a second
CI whose value is derived from a pressure measurement at the
inlet of the pipe and 2) two CIs may share one or more sensor
measurements, e.g., two different measures of engine health
state may use the engine temperature in their computations.
In other words, the Naïve Bayes assumptions of the reasoner
and the conditional independence assumption on CI’s given
the fault hypothesis are not true in reality. However, given our
discussion earlier, we were not at liberty to make changes to
the reasoner algorithm. To overcome this problem, we chose
a Bayesian learning algorithm that was not computationally
expensive, but the independence assumptions could be relaxed
to capture additional diagnostic evidence. Our hypothesis was
that this information could be used to improve the diagnostic
results.
The Tree Augmented Naïve Bayesian learning algorithm

[19], also called the Bayesian TAN classifier meets these
requirements. The TAN structure provides a simple extension
to the Naïve Bayes model. In our derived TAN structures, the
fault hypothesis, the root or class node, is causally linked to
every CI, which represent the evidence nodes that support the
hypothesis. In addition, an evidence node (CI) can have at most
two parents: 1) the class node and (2) a causal connection to
another evidence node (CI). These constraints maintain the
directed acyclic graph requirement of Bayesian networks, and
produce a more nuanced tree that captures additional depen-
dency relationships among the CIs without allowing arbitrary
graphical structures that would make it harder for the expert to
interpret, and extract relations to enhance the reference model.
TAN structures can be generated in several ways. A tradi-

tional approach uses a greedy search that constrains the graph
from building “illegal” edges from the evidence nodes6 [20].
In our work, we developed a systematic procedure to build the
TAN structure for a fault hypothesis. Our approach first derives
the Minimum Weighted Spanning Tree (MWST) for all of the
evidence (CI) nodes using Kruskal’s algorithm [21], and then
completes the TAN structure by connecting the fault node (root)
to all of the evidence nodes in the tree [19]. We used the Mutual
Information (MI) metric for pairwise edge weight computations
when constructing the MWST [19]. The MI measure is not di-
rectional. Directionality of the causal links was established by
selecting one of the evidence nodes in the MWST as the obser-
vational root node and recursively directing all edges from this
node outward. The observational root node is defined as the ev-
idence node with the highest likelihood given the fault mode.
A TAN structure generated using the MWST algorithm is il-

lustrated in Fig. 7. The root or class node of the TAN, corre-
sponds to the fault mode under study, i.e., the FuelHMA fault.
Next, Rolltime, a monitor associated with the shutdown phase
of the aircraft is selected as the observational root node from
the constructed MWST. As discussed, the fault hypothesis node
(class) is then linked to all of the monitor nodes that support
the class node. Dependencies among other monitors, e.g., Roll-
time and dipEGTC correspond to links from the MWST. The
TAN represents a static Bayes net structure; it does not capture

6An illegal edge is created when more that two edges are created from an
evidence node to parent nodes. Note that one of the parent nodes has to be the
class node.

temporal relations among the evidence nodes. The selection of
the observation root node, the only evidence node that has one
parent (the class node) is based on the fact that it provides the
strongest evidence in support of the class node among all of the
evidence nodes of the TAN structure.
The choice of the observational root node also provides a

heuristic ranking of the evidence nodes. Much like Information
Gain in a decision tree [22], the mutual information calculation
for each class node to CI node edge is used to create an ordering
of CIs from larger to smaller impact on the class node. In other
words, generated TAN structures point the domain expert to the
observational root node as the primary evidence that supports
the fault mode, and as one moves down the tree hierarchy (see
Fig. 7), the corresponding CI nodes have a smaller impact in es-
tablishing the fault mode.
We used an implementation of the TAN algorithm from

the Weka [23] toolkit for our case studies. Weka uses Con-
ditional Probability Tables (CPT) and preprocesses the data
using a discretization algorithm. The discretization algorithm
bins the individual features into ranges that create the biggest
unbalance in the class labels for each feature value (or pairs of
feature values when there is a dependency between features),
to generate CPTs that provide the most differentiation between
classes. The choice of the observational root node is determined
by the CI node that provides the best discrimination among the
nominal versus faulty class as calculated by the mutual infor-
mation measure. The value of the CPT and more specifically
the ranges found by the preprocessing algorithm are essential
for updating existing monitor thresholds and adding new links
between monitors and the fault hypotheses in the reference
model.
2) Using N-Fold Cross Validation to Validate the TAN Clas-

sifier Results: We divided up the data segments into training
and test sets, and ran N-fold cross validation studies to estimate
the accuracy of classification and the false-alarm rate for the de-
rived TAN structures, and to determine if the error rates met the
requirements of the aircraft diagnosis task.

