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Abstract— Robust and efficient modeling and reachability
analysis of stochastic hybrid systems for control and decision is
very demanding and challenging task. In this paper, we develop
a novel methodology which provides a model of stochastic
hybrid systems based on Gaussian Processes. This model uses
observed data to update the model in an online fashion. In
addition, we provide an efficient reachability analysis method-
ology that utilizes mixtures of Gaussian Processes to predict
the reachable states for a finite horizon. We demonstrate the
efficiency of the proposed approach using a multi-room heating
system. Despite dynamic changes in the system parameters, the
results show that the model can adapt and efficiently predict
the reachable states.

I. INTRODUCTION

Modeling and analyzing complex systems for control and

decision is very important task with several challenges,

especially for systems that exhibit stochastic and hybrid

dynamics known as Stochastic Hybrid Systems (SHS). Para-

metric modeling of many of these complex systems is

very difficult. For instance, the heat exchange parameters in

buildings between several zones and the environment cannot

be easily identified. Further, such systems have continuous

and discrete dynamics coupled with uncertain behavior that

may result in completely different system trajectories, and

therefore, prediction of the system behavior is a difficult task.

Reachability analysis is a typical problem in SHS where

given the initial states, it is necessary to predict the reachable

states for some finite time horizon. Reachability analysis is

used typically to verify system safety and stability. To that

end, different approximation methods have been proposed

to estimate the reachable states for such as polygonal flow-

pipe approximation [1], and ellipsoidal approximation [2].

Optimization techniques such as face lifting [3] have been

also used. Reachability analysis for SHS has additional level

of complexity because of the presence of uncertainty in its

behavior. This problem has been investigated in the literature

through several methods [4]. Methods based on analytical

estimation have been used to solve the reachability prob-

lem, for instance a quadratic form, called Dirichlet forms,

associated with a right-Markov process is used in [5]. Other

approximation methods based on numerical estimations are

also used such as Markov Chain approximations [6] [7], and

dynamic programming [8]. Probabilistic methods based on

randomize algorithms have been considered such as Monte-

Carlo methods [9] and multilevel splitting (MLS) variance

reduction [10]. Finally, statistical methods aim to leverage

available data and are an area of active research [4].

The contribution of this paper is twofold: First, we present

a non-parametric SHS model by utilizing Gaussian Pro-

cesses [11] to represent the continuous dynamics and learn

the model from data. Moreover, the model can be updated

efficiently online during the system execution, and therefore,

it can adapt to dynamic changes in the system parameters.

Second, we propose a methodology for reachability analysis

of SHS using a statistical method based on Mixtures of Gaus-

sian Processes [12] to represent the reachable states for a

finite horizon. We demonstrate the efficiency of the proposed

approach using a multi-room heating system. Despite the

dynamic changes, the results show that the model can adapt

to these changes and predicts efficiently the reachable states.

The paper is organized as follows: Section II summarizes

Gaussian Process (GP) focusing on model learning and

prediction. We describe in section III our proposed SHS

model. Then, in section IV, we illustrate our online learning

algorithm. Also, we discuss the SHS reachability analysis

problem and illustrate our proposed statistical approximation

to solve it. Finally in section V, we discuss the implementa-

tion and evaluation of our method using a multi-room heating

system as an illustrating example.

II. BACKGROUND

A. Gaussian process model

Gaussian Process (GP) is a non-parametric model which

uses the observed data to model the system behavior [11]. A

GP is identified by its mean and covariance functions. The

mean function represents the expected value before observing

any data and the covariance function (also called kernel)

identifies the expected correlation between the observed data.

For a function y = f(x) : x ∈ R
D, the mean function m(x)

and the covariance function k(x, x′) are defined as:

m(x) = E[f(x)],
k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

(1)

Thus, the function modeled by the GP can be written as:

f(x) ∼ GP(m(x), k(x, x′)).
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Typically, we use a zero mean function for simplicity and

squared exponential (SE) covariance kernel for its expres-

siveness combined with a noise kernel. Therefore, the mean

and covariance functions are expressed as:

m(x) = 0,

k(x, x′) = σ2
fexp[−

1

2
(x− x′)TΛ−1(x− x′)]

+ δx,x′σ
2
ω

(2)

where σf is the kernel signal variance, Λ :=
diag([l21, · · · , l2D]) is the characteristic length-scales matrix,

δ is the Kronecker delta, and σω is the noise variance. The

above GP model builds a probability distribution over the

modeled function by mapping n-samples X of a continuous

variable x to a random vector y with a Gaussian joint

distribution, such that:

p(y) ∼ N (0,K(X,X)) (3)

where K is nD × nD covariance matrix generated by (2).

