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Resilient First-Order Consensus and Weakly Stable,
Higher Order Synchronization of Continuous-Time
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Abstract—Local interaction rules for consensus and synchro-
nization are vital for many applications in distributed control of
cyber-physical systems. However, most research in this area as-
sumes all nodes (or agents) in the networked system cooperate. This
paper considers local interaction rules for resilient first-order con-
sensus and weakly stable, higher order synchronization whenever
some of the agents in the network are Byzantine-like adversaries
defined in a continuous-time setting. The normal agents have iden-
tical dynamics modeled by continuous-time, linear, time-invariant,
weakly stable systems. Agents in the networked system influence
one another by sharing state or output information according to
a directed, time-varying graph. We present a resilient consensus
protocol as well as dynamic state and output feedback control laws
for the normal agents, to achieve the resilient consensus and syn-
chronization objectives, respectively. We characterize the required
network topologies using the property of network robustness. We
demonstrate the results in simulation examples to illustrate the
resilient synchronization output feedback control law.

Index Terms—Adversary, Byzantine, consensus, distributed al-
gorithms, resilience, robust networks, synchronization.

I. INTRODUCTION

R ECENTLY, local interaction rules have received great at-
tention for application to distributed control of multiagent

systems, and generally, cyber-physical systems (CPS). Many
fundamental problems in distributed control of CPS can be
reduced to an underlying consensus or synchronization frame-
work, including formation control [1]–[3], distributed optimiza-
tion [4], sensor fusion [5], distributed estimation [6]–[8], clock
synchronization [9], and synchronization of the electric power
grid [10], among others.

The consensus objective requires that the agents in the net-
work achieve agreement on a certain state variable or set of state
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variables. Often agreement on the average, mean, or some other
function of the state variables is desired [11]. First-order con-
sensus involves integrator agents (in continuous-time setting),
where convergence to a point in the state space is expected.
Higher order consensus involves convergence to agreement of
the state variables, which may be a specific point in the state
space, or may be a time-varying trajectory [12], [13]. Often, con-
vergence to a common, time-varying state trajectory is referred
to as synchronization [14], which is the terminology adopted in
this paper. A related problem to consensus in the literature is
consensusability, which considers whether there exists a proto-
col that can achieve consensus given the dynamic model of the
agent and the communication topology [15].

One of the major challenges in consensus or synchronization
in networked multiagent systems is the hybrid dynamics that
result from complex and dynamic interaction topologies (due to
intermittent network link failures, mobility of the agents, or en-
vironmental factors). The continuous agent dynamics combined
with the discrete dynamics of the switching network topologies
results in a switched system.

Another major concern in networked multiagent systems is
security. One approach to security is to improve the barriers
to entry, such as the cryptographic techniques [16]. Another
approach is to improve the resilience of the application layer
protocols, such as the consensus and synchronization algorithms
so that even in the event of an attack in which some nodes are
compromised, the remaining uncompromised nodes (or normal
nodes) are still able to achieve their objective (or perhaps a
relaxed version of the objective).

A. Contributions

In this paper, we introduce a relaxed first-order consensus
problem for the case when an unknown subset of nodes in the
network are adversaries, which we call the resilient asymp-
totic consensus (RAC) problem for continuous-time agents. We
describe a consensus protocol, referred to as the adversarial
resilient consensus protocol (ARC-P) with parameter F . The
focus on the consensus results of this paper is to characterize
the structure of the network topology necessary and sufficient
to achieve RAC in the presence of adversary agents.

The adversary agents considered in this paper are similar to
Byzantine nodes, studied in fault-tolerant, distributed comput-
ing [17], which may behave arbitrarily within the confines of the
model of computation. In the literature, it is commonly assumed
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there are at most F Byzantine nodes in the network, which is
an assumption we adopt. Each Byzantine node is allowed to be
duplicitous, and can share different information with different
neighboring nodes at a point in time (or round).

However, this assumption is not as reasonable in networked
multiagent systems since often the network is based in wireless
communication, where the channel is shared among the neigh-
boring nodes. The “network” may also arise from measuring
relative distances, such as in a robotic or vehicular network.
Also, the models of computation of distributed computing are
all discrete in nature; hence, time continuity is not a concern
with Byzantine nodes.

In a continuous-time setting, with a switched system model,
we must be concerned about continuity even for a well-formed
solution. Any solution to a switched system without impulse ef-
fects has an absolutely continuous state trajectory [18], which is
in turn uniformly continuous. The signals transmitted by agents
in this paper are one or more of the following: 1) system states,
2) observer states, or 3) controller states. The model governing
each of these quantities is a switched system without impulse
effects, which is the model of computation inherited by the
Byzantine-like adversary. Thus, in order to adapt the Byzantine
node to the switched system model of the networked multiagent
system, we assume the following: 1) all transmitted signals are
uniformly continuous functions of time (including states, ob-
server states, etc.),1 2) each adversary node conveys the same
information to each out-neighbor in the network at any given
point in time, and 3) there are at most F adversary nodes in the
network.

A Byzantine-like attack model for a continuous-time setting
is interesting and suitable for modeling attacks on CPS. CPS
are characterized by complex dynamics, where the continuous
dynamics are highly coupled and influenced by discrete fac-
tors, including the computation and communication approaches
taken in the implementation. A node that is Byzantine, as we
have outlined in continuous time, models nearly any type of
attack on a node. Attacks on sensor or actuators will cause the
node under attack to behave erratically, which is a special case
of a Byzantine-like node. Similarly, a false data injection attack
from the network would cause the node to make incorrect deci-
sions, but still satisfy the assumptions of our model. However, it
is important to emphasize that a node under attack is considered
to be an adversary. Also, a Byzantine attack model does not
capture attacks on the network itself, such as denial-of-service
(DoS) attacks or jamming attacks.

We study resilient consensus in both time-invariant and time-
varying networks. For time-invariant networks, we provide a
necessary and sufficient condition on the network topology,
based on the concept of network robustness [19], and show
that RAC is achieved in the presence of the Byzantine-like ad-
versary nodes. For time-varying networks, we require a uniform
dwell-time assumption and provide a sufficient condition on
the network robustness over time, asymptotically, in order to

1Since continuous functions are uniformly continuous on any finite interval,
this technical assumption is not practically much more restrictive than assuming
pointwise continuity.

achieve RAC. This sufficient condition allows for the network
to be poorly connected or even disconnected most of the time
over any finite time interval, as long as it is sufficiently robust
infinitely often, asymptotically.