C. Updating the Reference Model

The domain experts used the learned TAN structures to
update the reference model. Since the example reference model
in Fig. 1 is reasonably complex with a number of multiply-con-
nected nodes, we demonstrate the types of information our
experts extracted to augment in the reference model with a
simpler example illustrated in Fig. 3. We limited our approach
to the three types of reference model updates discussed in
Section I. The first was related to scaling problems for condi-
tional probability distributions for large models. Consider the
example where the conditional probability between and

has to be updated because the TAN structure implies a
better threshold for monitor . is a shared monitor
between fault hypotheses and , which means the
two faults are causally dependent. Therefore, to reason about
the likelihood of being indicted by the evidence, i.e.,

, we have to consider marginalization
of the joint distribution
with respect to nodes and . Generating the joint
probability distribution table requires more information than
the domain expert may be able to provide, and it is also hard
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Fig. 3. Graphical representation of a reference model.

Fig. 4. The relevant structure after isolating a failure mode.

Fig. 5. Additional Information derived from data: (a) update to monitor
threshold with respect to fault ; (b) finding a new relation between

and ; and (c) discovering that monitors and are
causally related.

to directly derive this information from data [24]. Preserving
the Naïve Bayes model structure assumptions, i.e., the inde-
pendence of the fault hypotheses and the independence of the
monitors associated with a fault hypotheses, simplifies this
task of deriving the conditional probabilities. In our example,
the discovery of a new link between and makes
all of the failure modes dependent, which greatly increases
the number of parameters needed to specify the joint proba-
bility distribution. The Naïve Bayes assumption allows for a
simplified refactoring of the problem, making the conditional
probability tables easier to specify. Fig. 4 shows the local
structure used for failure mode .
A second challenge arose from dependencies among moni-

tors, such and in Fig. 5. This clearly violates the
assumption of independence of monitors given the fault mode.
We address this problem by defining the notion of a “super
monitor.” To accommodate the dependency between and

while retaining the Naïve Bayes modeling framework,
the two monitors are combined to form a Super Monitor, and

Fig. 6. The construction of a super monitor.

the substructure between , , and is replaced by
a new node and a link from to , as shown in
Fig. 6. In general, combining existing monitors, and im-
plies stronger indictment evidence for the failure mode .
That is

Note that monitors and are not removed from the
reference model because they may provide supporting evidence
for other faults. This illustrates yet another local update method
applied to the reference model. The three reference model up-
date procedures are summarized below.
1) Update Monitor Thresholds: Updating the threshold as-

sociated with a diagnostic monitor should make the monitor
more sensitive to failure mode (allowing the fault can be de-
tected earlier) without degrading the false alarm rate. As an ex-
ample, consider a change in the threshold for monitor with
respect to fault (see Fig. 5). The threshold value may be
made lower to make the fault mode more sensitive to the mon-
itor value, or it may be increased to decrease the false alarm rate.
In more detail, updating monitor thresholds require further

analysis of the discretization of the CI used to create the CPTs.
Applying marginalization to the CI parent (if one exists) will
produce general probabilities for each set of ranges found
through the discretization. The fault range is established from
the range that has the highest probability of the failure mode
given the marginalized CPT. The value that defines the border
between the nominal range and faulty range is taken as the new
threshold for the monitor. Given the data associated with the
structure in Fig. 7, the derived CPT for the Rolltime CI is given
in Table II. The table indicates that the fault node, Fuel HMA
failure, is more likely when Rolltime is . Using these
results, the experts update the threshold in the reference model
with the goal of improving the accuracy and time of detection
for the FuelHMA fault.
2) Add New Links Between Monitors and Failure Modes:

Discovering new relations between monitors and fault hy-
potheses is equivalent to deriving a newCI in the TAN structure.
With expert guidance, this creates a new monitor that is added
to the reference model. Proper choice of threshold (similar
to the Update Monitor approach) helps to improve the fault
detection accuracy. If, for example, appears in the
TAN structure of Fig. 7, but it does not exist in the reference
model, the experts and the data mining researchers study the



364 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 14, NO. 1, JANUARY 2017

Fig. 7. TAN structure generated using data from all 50 flights.