B. GP Model Learning

We define a set of n observations as D = {(xi, yi)|i =
1, ..., n} and Θ := (σf , l

2
1, · · · , l2D, σω) as the GP hyper-

parameters. The learning objective is to identify the model

hyperparameters Θ such that they fit the observed data D.

The model hyperparameters can be learned by evidence

maximization [11], [13], where the hyperparameters Θ are

selected such that the following marginal likelihood (evi-

dence) is maximized.

Θ̂ = argmax
Θ

log p(y|Θ,D)

log p(y|Θ,D) =− 1

2
yTKy − 1

2
log(|K|)− n

2
log(2π)

C. GP prediction at certain input

We are interested in the posterior distribution

p(y∗|X∗,X,y) given test inputs X∗ and training data

(X,y) . After observing data D, and according to (3), the

joint distribution of the known y and the unknown y∗ is:[
y
y∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
.

Therefore, the posterior distribution p(y∗|X∗,X,y) is also

a conditional Gaussian distribution with a mean and a

covariance given by:

E[y∗|y,X,X∗] = KT
∗ β

V ar[y∗|y,X,X∗] = K∗∗ −KT
∗ (K+ σ2

ωI)−1K∗
(4)

where K∗ := k(X,X∗), K∗∗ := k(X∗,X∗), K := k(X,X)
and β := (K+ σ2

ωI)−1y.

D. GP prediction at uncertain input

The posterior distribution shown in (4) is a prediction

model for a given test input X∗. However, this predic-

tion model is not valid if X∗ is defined by a probability

distribution. For instance, if the test input is defined as a

Gaussian joint distribution (i.e. p(X∗) ∼ N (μ∗,Σ∗)), the

GP posterior distribution must be calculated by:

p(y∗) =
∫ ∫

p((y∗|X∗)p(X∗)dy∗dX∗. (5)

The prediction distribution shown in (5) is analytically in-

tractable [14] but we can approximate it as Gaussian (i.e.,

p(y∗) ∼ N (μy,Σy) ) using an approximation method

introduced in [14], such that:

μy = E[y∗|μ∗]

Σy = V ar[y∗|μ∗] +VΣ∗VT + cov[y∗,X∗] + cov[X∗,y∗]
(6)

where E[y∗|μ∗] and var[y∗|μ∗] is the mean and covariance

of the GP posterior calculated at the mean μ∗ of the input

distribution as in (4) and cov[X∗,y∗] is the cross-covariance

between the input and output and it is given by Σ∗V where

V is defined by:

V =
∂μy

∂μ∗
= βT ∂k(X,μ∗)

∂μ∗
III. STOCHASTIC HYBRID SYSTEMS

Stochastic hybrid systems exhibit continuous, discrete, and

probabilistic behavior. In order to model these systems, we

need to identify both the continuous and discrete components

as well as the interaction between them, and abstract their

dynamics using a stochastic process. In this work, we use

Gaussian Processes to model the continuous dynamics and

we consider systems with deterministic discrete dynamics.

To formalize our model, we define Q as the set of discrete

states and denote the continuous state space by R
D. Thus,

the system hybrid state space is defined as

S := ∪q∈Q{q} × R
D.

The continuous dynamics evolves according to a stochastic

process modeled by a GP which depends on the current

discrete mode q ∈ Q. However, the discrete state can

change based on logical conditions described by guards.

Furthermore, we consider systems with two inputs: Control

inputs and external uncontrolled inputs from the system

environment. The control inputs usually govern the tran-

sitions between the discrete states using a control policy

π(S) : S → U which maps the hybrid state space S into the

control input space U . The external inputs v ∈ V affect the

continuous state evolution,and unlike the controlled inputs,

there is no policy that can determine the external input.

Thus, we model the external inputs as time-series model

E : N → V in order to forecast the external inputs value

over time.

A non-parametric SHS model is defined as a tuple H =
(Q, X, Init,U ,V,A,E)

• Q := {q1, q2, · · · , qm}, for some m ∈ N, represents the

discrete state space.

• X is a set of continuous variables in the Euclidean space

R
D.