The RAC problem studied here is a continuous-time analogue
to the discrete-time RAC problem analyzed in [19]. Likewise,
ARC-P with parameter F is the continuous-time analogue to
the W-MSR algorithm studied in [19]. The contribution of the
RAC results of this paper lie in the subtlety of analyzing a
Byzantine-like adversary in a continuous-time setting, where
the continuous variation of the trajectories in the worst case is
more difficult than in discrete time where the trajectories are
only defined at discrete instances of time.

In this paper, we also introduce a resilient asymptotic weakly
stable synchronization (RAWSS) problem for the case when
the normal agents are weakly stable, linear time-invariant (LTI)
systems (meaning all eigenvalues are in the left-half plane and
any eigenvalues on the imaginary axis must be nondefect). The
goal is for each normal agent to asymptotically synchronize to
a common, safe, and stable zero-input solution of the system
despite the influence of adversary agents. Resilient synchro-
nization controllers are designed for the case of full-state and
output feedback. In the case of output feedback, a Luenberger
observer is used to construct an estimate of the full state. The
synchronization controllers make use of ARC-P as a consen-
sus filter in such a way that the network topological conditions
described in the resilient consensus results also apply to the
RAWSS results. We provide a simulation example of a network
of two-mass, two-spring systems under an actuator attack to
illustrate the synchronization controllers.

B. Related Work

The research most closely related to this paper is the first-
order resilient consensus results of [19]–[25], the second-order
resilient consensus results of [26], and the synchronization re-
sults of [14] and [27]. In [19], [23], and [26], resilient con-
sensus results are given under a discrete-time model. In [20]–
[22], [24], and [25] resilient consensus results are given under a
continuous-time model, similar to this paper; however, the suffi-
cient condition on the time-varying network is much less general
in [20]–[22] and [25] than Assumption 2 in this paper. Also, [25]
assumes at most a specific fraction of neighboring nodes are ad-
versary nodes, which requires a fractional notion of network
robustness, and which has a significant gap between necessary
and sufficient conditions on the time-invariant network consen-
sus results. In [24], a resilient first-order consensus algorithm is
analyzed in a time-invariant network under quantized communi-
cation. Resilient synchronization for more general LTI systems
is not addressed in [19]–[25].

In [14], synchronization of identical linear systems is studied
under similar assumptions on the normal agents described here.
However, in [14], it is assumed that all agents cooperate in the
synchronization process (i.e., all agents are normal). Here, we
address resilient synchronization. Finally, the sufficient condi-
tion on the time-varying network in [27] is less general than
Assumption 2. Specifically, in [27], it is required that each
network at any point in time beyond a finite time t0 must be
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sufficiently robust, which is unrealistic in mobile ad hoc net-
works. Assumption 2 relaxes this requirement so that the net-
work may even be disconnected much of the time.

The resilient synchronization control laws described here bor-
row ideas from [14]. The most important one is the reduction of
synchronization to consensus by an appropriate change of vari-
ables involving the matrix exponential. The matrix exponential
is used only in the analysis of the synchronization control laws
of [14], whereas the matrix exponential is explicitly used in our
control laws in order to decouple the modes of the LTI system
before applying the piecewise linear resilient consensus filter
ARC-P.

The research studying detection [28] and identification of
malicious nodes [29]–[31] is related to this paper because similar
adversary models are assumed. The approach in these works
is to examine the behavior of nodes in the network to infer
whether they must be misbehaving. Once isolated, the influence
of the offending nodes may be removed. These approaches are
computationally expensive and require special knowledge of the
network topology in the algorithms. The detection technique of
[28] is computationally efficient, but is not able to identify the
misbehaving agents or reverse the negative effects caused.

There is a long history of research in resilient clock synchro-
nization within the distributed computing literature [32], and
progress is still being made [9]. Resilient consensus algorithms
are often used in the process of clock synchronization, but the
consensus process is on a set of logical clock values, which
are decoupled from the underlying hardware that comprise the
physical oscillators. The authors are unaware of any work on
resilient synchronization of phase-locked loops, for example.

The rest of this paper is organized as follows. Section II de-
fines the system model, the normal agent dynamics, the ad-
versary model, and problem formulations. Section II-D de-
scribes the ARC-P with parameter F , which is used for the
resilient consensus and synchronization results. Section II-F
gives the definitions of network robustness needed for the main
results. Section III provides the resilient consensus results and
Section IV describes the resilient controllers and provides the
analysis showing the resilience of the control laws to the in-
fluence of the adversaries. A simulation example is given in
Section V to illustrate the utility of the synchronization con-
trollers. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a time-varying network modeled by the finite,
simple directed graph (i.e., digraph) D(t) = (V, E(t)), where
V = {1, ..., n} is the node (agent) set and E(t) ⊂ V × V is
the directed edge set at time t. Without loss of generality,
the node set is partitioned into a set of N normal agents
N = {1, 2, . . . , N} and a set of M adversary agents A =
{N + 1, N + 2, . . . , n}, with M = n − N ≤ F . It should be
emphasized that this scheme for indexing is unknown to the nor-
mal agents; it is introduced for notational convenience. Each di-
rected edge (j, i) ∈ E(t) indicates that node i can be influenced
by node j at time t. In this case, we say that agent j conveys infor-
mation to agent i. The sets of in-neighbors and out-neighbors of

node i at time t are defined by N in
i (t) = {j ∈ V : (j, i) ∈ E(t)}

and N out
i (t) = {j ∈ V : (i, j) ∈ E(t)}, respectively, while the

number of in-neighbors is given by the in-degree of node i at
time t, di(t) = |N in

i (t)|. The set of all digraphs on n nodes is
denoted by Γn = {D1 , . . . ,Dd}.

The time-varying topology of the network is governed by
a piecewise constant switching signal σ : R≥0 → {1, . . . , d}.
At each point in time t, σ(t) dictates the topology of the net-
work, and σ is continuous from the right everywhere. In or-
der to emphasize the role of the switching signal, we denote
Dσ (t) = D(t). Note that time-invariant networks are represented
by simply dropping the dependence on time t.