TABLE II
EXAMPLE CPT FOR FINDING THRESHOLDS

CPT for this CI and add a new monitor with a threshold based
on the value discovered in the CPT.
A second possibility is that the threshold associated with an

existing CI contradicts the threshold value of a monitor that al-
ready exists. For example, the CPT associated with this CI in-
dicates the higher likelihood of a fault when the CI values ex-
ceeds a threshold, but the existing monitor is designed to gen-
erate an alarm when the CI value falls below a second threshold.
After careful examination, the domain experts may conclude
that the addition of a new diagnostic monitor defined by the new
threshold helps to improve the detection performance. Using the
example of the threshold for Rolltime in Table II, a new monitor
is defined with the threshold of greater than 34.875 because the
previous Rolltime monitor was designed to generate an alarm
for values less than a threshold value . The earlier
monitor is replaced by the new monitor for online detection and
isolation.
3) Create Super Monitors: If a new relation between an ob-

servational root node and a child node in the TAN structure is
deemed important by the experts, this becomes the basis for de-
veloping a super monitor. The interrelationship among the CIs
implied by the TAN model can be transformed into a new mon-
itor that computes its value across adjoining flights segments.
For example, if the TAN structure showed a possible relation-
ship between monitors in flight segment followed by flight
segment , the causal implications of this could be captured
in a new monitor that fires only when the two original moni-
tors fire in sequence, first for flight and then for flight .
Not only does this super monitor combine the results from other
monitors, but it also indicates cyclic behaviors that again pro-
vide additional diagnostic information not originally captured
by the reference model.

In general, super monitors can model complex interactions
that improve the isolation function of the reasoner. The creation
of a super monitor results in the links from the individual mon-
itors to the failure mode being removed (they remain active for
other failure modes in the original reference model). The new
super monitor uses logic, such as AND and OR to combine re-
sults from the original monitors. Also, a new monitor may be
subsumed into a super monitor relation. As an example, our ex-
perts used the TAN in Fig. 7 and the monitors associated with
Rolltime and dipEGTC, and decided that the combined relation-
ship was strong enough to produce a super monitor that indicts a
fault if and only if, both the monitors for Rolltime and dipEGTC
would indict the fault. Super monitors are likely to improve di-
agnostic accuracy while decreasing the false alarm rate.

D. Validating the Impact of the Expert Updates to Diagnostic
Accuracy

It is imperative to determine if the updates made to the refer-
ence model truly improve the detection time and diagnostic ac-
curacy. Traces generated from the data of the flights leading to
the faulty incident are used as input to the reasoner with both the
original model as well as the updated reference model. Exam-
ining when the reasoner identifies the fault determines whether
the augmented reference model provides sufficient improve-
ments in detecting and isolating the correct fault. An improved
performance implies earlier maintenance decisions therefore,
improved overall safety. The output will either be confirma-
tion of the approved changes, or empirical proof to reject the
changes.

IV. CASE STUDIES

Three case studies demonstrate the effectiveness of our
approach to updating the subsystem reference model for im-
proving diagnostic performance. Domain experts played an
integral role in interpreting the TAN structures derived from
flight data and updating the reference model. A tenfold cross
validation approach along with two standard metrics: 1) the
classification accuracy and 2) the false positive rate were used
to evaluate the TAN models. After updating, the system ref-
erence model was tested along with the reasoner to determine
if it provided an improvement in diagnostic performance, i.e.,
higher accuracy and faster detection time.