• Init: B(S)→ [0, 1] is an initial probability measure on

the Borel space B(S) where S := ∪q∈Q{q} × R
D.
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• U ⊂ R
E , for some E ∈ N, represents the control input

space.

• V ⊂ R
F , for some F ∈ N, represents the external

uncontrolled input space.

• A assigns to each discrete state q ∈ Q a function

fq(x, v) = fq(x̂) ∼ GPq(m(x̂), k(x̂, x̂)) modeled by

a GP which defines a probability distribution given a

continuous state x ∈ R
D and an external uncontrolled

input v ∈ V .

• E ⊂ Q × Q is a finite set of edges that represent the

discrete transitions. Each discrete transition is a function

of the current discrete mode q and the control input

value u such that q′ = δ(u, q) where q′ ∈ Q is the new

discrete mode.

For a finite time horizon [0, N ], a system trajectory is denoted

by {s(k) = (q(k), x(k)), k ∈ [0, N ]} which is an execution

of H, with a control policy π(S). A discrete-time execution

algorithm of H is shown in Algorithm 1.

Algorithm 1 Discrete-time SHS execution algorithm

State Initialization: s(0) = (q(0), x(0)) ∈ Init
k ← 0

while k < N do
� Calculate the control input u(k):
u(k)← π(s(k))
� Forecast the external input v(k):
v(k)← E(k)
� Update the discrete mode q(k + 1):
q(k + 1)← δ(q(k), u(k))
� Update the continuous state x(k + 1):
x(k + 1)← fq(k+1)(x(k), v(k)) ∼ GPq(k+1)

k ← k +1

end while

IV. ONLINE LEARNING AND REACHABILITY ANALYSIS

Reachability analysis aims at predicting the set of reach-

able states for a finite time horizon. Prediction can be

performed as an iterative process since s(k + 1) depends

on s(k). However, it is a challenging task because: (1)

Predicting the continuous state x(k+1) distribution requires

prediction at an uncertain input since x(k) is identified by a

probability distribution. Also, the continuous state x(k + 1)
evolves differently for each discrete state q(k); (2) the

discrete mode q(k + 1) is calculated as discrete random

distribution given the probability distribution of s(k); and

(3) the system trajectory depends on switching times between

discrete states.

The proposed approach consists of three steps: (1) Collect

data from the system; (2) Learn the system model H and the

external input (forecast) model E(k) using evidence maxi-

mization; and (3) Perform reachability analysis algorithm to

predict the system behavior using the updated models. These

steps are repeated periodically in an online fashion as shown

in figure (1).

The observed data consist of the hybrid state, the control

input, and the external input. Since the SHS model has a

Fig. 1. Flow chart of the proposed approach

distinct GP model for each discrete state q ∈ Q, the data is

separated for each discrete mode such that:

∀q ∈ Q,Dq = {(x̂i,yi) : i = 1, · · · ,mq}
where

x̂ =[x(k), v(k)],

y =x(k + 1),

q(k + 1) =q

During the system execution, we keep all data sets to be of

size M such that
∑

q mq = M . The data set associated with

the forecast model E(k) is defined as DE = {(k, v(k)) :
k = 1, · · · ,M} with also a size M . Upon collecting new

data, we updated the data sets {Dq : q ∈ Q} and DE , then

we re-learn the SHS model H and the forecast model E(k)
respectively.

A. Mixtures of Gaussian Process for Reachability Analysis

We represent the reachable states of H using Mixtures of

Gaussian Processes (MGP) [12]. An MGP consists of a latent

discrete variable, typically called gating network, and a set

of GP functions, called the experts. The state of the discrete

variable specifies the GP function which used to calculate the

system output at a given input. The MGP model is expressed

as:

P (y|x) =
L∑

i=1

P (z = i|x)GPi(mi(x), ki(x, x)) (7)

where y is the output, x is the input, z is the discrete

latent variable with L states and GPi is the GP function

corresponding to the discrete state z = i. In our problem, we

want to predict the probability of the continuous state x(k+1)
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given the probability of the hybrid state s(k) = (x(k), q(k)).
Hence, the MGP latent discrete variable represents the dis-

crete state of the SHS model and the experts are the GP

functions for each discrete state. Therefore, one-step state

prediction model can be written as:

P (x(k + 1)|s(k)) =
m∑
i=1

P (q(k + 1) = i|s(k))fi(x(k), v(k))
(8)

where fi(x(k), v(k)) ∼ GPi(mi(x̂), ki(x̂, x̂)) and x̂ is the tu-

ple (x, v). Reachability analysis requires to perform a multi-

step prediction. To do so, we need to apply (8) iteratively.