A. Normal Agent Dynamics and Notation

The normal agents are assumed to be identical. Each normal
agent i ∈ N has state xi ∈ Rm , control input ui ∈ Rr , and
output yi ∈ Rs . The dynamics of each normal agent i ∈ N is
given by the LTI system

ẋi = Axi + Bui (1a)

yi = Cxi. (1b)

The state xi(t) ∈ Rm of normal agent i ∈ N at time t has
components xi,1 , xi,2 , . . . , xi,m . Similarly, its output yi(t) ∈
Rs has components yi,1 , yi,2 , . . . , yi,s . The components of the
state and output of adversary agent j ∈ A are defined similarly.

B. Adversary Model

The adversary agents studied in this paper satisfy the follow-
ing definition.

Definition 1 (F -Total Malicious Model): An agent k ∈ A is
a malicious adversary (or just malicious node) if it is omniscient,
and satisfies the following:

1) agent k conveys uniformly continuous signals to out-
neighbors in the time interval over which the directed
edge exists;

2) agent k conveys the same signals to all out-neighbors at
any point in time;

3) there are at most F malicious adversaries in the network.
Other than these limitations, there are no further constraints

placed on the adversary agents. Hence, this adversary model
is similar to Byzantine nodes, which have been studied in dis-
tributed computing [17], [33], communication networks [34],
[35], and mobile robotics [36]–[38].

C. Resilient Asymptotic Consensus Problem

The RAC problem is a continuous-time analogue to
the Byzantine approximate agreement problem [17], [39].
Consensus—as studied here, in the RAC problem—requires
agreement to a point in the state space. We focus on first-order
consensus, where the agents have decoupled integrator dynam-
ics. Hence, for consensus the LTI system model of (1) simplifies
to A = 0 and B = C = I .

For the definition, we consider the intervals It,k defined by
the kth component of the states of the normal nodes at time t as



1222 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

follows. Let It,k = [mN ,k (t),MN ,k (t)], where

mN ,k (t) = min
i∈N

{xi,k (t)} and MN ,k (t) = max
i∈N

{xi,k (t)}

are the minimum and maximum values, respectively, of the
kth component of the states of the normal nodes at time t.
Then, for each t we define the m-dimensional orthotope (or
hyperrectangle) Ht,N constructed from the intervals It,k by

Ht,N = It,1 × It,2 × · · · × It,m .

Definition 2: The normal agents are said to achieve RAC in
the presence of adversary agents (given a particular adversary
model) if

1) ∃Lk ∈ R such that limt→∞ xi,k (t) = Lk for all i ∈
N , k = 1, 2, ...,m;

2) xi,k (t) ∈ I0,k = [mN ,k (0),MN ,k (0)] ∀t ∈ R≥0 , i ∈ N ,
k = 1, 2, ...,m

for any choice of initial states xi(0) ∈ Rm , for i ∈ N .
The RAC problem is defined by two conditions, agree-

ment and safety, along with the type of adversary considered.
Condition 1) in Definition 2 is an agreement condition that re-
quires each of the states of the normal agents to converge to
a common limit, despite the influence of the adversaries. It is
important to explicitly require that the limit exists because in
the terminology of this paper, consensus requires agreement on
a specific value not changing with time. The safety condition
in 2) is motivated by the validity condition of the Byzantine
approximate agreement [17], [39]. The definition ensures that
the values chosen by each normal agent lies within the range of
“good” values. This is applicable in safety critical applications
in which H0,N is a known safe set.

D. Resilient Consensus Algorithm

Since first-order consensus is applicable to normal agents with
integrator dynamics (i.e., A = 0, B = C = I), we describe the
ARC-P with parameter F for the case of scalar states xi(t) ∈ R.
For vector states, simply apply the right-hand side of (2) to
each component in the state vector. ARC-P simply sorts the
values xj (t) from neighbors and removes up to F of the largest
and smallest values from consideration. More precisely, if there
are less than F values strictly larger than the normal node’s
own value, xi(t), then the node removes all of those values.
Otherwise, it removes exactly the F largest values. Likewise,
if there are less than F values strictly smaller than the normal
nodes’ own value, then it removes all of those values. Otherwise,
it removes exactly the F smallest values. Let Ri(t) denote the
set of neighbors whose values are removed by normal node i at
time t. Then, ARC-P applied as the control input ui of (1a) to a
scalar integrator agent is given by

ẋi(t) = ui =
∑

j∈N in
i (t)\Ri (t)

w(j,i)(t) (xj (t) − xi(t)) (2)

where the weights w(j,i)(t) are positive valued, piecewise con-
tinuous, and uniformly bounded (i.e., 0 < α ≤ w(j,i)(t) ≤ β).
A simple valid selection is to choose all weights to be one.

E. Resilient Asymptotic Weakly Stable Synchronization

Synchronization is similar to consensus in the sense that the
states of the normal agents should asymptotically agree. How-
ever, synchronization does not require that the states of the
agents be static in the absence of input. Hence, the notion of
agreement for synchronization is defined in terms of conver-
gence to a common zero-input trajectory of the LTI system
model, rather than convergence to a common limit. We are
specifically interested in both stable and safe zero-input trajec-
tories, which leads to the definition of RAWSS.

Definition 3: Suppose the normal agents are identical LTI
systems described by (1) and have initial states xi(0) ∈ Rm , for
i ∈ N . Let S0,N ⊂ Rm be a safe set that contains the ortho-
tope H0,N ; i.e., H0,N ⊆ S0,N . Then, the normal agents are said
to achieve RAWSS in the presence of adversary agents (given
a particular adversary model) if there exists a safe and stable,
zero-input solution x0(t) that satisfies ẋ0(t) = Ax0(t) for al-
most all t ∈ R≥0 with x0(0) ∈ S0,N , such that the normal states
asymptotically converge to x0 ; i.e.

lim
t→∞ ||xi(t) − x0(t)||2 = 0 ∀i ∈ N . (3)

A few remarks are in order with respect to the RAWSS prob-
lem. First, because the normal agents converge to a zero-input
trajectory of the system, it is important that the system has no
unstable modes. However, it is possible that the system matrix
A is the result of local stabilization through an appropriate feed-
back controller so that the system in (1) is in fact a closed-loop
feedback control system. Regardless of whether (1) defines the
dynamics of a plant or a feedback control system, the control
input ui is viewed as the feedback control input from the multia-
gent network. Also, observe that the zero-input trajectory x0(t)
to which the normal agents must converge satisfies the safety
condition x0(0) ∈ S0,N . The safety condition requires that the
adversary agents are not able to drive the normal agents to follow
a zero-input trajectory with an unsafe initial state.