A. Case Study 1: Fuel HMA Fault

The FuelHMA fault resulted in engine overheating and even-
tual shutdown. The TAN classifier was derived by comparing
the data from the faulty engine against the three other engines
on the aircraft, which were assumed to operate normally during
the period of 50 flights before the adverse event.
1) Experiment 1: Classification Accuracy of the Generated

TAN Structure: Experiment 1 was used to study the effective-
ness of the generated TAN classifier structure in isolating the
FuelHMA fault condition. The values for the CIs chosen by our
experts, was calculated for 50 flights before the engine shut-
down event. Data from the three aircraft engines that showed
no abnormalities (1, 2, and 4) was labeled as nominal, and the
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TABLE III
ACCURACY, FALSE POSITIVE RATE FROM DIFFERENT DATA SEGMENTS

data associated with engine 3, for which the shutdown incident
occurred, was labeled as faulty.
The average classification accuracy of the derived TAN struc-

tures after running tenfold cross validation was 99.5% with a
.7% false positive rate. This clearly implies that the set of CIs
chosen were appropriate for detecting and isolating the Fuel
HMA fault. As a next step, we checked whether the generated
classification structure was an artifact of engine position, i.e.,
engine three versus the other engines on the aircraft. This re-
quired generating the TAN classifier using training data from
engine 3 (faulty) and one of the nominal engines (engines 1, 2,
or 4). The data from the other two nominal engines was used as
test data. The high classifier accuracy (at or above 90%) for the
test data sets indicated that the TAN structure was not an artifact
of engine position on the aircraft.
2) Experiment 2: Using the TAN Structure to Update the Ref-

erence Model: The domain experts examined the TAN struc-
ture derived in Experiment 1 (Fig. 7). The expert’s attention was
drawn to the relationships between different pairs of CI’s for dif-
ferent phases of the flight, viz.: 1) Rolltime and dipEGTC during
the Shutdown phase and 2) PeakEGTC and startTime during the
Startup phase. The experts reasoned that a likely dependence
between the shutdown phase of flight and the startup of the
next flight, , i.e., an incomplete or inefficient shutdown
for flight created situations where the startup phase of flight

was affected. The expert hypothesized that this cycle of
degradation from previous shutdown to the next startup resulted
in the fault effect growing with each flight, and eventually im-
pacted a number of CIs of the faulty engine. This phenomena
indicated a causal relation that was not captured in the orig-
inal reference model. The experts suggested introducing a super
monitor that combined the CIs associated with a landing and
subsequent takeoff would make the diagnostic reasoner more
sensitive to the fault. But the experts wanted to study the data
further to gain a better understanding of how to express this re-
lationship between monitors evolved over multiple flights.
To address this, we developed a binning procedure where the

50 flights were divided into five bins of ten consecutive flights
each. The data from the ten flights for a binwas used for training,
and the data from the other 40 flights was used as test data.
Additional test data was also generated from flights after engine
three was repaired after the adverse event. Table III shows the
accuracy and false positive rate (FP%) metrics reported for the
five experiments corresponding to five bins of 10 flights each
(for a total of 50 flights). The observation root node, and its
immediate child in the generated TAN structures are listed in
Table IV.
The conventional wisdom is that the accuracy and false pos-

itive metrics will have their best values for the classifiers that

TABLE IV
OBSERVATIONAL ROOT NODE AND IMMEDIATE CHILD NODE FOR

CLASSIFIERS CREATED FROM DIFFERENT DATA SEGMENTS

are generated from data close to the adverse event occurrence,
and performance will deteriorate for the TAN structures derived
from bins that are further away from the incident. The results
showed partial agreement. The bin 1 experiment produced the
highest accuracy and lowest false positive rate, but the next best
result came from the bin 4 data. The high performance of the
TAN in bin 1 meant that the discretization used in the CPTs de-
rived from that bin should be used for threshold updating and
adding any new monitors to the reference model.
While performing this threshold updating, the domain expert

discovered additional information. The expert used the start-
Time CI discretization derived by the TAN algorithm to de-
termine that faster than nominal startTime values produced a
higher probability for the fault. The original monitor for this CI
was based on a greater than relationship threshold for a slow-
Start monitor. This new relation derived from the CPT implied a
new monitor called fastStart could be added to detect the failure
mode. The fastStart monitor, which triggers when the start time
exceeds the threshold specified in the CPT, was added to the en-
hanced reference model.
The results of bin 1 and bin 4 prompted the domain expert