However, this equation depends on p(x(k)) calculated from

the previous iteration where it was calculated as Gaussian

mixture model:

p(x(k)) =
C∑

j=1

wjN (μj ,Σj) (9)

where C is the number of Gaussian distribution components

in the mixture, wi is the weight of ith Gaussian component

with
∑C

i=1 wi = 1, and μi,Σi is the mean and the variance

of ith Gaussian component respectively.

Therefore, calculating P (x(k + 1)|s(k)) iteratively from

equation (8) is analytically intractable because the input of

the MGP prediction model in (8) is uncertain (i.e. represented

by Gaussian mixture model) as shown in (9). Therefore, we

instead approximate the predictive model by propagate each

mixture component in p(x(k)) independently. The weight

of each of those components along with its probability of

switching to/staying in a discrete mode are used to calculate

the new discrete state probability, hence, the approximated

predictive distribution is defined as:

P (x(k + 1)|s(k)) =
Q∑
i=1

C∑
j=1

wjP (q(k + 1) = i|xc(k), qc(k))f̃i(xc(k), v(k))
(10)

where xc is the jth Gaussian component of p(x(k)) with

weight wj , mean μj and variance Σj , qc(k) is the discrete

mode of the jth Gaussian component, and f̃(.) is its approx-

imation GP function fi defined in (6). Algorithm 2 illustrates

the prediction of the reachable states of the SHS iteratively

based on (10).

The prediction algorithm is computationally efficient and

can be performed online. The most expensive part is com-

puting the inverse covariance matrix which requires O(n3)
time where n is the size of the data.

V. BENCHMARK EXAMPLE: MULTI-ROOM HEATING

SYSTEM

This section illustrates the implementation of the proposed

model and methodology using a multi-room heating sys-

tem that has been proposed as benchmark for reachability

analysis [15]. The multi-room heating system comprises h
rooms where each room has its own heater and user setting.

Additionally, each room is affected by its adjacent rooms

Algorithm 2 Discrete-time SHS state prediction

Input: s(0), N
Output: p(s(k)) for k ∈ [1, N ]

k ← 0

while k < N do
� Forecast the external input at time k

v(k)← E(k)
for each sc(k) ∈ s(k) do

for each q ∈ Q do
� Calculate the discrete probability distribution

p(q(k + 1) = q|xc(k))← p(π(sc(k)) ∈ Ge)
� Calculate the new weight

Wnew ← p(q(k + 1) = q|xc(k))× wc

if Wnew > δw then � To ignore component

with small probability

xc(k + 1)← f̃q(xc(k), v(k))
add [xc(k + 1), Wnew, q] to x(k + 1)

end if
end for

end for
k ← k +1

end while

and the ambient temperature. The discrete state represents

the heater mode qi = {ON, OFF} for each room and the

continuous state is the rooms temperature xi : i ∈ h. The

continuous state xi for each room evolves according to the

following stochastic difference equation [8]:

xi(k + 1) = xi(k) + bi(xa(k)− xi(k))

+
∑
i �=j

aij(xj(k)− xi(k)) + ciIQi
(qi(k))

+ ωi(k)

(11)

where xa(k) is the ambient temperature at time k, IQi
(·) is

the indicator function of set Qi = {(q1, · · · , qh) ∈ Q : qi =
ON}, bi is non-negative constant representing the average

heat transfer rate from room i and the ambient xa, aij is

non-negative constant representing the average heat transfer

rate from room i and room j, ci is non-negative constant

representing the heat rate supplied to room i by the heater

ωi is a Gaussian noise disturbance in room i.
The discrete transition function represents the heater oper-

ation using a typical controller where each room is controlled

independently from the other rooms. The controller switches

the heater on if the temperature gets below a lower threshold

xl, and switches the heater off if the temperature exceeds

upper threshold xu. Formally, the control policy can be

described by:

π(s(k)) =

{
0 if q(k) = ON & x(k) >= xu
1 if q(k) = OFF & x(k) <= xl

(12)

The parameters (i.e. xa, bi, aij and ci) in the multi-room

heating system are hard to model for several reasons. They

differ from building to building (e.g., different geometry and

materials) and they may change during the system operation
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either abruptly (e.g., open window or door) or slowly because

of aging. As a result, it is very hard to identify a parametric

model of the system.