F. Network Robustness

Network robustness is a property of graphs formalizing the
notion of sufficient redundancy of directed edges between sub-
sets of nodes in the graph. For its definition, we require the
following concept [19].

Definition 4 ((r, s)-Edge Reachable Set [19]): Given a non-
trivial digraph D and a nonempty subset of nodes S, we say that
S is an (r, s)-edge reachable set if there are at least s nodes in
S with at least r in-neighbors outside of S, where r, s ∈ Z≥0 ;
i.e., given X r

S = {i ∈ S : |N in
i \ S| ≥ r}, then |X r

S | ≥ s.
Edge reachability is used to define the global property of

robustness, which essentially places lower bounds on the edge
reachability properties of any pair of nonempty, disjoint subsets
of nodes [19].

Definition 5 ((r, s)-robustness [19]): A nonempty, nontriv-
ial digraph D = (V, E) on n nodes (n ≥ 2) is (r, s)-robust,
for nonnegative integers r ∈ Z≥0 , 1 ≤ s ≤ n, if for every pair
of nonempty, disjoint subsets S1 and S2 of V at least one of
the following holds (recallX r

Sk
= {i ∈ Sk : |N in

i \ Sk | ≥ r} for
k ∈ {1, 2}):
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Fig. 1. Illustration of a (2, 3)-robust graph.

1) |X r
S1
| = |S1 |;

2) |X r
S2
| = |S2 |;

3) |X r
S1
| + |X r

S2
| ≥ s.

By convention, if D is empty or trivial (n ≤ 1), then D is (0,
1)-robust. If D is trivial, D is also (1, 1)-robust.

To illustrate network robustness, consider the (2, 3)-robust
graph of Fig. 1. The main idea of (2, 3)-robustness is that be-
tween any two nonempty, disjoint pairs of subsets of nodes, there
should be at least three nodes with at least two in-neighbors out-
side its set. This is captured by condition 3) of Definition 5
and illustrated by the choice of subsets shown in Fig. 1(a),
where there are four (≥ 3) nodes in S1 ∪ S2 with at least two
in-neighbors outside their set (nodes 2–5).

However, it is possible to choose subsets for which the main
idea of condition 3) cannot be true. For example, for the subsets
of Fig. 1(b), there cannot be three nodes with at least two in-
neighbors outside its set. Instead, all of the nodes in one of
the sets has at least two in-neighbors from outside, which is
illustrated by the singleton containing node 3 in Fig. 1(b), and
captured in conditions 1) and 2) of Definition 5. Conditions 1)
and 2) provide symmetry so that it does not matter which subset
is labeled as S1 or S2 .

Robust graphs tend to require high connectivity for large
values of r and s; however for small values, the connectivity
is not too large. For example, all digraphs with a rooted out-
branching are (1,1)-robust. Also, proximity graphs will tend to
be (2, 2)-robust as long as the spatial distribution of the nodes is
not too great in comparison to the communication radius (and
there are no isolated nodes). We note that the minimum in-degree
of an (F + 1, F + 1)-robust digraph is 2F . In [19], it is shown
that the preferential attachment model of scale-free networks
may be used to construct large robust networks from smaller
ones. Moreover, in the limit of node size, robust networks share
many qualities of random and complex networks [40].

G. Technical Assumptions

Several technical assumptions are given as follows that are
used in the results of Sections III and IV.

Assumption 1: Each adversary state trajectory, xk (t) for
k ∈ A, must be uniformly continuous. Hence, for each ν > 0,
there exists δk (ν) > 0 such that |xk (t1) − xk (t2)| < ν when-
ever |t1 − t2 | < δk (ν). Define δ(ν) = mink∈A{δk (ν)}.

Assumption 2: Given a time-varying network modeled by
Dσ (t) = (V, E(t)), let {tj} denote the switching times of σ(t)
and assume that tj+1 − tj ≥ τ for all j. Then, either 1) there
exists an infinite subsequence of switching times {t′j} ⊆ {tj}
such that Dσ (t ′j ) is (F + 1, F + 1)-robust, or 2) if ∃t′j such that
D(t) = D(t′j ) is (F + 1, F + 1)-robust ∀t ≥ t′j .

Assumption 3: System matrix A has all nondefect eigenval-
ues on the imaginary axis.

Assumption 4: The pair (A,B) is stabilizable.
Assumption 5: The pair (A,C) is detectable.

III. RESILIENT CONSENSUS ANALYSIS

In this section, we provide necessary and sufficient conditions
under which ARC-P with parameter F achieves RAC under the
F -total malicious adversary model. For first-order consensus,
the LTI system model of (1) simplifies to A = 0, B = I , and
C = I . Hence, we focus on the case with scalar state, with
the understanding that ARC-P may be applied independently to
each component and the results still hold. For the scalar case,
we define

mN (t) = min
i∈N

{xi(t)} and MN (t) = max
i∈N

{xi(t)}.

Lemma 1: Consider the normal agent i ∈ N using ARC-P
with parameter F under the F -Total malicious model. Then, for
each t ∈ R≥0

B(mN (t) − xi(t)) ≤
∑

j∈N in
i (t)\Ri (t)

w(j,i)(t) (xj (t) − xi(t))

≤ B(MN (t) − xi(t))

where B = β(n − F − 1), which implies that mN (t) and
MN (t) are monotonically nondecreasing and nonincreasing
functions of time, respectively, and condition 2) of Definition 2
holds.

Lemma 1 shows that MN (·) is nonincreasing and mN (·) is
nondecreasing, respectively, even in time-varying networks that
may be disconnected much of the time. Therefore, if agree-
ment is achieved among the normal agents, then the states
of the normal agents must converge to a common limit. For
this reason, we focus on proving that the Lyapunov candidate
Ψ(t) = MN (t) − mN (t) asymptotically vanishes (i.e., agree-
ment is achieved).