to study the bin 1 to bin 4 TANs more closely. The expert con-
cluded that two CIs, startTime and peakEGTC showed a strong
causal connection in bin 4, and startTime had a high ranking in
the bin 1 TAN. On the other hand, PeakEGTC was the root node
for bins 2 and 3. This study led the domain expert to conclude
that a new monitor that combined startTime and peakEGTC
would further enhance the reference model with better detec-
tion and isolation capabilities for this fault. This new diagnostic
monitor combines information from the newly formed fastStart
monitor and the HighTemp monitor to improve detection of the
fuelHMA fault. To accommodate the super monitor, the connec-
tion from the FuelHMA fault hypothesis to the individual mon-
itors was deleted to avoid redundancy and preserve the Naïve
Bayes structure. Therefore, the updated reference model also
includes improved threshold values for some monitors, as well
as the new super monitor.
3) Experiment 3: Verifying Improvement in Reasoner Perfor-

mance: This experiment verified whether the reasoner perfor-
mance improves with the updated reference model. These re-
sults from the reasoner simulations are shown for the original
reference model in Fig. 8 and the augmented reference model
in Fig. 9. The traces illustrate the reasoner’s inferences through
a progression of flights before the incident occurred. A green
shade on a failure mode indicates that there is a likelihood of
the fault given evidence and the number in the box indicates
the calculated relative likelihood of the fault. A failure mode
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Fig. 8. Trace of the reasoner on the original reference model.

Fig. 9. Trace of the reasoner with the improved reference model.

shaded red, indicates a high likelihood for that hypothesis, and
when the failure mode is marked in bold, “Fuel Metering” in
this case, it indicates that the failure mode has a very high likeli-
hood, and added to a report for the mechanics. In this case study,
the red indicator appeared about 30 flights before the adverse
event, which would give the mechanics plenty of opportunities
to perform maintenance actions and avoid the adverse event.
Verification experiments of this kind are critical not just to estab-
lish the fact that the early detection metric is improved, but also
that the new information does not create side-effects, such as in-
creasing the number of potential diagnostic hypotheses, which
would complicate the mechanics decision making process. In
this case, the expert deemed the verification test a success, and
the updated reference model is accepted as an improved version
of the previous model.

B. Case Study 2: Broken Turbine Blade
The broken turbine bucket blade fault labeled as the HPT

degradation failure mode caused excessive vibration that re-
sulted in an engine shutdown and the aircraft had to make an
emergency landing. This failure, though engine-related, illus-
trates the analysis of a fault that is physically different from the
Fuel HMA failure. We discuss the results of the three experi-
mental steps and additional experiments that were conducted to
show that the false alarm rates remain low when the Fuel HMA
and HPT degradation faults were compared.
1) Experiment 1: This case study used the same CIs as case

study 1 and employed the same tenfold cross validation method
for the 50 flights before the engine shutdown incident. The ex-
periments showed an average accuracy of 92.18% and a false
positive rate of 2.1% for the derived TAN classifier.
2) Experiment 2: The same binning procedure as case study

1 was applied, and the accuracy and false positive values for

TABLE V
ACCURACY AND FALSE POSITIVE RATE FOR CLASSIFIERS CREATED

FROM DIFFERENT DATA SEGMENTS FOR CASE STUDY 2

Fig. 10. TAN structure generated using data from case study 2.

the different bins are listed in Table V. Results from bin 2 were
chosen for updating thresholds and looking for new monitors.
The startTimemonitor indicating a slow start turned out to be the
most important monitor for fault detection and isolation. There
was no overlap between the thresholds for this fault mode and
the Fuel HMA fault. This means that in spite of shared monitors,
there is no ambiguity in determining the fault mode.
The experts found that the TAN structures generated from the

different bins were similar, and, therefore, decided to focus on
the TAN generated from all 50 flights. From the structure shown
in Fig. 10, the experts focused on the connection between res-
dTemp, the residual temperature of the engine at shutdown, and
the peakEGTC,which is the peak temperature of the engine after
startup. The causal direction of this relationship implies that the
residual temperature is causally related to the peak engine tem-
perature. The experts decided that this was most likely a relation
between the resdTemp of flight and the startup temperature in
flight . They used this relation to design a super monitor that
indicts the fault, if and only if, the high temperature monitors
associated with resdTemp of flight , fires, and the high-tem-
perature monitor connected to peakEGTC of flight also
indicts the fault. Therefore, this super monitor captures temporal
information between flights for diagnostic reasoning. Like be-
fore, the updated reference model included updated thresholds
and the new super monitor.
3) Experiment 3: We generated traces by running the rea-