Our proposed method uses sensory data to learn a non-

parametric SHS model of the system. Also, the system model

can be updated online in a periodic fashion, and then, used to

analyze the behavior by computing the reachable states. We

consider the ambient temperature as the external uncontrolled

input of the system v(k) = xa(k) ∈ R, the controller

as the control policy u(k) = π(s(k)) ∈ {0, 1}, the room

temperature vector as the continuous variable x(k) ∈ R
h, and

the heater state as the discrete state Q = {q1, q2, · · · , qh} =
{ON, OFF}h.

To evaluate our approach, we implemented a system with

two rooms (i.e. h = 2), and therefore, four discrete states.

For each discrete state q ∈ Q, the continuous state evolves

according to

x(k + 1) = x(k) + Δx(k)

Δx(k) = fq(x(k), xa(k))
(13)

where each mode q function fq(.) ∼ GPq is modeled as a GP

described in (1 -3). The control input u(k) = π(s(k)) defines

the guards for the discrete transitions. The uncontrolled

external input is defined as v(k) = xa(k) = E(k), where

E(k) is a time-series model of the ambient temperature. We

model E(k) using a GP model introduced in [16] to forecast

v(k).
We have implemented the approach using Matlab. We

use the parametric model shown in equation (11) with the

following parameters: b1 = 0.4, b2 = 0.45, a12 = a21 =
0.5, c1 = 25, c2 = 27, and ωi ∼ N (0, 5) to represent

the physical system and to gather data from. We generate

data with a time-step of 1 min and we collect data for 6

hours to learn our models (i.e., M = 360). Our goal is to

predict the system behavior every hour for the next one hour

(i.e., N = 60). We train the model using the first 6 hours

simulation data, then apply the online approach to predict

the system behavior for the next hour. Next, we generate

the data for the predicted hour and re-learn the model. We

repeat these periodic 1-hour predict/learn steps for 10 hours.

To emulate changes in the system parameters, we change

the heat transfer rate with the ambient (i.e. bi parameters) in

the second hour to be b1 = 0.8 and b2 = 0.6. In order to

evaluate the advantages of online learning and reachability

analysis, we also implement the prediction without updating

the models online. In other words, we learn the model once

offline using the initial training data of six hours only.

To evaluate the prediction accuracy, we use the following

weighted mean absolute error (WMAE) metric:

WMAE =
1

N

∑
k

(
1

C(k)

C(k)∑
c=1

(|xm(k)− μc(k)| × wc(k)))

where C(k) is the number of Gaussian components at time k,

xm(k) is the real system measurement at time k, and μc(k)
and wc(k) is the mean and weight of Gaussian component

c at time k respectively.

The proposed approach is able to generate a statistical

distribution of the reachable SHS states. Figure (2) shows

the prediction distribution of the discrete mode, room 1

temperature, and room 2 temperature for the fourth hour of

the system operation. On the other hand, Figure (3) shows

also the prediction distribution using the model learned

offline. The results in (2) show that the online algorithm

tracks the system changes (i.e. the increase in heat leak)

and manage to predict that the system requires more time to

heat the room as the first discrete transition occurs around

t = 15min. On the other hand, the offline approach was not

able to adapt to this change and predicted the first discrete

transition occurs around early (i.e. t = 10min.).

Fig. 2. Prediction distribuiot of hybrid state of the fourth hour using online
learned model

The WMAE error for both online and offline models is

shown in figure (4) for the ten hours of system operation.

The results show that the error is keep decreasing as the

model aggregates more data.

The average execution time of the learning and reacha-

bility analysis algorithms are 7.1 and 4.7 sec respectively.

Finally, Figure (5) illustrates the accuracy of our reachability

analysis MGP approximation by comparing with sample

trajectories generated by Monte-Carlo simulation from the

parametric model (11).

VI. CONCLUSION

In this paper, we introduced a data-driven SHS model and

present an online learning approach using Gaussian Process.

Also, we infer a statistical distribution of the model reacha-

bility states for a finite-horizon using Mixtures of Gaussian

Processes. We illustrate the approach using a multi-room

heating system benchmark. The results show the capability of

our approach to adapt to system changes and to approximate
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Fig. 3. Prediction distribuiot of hybrid state of the fourth hour using offline
learned model

Fig. 4. WMAE Error for the 10 hour prediction for both Online and Offline
learned model

the reachable set with a good accuracy and efficiency. Our

future work focuses on extending the method of decision

making based on optimal control.
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