In order to show that Ψ(t) approaches zero asymptotically,
we use a contradiction argument. Since MN (·) and mN (·) are
monotonic and bounded, each has a limit, denoted by AM and
Am , respectively. If AM = Am , then agreement is achieved
(and thus, RAC). Initially, we focus on time-invariant networks
and show that (F + 1, F + 1)-robustness is a necessary and suf-
ficient condition for ARC-P with parameter F to achieve RAC
under the F -total malicious adversary model. Network robust-
ness guarantees a minimal amount of redundancy of incoming
edges for each pair of nonempty, disjoint subsets of nodes S1
and S2 (c.f., Definition 5 and the example of Fig. 1). The suf-
ficiency argument requires a judicious selection of nonempty,
disjoint subsets such that the information from outside these
subsets forces Ψ(t) to shrink smaller than AM − Am > 0,
which contradicts the assumption that AM − Am > 0 so that
AM = Am .

The following lemma defines the subsets of nodes XM and
Xm that facilitate the sufficiency argument and it proves that
these subsets are disjoint. The proof of the lemma requires the
uniform continuity assumption of the F -total malicious model
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(stated formally in Assumption 1) in order to ensure XM and
Xm are indeed disjoint. Otherwise, the adversaries can move
from one set to the other, and we would not be able to choose
a uniformly sized time interval to prevent that over the multiple
time frames needed in the proof of Theorem 1.

Lemma 2: Consider a time-invariant network modeled by
digraph D = (V, E) where the adversaries satisfy the F -total
malicious adversary model. Suppose each normal node updates
its value according to ARC-P with parameter F . For any t0 ≥ 0,
t ≥ t0 , Δ > 0, and η > 0, define the sets of nodes

XM (t, t0 ,Δ, η)={i∈V : ∃t′∈[t, t+Δ]s.t. xi(t′)>MN (t0)−η}
Xm (t, t0 ,Δ, η)={i∈V : ∃t′∈[t, t+Δ]s.t. xi(t′)<mN (t0)+η}.

If we select ν < (AM − Am )/2 (from Assumption 1),
Δ < min{δ(ν), ln(3)/B}, and η ≤ (AM − Am )/4, then
XM (t,t0 ,Δ,η) ∩ Xm (t,t0 ,Δ,η) = ∅.

The necessary and sufficient condition on the network topol-
ogy we consider in the following theorem is an (F + 1, F + 1)-
robust graph. Lemma 2 used the uniform continuity assumption
on the malicious agents’ trajectories to ensure XM and Xm are
disjoint. In Theorem 1, we make use of this fact along with
the assumption on the robust graph to show that our Lyapunov
candidate must shrink beyond what would be allowed if con-
vergence to consensus were not possible (i.e., a contradiction
argument).

Theorem 1: Consider a time-invariant network modeled by
digraph D = (V, E) where the adversaries satisfy the F -total
malicious model. Suppose each normal node updates its value
according to ARC-P with parameter F . Then, RAC is achieved
if and only if the network topology is (F + 1, F + 1)-robust.

The sufficiency argument of Theorem 1 can be extended to
time-varying networks under a uniform dwell-time assumption,
as long as the network is (F + 1, F + 1)-robust infinitely often
asymptotically. However, over any finite-time interval, the net-
work need not be robust nor even be connected for most of the
time. The assumption on the time-varying network needed for
the result is formalized in Assumption 2.

Theorem 2: Consider a time-varying network, satisfying
Assumption 2, where the adversaries satisfy the F -total ma-
licious model. If each normal node updates its value according
to ARC-P with parameter F , then RAC is achieved.

IV. RESILIENT SYNCHRONIZATION ANALYSIS

In this section, we analyze control laws capable of achiev-
ing RAWSS under the F -total malicious adversary model. We
first introduce a resilient synchronization controller for the case
of full-state feedback. Then, we show how to extend the dy-
namic control law with output feedback using a Luenberger
observer.

Each control law uses ARC-P with parameter F as a filter;
thus, we need to introduce some notation to facilitate the de-
scription of the control laws. We represent the right-hand side

of (2) in vector notation as

ΦF ({xj (t)}j∈Ji (t)) =

⎡

⎢⎢⎢⎢⎣

∑
j∈N in

i (t)\Ri , 1 (t)
w(j,i),1(t) [xj,1(t) − xi,1(t)]

...∑
j∈N in

i (t)\Ri , m (t)
w(j,i),m (t)[xj,m (t) − xi,m (t)]

⎤

⎥⎥⎥⎥⎦

(4)
where Ji(t) = N in

i (t) ∪ {i} is the set of inclusive in-neighbors
of normal node i. In (4), the three steps of ARC-P with parameter
F outlined in Section II-D are applied to each component k of
the vectors independently. Ri,k (t) is the set of nodes whose kth
component is removed by normal node i in Step 2 at time t.
The weight functions are piecewise continuous and uniformly
bounded by 0 ≤ α ≤ w(j,i),k (t) ≤ β.

For clarity, we present the RAWSS results in the two subse-
quent sections under the assumption that the system matrix A
is nondefective with all eigenvalues on the imaginary axis.2 If
the system matrix has defective eigenvalues on the imaginary
axis, then it is asymptotically unstable, which does not fulfill
the requirement that the zero-input solution must always be sta-
ble. We may extend the analysis to the case where the system
matrix has defective eigenvalues that are strictly stable, as these
strictly stable modes trivially synchronize to zero without any
control action. Throughout, it is assumed that the pair (A,B)
is stabilizable and (A,C) is detectable, which are necessary
conditions for consensusability of LTI agents [15]. It should
be emphasized that all of the RAWSS results apply whenever
Assumption 2 holds (i.e., if the network is sufficiently robust)
since ARC-P is used as a filter in the control laws. Hence, the
same sufficient condition on the time-varying network that was
applied in the RAC results is applied to the RAWSS results.

A. RAWSS With Full-State Feedback

For RAWSS to be achieved, the normal nodes must synchro-
nize to a common, stable zero-input solution of (1a), denoted
x0(t), such that x0(0) ∈ S0,N . To do this, one term of the re-
silient control law first decouples the modes of the system ma-
trix, and recovers the initial values of neighboring nodes in the
decoupled coordinates using the associated matrix exponential.
Then, the ARC-P consensus filter is used to effectively back-
track the initial values to consensus. Finally, the transformations
are reversed.