soner on the original (Fig. 12) and the updated reference model
(Fig. 11). Twelve flights before the adverse event occurred,
there were clear indications from the updated reference model
pointing to degradation in the high pressure turbine (HPT).
Typically, HPT degradation will trigger a maintenance request,
and the mechanics use a special camera called a borescope to
visually inspect the damage and determine if the engine should
be removed for maintenance to avoid safety incidents in future
flights. The maintenance procedures replace the broken blade
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Fig. 11. Trace of data from case study 2 with the reasoner using the augmented
reference model.

Fig. 12. Trace of data from case study 2 with the reasoner using the original
reference model.

before the engine is put back into operation. In comparison, the
original reference model reported a bearing failure mode just
before the flight where the adverse event occurred. In this case,
the maintenance crew’s actions would have been triggered by
an incorrect fault hypothesis, therefore, a good chance that the
HPT blades would not be checked before the adverse event
occurred.
While the HPT degradation was hypothesized 12 flights be-

fore the adverse event by the updated reference model, its likeli-
hood increased through subsequent flights and eight flights prior
to the event it was listed as the most likely candidate. However,
another failure mode, fuel nozzle cloggingwas also a high likeli-
hood candidate. Our domain experts surmised that the reasoner
would have generated a maintenance alert about eight flights be-
fore the adverse event, although the fault isolation did not gen-
erate a unique result. However, a borescope inspection triggered
by one of the two highly ranked fault hypotheses associated with
the alert would clearly identify the broken turbine blade.
4) Robustness Experiment: Comparing Fuel HMA and

Broken Turbine Blade Faults: Using the updated reference
models for the two faults, we run a robustness experiment
comparing the performance of one fault against the other. For
the TAN classifier generated using the Fuel HMA data, an
experiment run with the Turbine Bucket Blade (TBB) fault
data produces a no-fault hypothesis with 95.93% accuracy and
a false positive rate of 4.10%. The TBB TAN achieves 85%
accuracy with a false positive rate of 15% when the experiment
is run with the faulty Fuel HMA fault data. This shows that
the Fuel HMA TAN is better tuned to detecting the Fuel HMA
fault without increasing the false alarm rate, but the TBB TAN
is less precise. The experts conclusion after these experiments
was that additional CIs, such as a vibration detector, was
needed to isolate the TBB fault with greater accuracy. This

second case study establishes the generality of our approach
for different faults in the engine subsystem. It also shows that
data-driven robustness analysis helps the experts gain a better
understanding of the nature of the failures and the feature sets
being used to distinguish between those failures.

C. Case Study 3: Fuel Manifold Leak
The fuel manifold leak fault caused an engine shutdown event

in flight, leading to an emergency landing. This failure differs
from the first two in that the cause is not isolated to a specific
subsystem. The fuel manifold includes the fuel lines that supply
two of the four engines of the aircraft, therefore, the manifold
leak should affect the performance of more than one engine.
However, when one looked at the individual enginemonitors the
manifold leak produced effects that are similar to other engine
failures. A direct analysis of the engine CIs would imply faults
in one or more engines. However, our classifier analyses helped
the experts realize that this fault could not be associated with
one of the engine subsystems, and, therefore, required analysis
by the system level diagnoser to isolate the true fault.
1) Experiment 1: Our experiment with the system-level Fuel

Manifold TAN provided an accuracy value of 90.31% and a
false positive rate of 5.4% using tenfold cross validation. A
second experiment with the other two data sets as the test set re-
vealed more about the nature of this fault. The Fuel HMA data
produced a 77.5% accuracy and 22.5% false positive rate. The
broken blade failure scored an accuracy rate of 44.4%. Overall,
the accuracy and false positive rates were weaker than case
studies 1 and 2, which implied that the FuelManifold TAN is not
sufficiently discriminatory in isolating the manifold leak fault
from other engine failures. On further reflection, our experts re-
alized that this failure could not be reliably isolated at the engine
subsystem level.
This case study revealed that the data mining methods are

useful not only for finding additional relations and monitors
to augment subsystem reference models, but they also provide
useful indicators to knowledge engineers and system experts,
when the approach being used is not a good fit for the fault being
analyzed.