The resilient control laws decouple the independent integrator
modes (due to nondefect zero eigenvalues) from the independent
oscillatory modes (due to conjugate pairs of nondefect imagi-
nary eigenvalues) of nondefective system matrix A using an
invertible linear transformation Q−1 , such that A = QRQ−1 ,
where R is given by

R=
[

0 0
0 diag(R2(ω1), . . . , R2(ωq ))

]
.

For concreteness, it is assumed that A has p ≥ 0 nondefect
zero eigenvalues and 2q nondefect nonzero eigenvalues on the

2Recall, the eigenvalues of a nondefective matrix have equivalent geometric
and algebraic multiplicity, and nondefective matrices are diagonalizable [41].
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imaginary axis. Each R2(ωl), for l = 1, 2, . . . , q, is a 2 × 2
matrix of the form

R2(ωl) � R2(λp+2l−1 , λp+2l) =
[

0 −ωl

ωl 0

]

where λp+2l−1 = −ωl i and λp+2l = ωl i, with ωl �= 0 and i =√−1. The matrix exponential of R is block diagonal and given
by

eRt =
[

Ip 0
0 diag(eR2 (ω1 )t , . . . , eR2 (ωq )t)

]

where Ip is the p × p identity matrix and

eR2 (ωl )t =
[

cos(ωlt) − sin(ωlt)
sin(ωlt) cos(ωlt)

]
.

The following lemma shows that if the input term Bui in
(1a) is appropriately replaced, then RAWSS can be achieved.
Throughout the rest of this paper, ||A||2 denotes the spectral
norm of matrix A and ||x||2 is the two-norm of vector x [41].

Lemma 3: Suppose each agent i ∈ N is an LTI system as in
(1), satisfying Assumption 3. Assume the time-varying network
satisfies Assumption 2, and the adversaries satisfy the F -Total
malicious model. Then, RAWSS is achieved if there exists a
control law such that the closed-loop system for each normal
node i is given by

ẋi(t) = Axi(t) + QeRtΦF

({e−RtQ−1xj (t)}j∈Ji (t)
)
. (5)

A dynamic, full-state, feedback controller that satisfies (5)
in Lemma 3 can be designed for the case whenever (A,B)
is stabilizable. Let K be a stabilizing gain matrix for the pair
(A,B) and suppose the controller state ηi is initially relaxed
(i.e., ηi(0) = 0 for all i ∈ N ). The dynamic control law is given
by

η̇i = (A + BK)ηi − QeRtΦF

({e−RtQ−1ξj (t)}j∈Ji (t)
)

ui = Kηi

(6)

where ξj (t) = xj (t) − ηj (t), for j ∈ V . Notice that either the
ξj ’s alone are sent to out-neighbors or both xj and ηj are sent in
order to implement this control law. In either case, we require
uniform continuity of the ξj , for j ∈ A, which is captured in
Definition 1.

Theorem 3: Suppose each agent i ∈ N is an LTI system
as in (1) with full-state feedback (i.e., C = Im ), satisfying
Assumptions 3 and 4, with stabilizing matrix K. Assume the
time-varying network satisfies Assumption 2 and the adversaries
satisfy the F -total malicious model. If each normal agent i ∈ N
implements the dynamic control law in (6), then RAWSS is
achieved.

B. RAWSS With Output Feedback

In this section, we study the case of output feedback whenever
(A,C) is detectable (in addition to the previous assumptions).
Here, we require a Luenberger observer in order to estimate the

Fig. 2. Time-varying network of simulation scenario; node 5 is the adversary.

state. In this case, the dynamic control law is given by

η̇i = (A + BK)ηi + H(ŷi − yi)

− QeRtΦF

(
{e−RtQ−1 ξ̂j (t)}j∈Ji (t)

)

ui = Kηi (7)

where ξ̂j = x̂j − ηj for j ∈ V . The observer is given by

˙̂xi = Ax̂i + Bui + H(ŷi − yi) (8a)

ui = Kηi (8b)

ŷi = Cx̂i. (8c)

Theorem 4: Suppose each agent i ∈ N is an LTI system
as in (1) with output feedback, satisfying Assumptions 3–5,
with stabilizing matrix K and observer matrix H . Assume
the time-varying network satisfies Assumption 2 and the ad-
versaries satisfy the F -Total malicious model. If each normal
agent i ∈ N implements the dynamic control law in (7) with
ηi(0) = 0∀i ∈ N alongside observer (8) with observer states
x̂i for i ∈ N that are contained in some orthotope within the
safe set S0,N , then RAWSS is achieved.

Notice that the observer error term is used in the dynamic
control law of (7) to ensure the form of (17) matches (5). The
assumption that (A,C) is detectable guarantees that the observer
error term vanishes asymptotically.

V. SIMULATIONS

In this section, we provide a numerical example to demon-
strate the resilient output-feedback synchronization controller
of (7). For this example, we consider a set of two-mass,
two-spring coupled oscillators, each with masses M1 = 1 kg
and M2 = 2 kg, and spring constants k1 = 1 N/m and k2 =
0.5 N/m. The input to each system (i.e., agent) is a force applied
to mass M2 . This agent model is a fourth-order LTI system in
which the first two states xi,1 and xi,2 denote the positions of
the masses, while the second two states xi,3 and xi,4 , denote
their velocities. The state-space matrices are given by

Ai =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1
−1 0.5 0 0
0.25 −0.25 0 0

⎤

⎥⎥⎦, Bi =

⎡

⎢⎢⎣

0
0
0

0.25

⎤

⎥⎥⎦, C
T
i =

⎡

⎢⎢⎣

1
1
0
0

⎤

⎥⎥⎦.

Each agent has imaginary eigenvalues ±0.3311i and ±1.0679i.
We assume there are five such systems that share their position
information according to the time-varying digraph depicted in
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Fig. 3. Synchronization with no attack and F = 1. (a) First component of agent states. (b) First component of controller states. (c) First component of observer
states.

Fig. 2. Observe that the first graph in the sequence is (2, 2)-
robust, while the other two graphs are not. In fact, graph 3 has
no edges at all. Out of every 10-s time interval, the network is
given by the first graph for only 0.5 s, which is only 5% of the
time.

Given the dynamic system model and time-varying network,
we are interested in a control law on the force input that will syn-
chronize the coupled oscillators to a common, safe, and stable
zero-input trajectory of the system (i.e., achieve weakly stable
synchronization). Moreover, we would like the synchronization
to be resilient to an attack on one agent (the agent under attack
becomes the adversary), even without detecting it. The control
law of (7) will achieve this goal for any type of attack that
may be modeled by the 1-total malicious model. We emphasize
here that this adversary model is the most general attack model
possible on a node, as it is unrestricted in how the attacked
node behaves.3 Hence, we may consider an attack on any one
of the nodes, and may choose to attack the actuator, sensors,
information received from or sent to the network, etc.

First, we consider the nominal behavior of the networked
multiagent system whenever we have prepared for an attack on a
node (i.e., chosen a parameter F = 1 for the ARC-P consensus
filter), but there is no attack. Throughout the simulations, we
use weights of 1 in ARC-P and the following parameters in the
control law (7) and Luenberger observer (8):

Q=

⎡

⎢⎢⎣

0 0.9307 0 −0.6574
0 −0.2613 0 −1.1706

0.9938 0 −0.2176 0
−0.279 0 −0.3876 0

⎤

⎥⎥⎦,

H =

⎡

⎢⎢⎣

8.75
−15.75
−17.375
0.875

⎤

⎥⎥⎦

KT =

⎡

⎢⎢⎣

22.75
−12.75
8.75
−14

⎤

⎥⎥⎦, e
Rt =

[
eR2 (0.3311)t 0

0 eR2 (1.0679)t

]
.

3By assuming it is an attack on one of the agents, we are implicitly assuming
the system model of (1), which admits uniformly continuous states and outputs.
The network model assumes the same information propagates on all outgoing
edges.

Fig. 4. First component of states with F = 0 and u5 = t (actuator attack).

Fig. 5. First component of states with F = 1 and u5 = t (actuator attack).

The initial states of the agent systems and observers are ran-
domly chosen within the interval [−2, 2] for each component,
which defines the orthotope H0,N , given in the RAWSS defi-
nition (Definition 3). As required in Theorem 4, the controller
states are set to zero. The results of the simulation with no attack
and F = 1 is given in Fig. 3. Notice that the controller states
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approach zero (and therefore, the control action goes to zero) as
the agents synchronize.

Next, we demonstrate the need for the ARC-P consensus filter
in the control law of (7). In this case, we prepare no resilience to
an attack (i.e., the parameter F = 0), which leads to the dynamic
synchronization control law of [14]. In this scenario, we assume
the actuator of node 5 is attacked in such a way that u5 = t. The
results of this case are shown in Fig. 4. In this case, the normal
agents still synchronize, but to an unsafe trajectory (initial state
has components outside the interval [−2, 2]) that is clearly not
a zero-state solution of the system.

Finally, we demonstrate the same actuator attack whenever
the ARC-P consensus filter has parameter F = 1, which ensures
resilience. The results of this case are shown in Fig. 5. In this
case, the normal agents achieve RAWSS.

VI. CONCLUSION

This paper studies resilient consensus and synchronization of
identical agents under a continuous-time LTI system model. A
resilient consensus protocol, ARC-P with parameter F , is in-
troduced, along with resilient control laws for synchronization.
Necessary and sufficient conditions are provided under which
the distributed control laws achieve their objective in both time-
invariant and time-varying networks.

We emphasize that the parameter F of the consensus filter,
ARC-P, should be selected at design time. The results of this pa-
per provide guarantees on whether resilient consensus or weakly
stable synchronization can be achieved in the presence of up to
F malicious adversaries. The true number of adversaries is un-
known to the designer at design time; hence, a reasonable value,
typically small, should be chosen for parameter F since there
is a tradeoff between resilience and the necessary robustness of
the network.

APPENDIX

A. Proof of Lemma 1

Proof: If no neighboring states are used, or all states used are
equal to xi(t) at time t, then ẋi(t) = 0, and the inequality holds.
Therefore, assume∃j ∈ N in

i (t) \ Ri(t) such that xj (t) �= xi(t).
Then, mN (t) ≤ xj (t) ≤ MN (t); otherwise, j is an adversary
and there are at least F more adversary state values in Ri(t).
Hence, there are at least F + 1 adversary state values strictly
greater than MN (t) or strictly less than mN (t) in the neigh-
borhood, which contradicts the F -total assumption. Also, if
∃j ∈ N in

i (t) \ Ri(t) such that xj (t) �= xi(t), then there must
be at least F state values in Ri(t). Since there are at most n − 1
neighbors of i, there are at most n − F − 1 nonzero terms in
the sum of (2). Combining this with the fact that w(j,i)(t) ≤ β
for all j ∈ N in

i (t) leads to the desired inequality.
Equation (3) defines the dynamics of the normal nodes. The

inequality in the statement of the lemma ensures that if a normal
node i has the largest state value at time t (i.e., xi(t) = MN (t)),
its derivative is nonpositive (meaning it will not increase) since
the term B(MN (t) − xi(t)) = 0 in this case. If a normal node
has the smallest state value at time t (i.e., xi(t) = mN (t)), its

derivative is nonnegative (meaning it will not increase) since
the term B(mN (t) − xi(t)) = 0 in this case. Since mN (t) and
MN (t) are continuous functions, they are monotonically non-
decreasing and nonincreasing, respectively. Note that the mono-
tonicity of mN (t) and MN (t) directly imply that condition 2)
of Definition 2 holds. �

B. Proof of Lemma 2

Proof: We consider separately the case for adversary nodes
and normal nodes. Given the selection of η, ν, and Δ, the uni-
form continuity assumption prevents an adversary node from
being in both sets. This follows because otherwise there exists
t1 , t2 ∈ [t, t + Δ] and k ∈ A such that xk (t1) > MN (t0) − η
and xk (t2) < mN (t0) + η, from which we reach the contradic-
tion to uniform continuity

xk (t1) − xk (t2) > MN (t0)

− mN (t0) − 2η ≥ AM − Am

2
> ν.