V. RELATED WORK

In the past, a number of model- and data-driven approaches
have been developed for aircraft fault diagnoses. However, most
model-based methods have focused on smaller subsystems of
the aircraft, e.g., the work on aircraft sensor and actuator fault
diagnosis using a bank of Kalman filters [25], aircraft avionics
diagnosis using Bayesian Belief Networks [26], and diagnosis
of the cabin pressure outflow valve actuator in the passenger
aircraft using parameter estimation methods [27]. A good re-
view of data-driven methods for diagnostics and prognostics in
aircraft and spacecraft systems appears in [28] and [29]. Exam-
ples of data-drivenmethods for diagnosis include support vector
machines for detecting valve and pump failures using vibra-
tion data [30], neural network methods for predicting remaining
useful life of actuator components [31], and decision tree based
fault detection and classification of solar photovoltaic cells [32].
The above methods have been primarily developed for offline

analyses, and deal with small signal streams as opposed to the
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large volumes of flight data that we have analyzed for improving
existing diagnoser performance for existing aircraft reasoners.
Besides, our focus has been to improve existing monitors, dis-
cover new monitors, and update the aircraft reference models in
ways that the information can be uploaded and used on aircraft
without requiring recertification. In future work, we will extend
our classifier approaches to develop semi-supervised methods
for anomaly detection in aircraft flight.
Our case studies clearly demonstrate that working with our

domain experts to make local changes in existing model struc-
tures improved the accuracy of an existing reference model by:
(1)making relevant evidence more sensitive to specific fault hy-
potheses; 2) discovering new relations between existing moni-
tors and fault hypotheses, and 3) creating new monitors by ex-
ploiting the dependency between existing monitors to provide
stronger support for fault hypotheses. The novelty in our ap-
proach comes from: 1) our data curation methods for selecting
the relevant data and flight segments from the large flight data
set to discover new information for characterizing faults; 2) the
easy interpretation of the structures generated by the learning
algorithm to make it easier for our domain experts to update ex-
isting diagnostic reference models; and 3) the ability to evaluate
the resultant improvements to the diagnostic reasoner quantita-
tive metrics.

VI. CONCLUSION

The data mining method presented in this paper derives
Bayesian TAN classifiers from selected segments of aircraft
flight data, and with the help of domain experts, augments the
existing ADMS reference models to improve overall time to
detection and detection accuracy. Experiment 3 in studies 1
and 2 demonstrated that the knowledge engineering processes
developed not only improved fault isolation capabilities, but
faults could be detected earlier in the flight sequence, thus
aiding mechanics in their maintenance tasks, and contributing
to overall safety by helping to mitigate the occurrence of
adverse events. Case study 3 demonstrated how the classifier
performance alerted the knowledge engineers and experts
by showing that the fault under consideration did not fit the
existing reference model structure. This led the experts to better
understand the nature of the fault, i.e., this was a system-level
fault, and could not be analyzed within a subsystem diagnoser.
It is important to note that this method is developed with the

rarity of failure data in mind. It may be difficult to find enough
data to build a robust classifier that works across a number of
different single faults. As more data on different faults becomes
available, better discretization bounds can be derived from the
TAN CPTs, resulting in more precise thresholds for the condi-
tion indicators. This leads to more accurate and quicker detec-
tion, and less false positive rates in fault isolation.
However, the lack of sufficient data makes the generality of

the classifiers hard to test. Our present approach does not pro-
vide a mechanism to reliably update the conditional probabili-
ties used by the reasoner to rank the potential fault hypotheses.
There is no systematic approach by which the conditional prob-
ability tables (CPTs) from the individual TANs can be trans-
lated into the conditional probabilities of the reference model.

In future, we will study approaches to address these problems.
We will also extend our studies to semi-supervised methods for
anomaly detection that utilize the entire flight data set to find
fault situations not previously discovered by the human experts.
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