For normal nodes, we first derive some useful inequalities. Ap-
plying Lemma 1 to (2) for i ∈ N and τ ∈ [t′, t] implies

ẋi(τ) ≤ B(MN (τ) − xi(τ)) ≤ B(MN (t′) − xi(τ))

whenever the derivative exists,4 where B = β(n − F − 1). Us-
ing the integrating factor eB (τ−t ′) , and integrating in the sense
of Lebesgue over the time interval [t′, t], we have

xi(t)≤xi(t′)e−B (t−t ′) +MN (t′)(1−e−B (t−t ′)), ∀t ≥ t′. (9)

For τ ∈ [t, t′], using integrating factor eB (τ−t) , we can show

xi(t) ≥ xi(t′)eB (t ′−t) + MN (t)(1 − eB (t ′−t)), ∀t ≤ t′. (10)

Similarly, we can derive the following inequalities using the
other inequality of Lemma 1:

xi(t)≥xi(t′)e−B (t−t ′) +mN (t′)(1−e−B (t−t ′)), ∀t ≥ t′ (11)

xi(t) ≤ xi(t′)eB (t ′−t) + mN (t)(1 − eB (t ′−t)), ∀t ≤ t′. (12)

Suppose i ∈ N ∩ XM (t, t0 ,Δ, η). Then, ∃t′ ∈ [t, t + Δ]
such that xi(t′) > MN (t0) − η. Combining this with (11), it
follows that for τ ∈ [t′, t + Δ]

xi(τ) ≥ xi(t′)e−B (τ−t ′) + mN (t′)(1 − e−B (τ−t ′))

> (MN (t0) − η)e−B (τ−t ′) + mN (t0)(1 − e−B (τ−t ′))

≥ (AM − AM −Am

4 )e−B (τ−t ′) +mN (t0)−Am e−B (τ−t ′)

≥ mN (t0) + 3
4 (AM − Am )e−BΔ

≥ mN (t0) + η

4The solutions of the normal nodes’ trajectories are understood in the sense
of Carathéodory. Hence, it is possible that the derivative of the solution does not
exist on a set of points in time of Lebesgue measure zero.
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where we have used the fact that Δ < ln(3)/B in the last line.
Similarly, using (10), it follows that for τ ∈ [t, t′]

xi(τ) > (MN (t0) − η)eB (t ′−τ ) + MN (τ)(1 − eB (t ′−τ ))

≥ MN (τ) − AM −Am

4 eBΔ

> AM − 3
4 (AM − Am )

≥ Am + 1
4 (AM − Am )

≥ mN (t0) + η.

Therefore, i /∈ Xm (t, t0 ,Δ, η). Conversely, suppose i ∈ N ∩
Xm (t, t0 ,Δ, η). Then, ∃t′ ∈ [t, t + Δ] such that xi(t′) <
mN (t0) + η. It follows from (9) that for τ ∈ [t′, t + Δ]

xi(τ) < (mN (t0) + η)e−B (τ−t ′) + MN (t0)(1 − e−B (τ−t ′))

≤ MN (t0) − (MN (t0) − mN (t0))e−BΔ + ηe−BΔ

≤ MN (t0) − 3
4 (AM − Am )e−BΔ

< MN (t0) − η.

Finally, using (12), it follows that for τ ∈ [t, t′]

xi(τ) < (mN (t0) + η)eB (t ′−τ ) + mN (τ)(1 − eB (t ′−τ ))

≤ mN (τ) + AM −Am

4 eBΔ

< Am + 3
4 (AM − Am )

≤ AM − AM −Am

4

≤ MN (t0) − η.

Thus, i /∈ XM (t, t0 ,Δ, η). �

C. Proof of Theorem 1

Proof: [Sufficiency]. If MN (t′) = mN (t′), then the normal
agents remain in agreement since the right side of (2) is zero
for all t ≥ t′. Thus, suppose AM − Am > 0. Note that Ψ(t) =
MN (t) − mN (t) ≥ AM − Am∀t. The goal is to contradict this
inequality using an induction argument applied sufficiently close
to convergence of MN (t) and mN (t), which will show that
Ψ(t) shrinks smaller than AM − Am . For each ε > 0, there
exists tε > 0 such that MN (t) < AM + ε and mN (t) > Am −
ε ∀t ≥ tε . Let ε0 = (AM − Am )/4, ν < (AM − Am )/2, and
Δ < min{δ(ν), ln(3)/B}. Recall that N = |N |, B = β(n −
F − 1), and 0 < α ≤ w(j,i)(t) ≤ β for all weights. Fix ε such
that

0 < ε <
1
2

[ α

B
(1 − e−BΔ)e−BΔ

]2N

ε0 . (13)

Define εl = [ α
B (1 − e−BΔ)e−BΔ]2l ε0 for l ∈ Z≥0 , which re-

sults in εl+1 = [ α
B (1 − e−BΔ)e−BΔ]2εl so that ε0 > ε1 >

. . . > εN −1 > 2ε > 0. For brevity, define X l
M = XM (tε +

Δl, tε ,Δ, εl) and X l
m = Xm (tε + Δl, tε ,Δ, εl) for l =

0, 1, . . . , N . By definition, there is at least one normal node in
X 0

M andX 0
m , and all of theX l

M andX l
m are disjoint by Lemma 2.

We show by induction on l that if bothX l
M ∩N andX l

m ∩N are
nonempty, then |X l+1

m ∩N| ≤ |X l
m ∩N| and |X l+1

M ∩N| ≤
|X l

M ∩N|, and at least one of these inequalities is strict. Since

|X 0
m ∩N| + |X 0

M ∩N| ≤ N , there exists T < N such that at
least one of X T

M ∩N and X T
m ∩N is empty. If X T

M ∩N =
∅, then MN (tε + TΔ) ≤ MN (tε) − εT < MN (tε) − 2ε. Sim-
ilarly, if X T

m ∩N = ∅, then mN (tε + TΔ) ≥ mN (tε) + εT >
mN (tε) + 2ε. In either case, Ψ(tε + TΔ) < AM − Am and we
reach the desired contradiction. All that remains to show is the
inductive step.

Suppose X l
M ∩N �= ∅ and X l

m ∩N �= ∅. Then, the (F +
1, F + 1)-robustness assumption combined with the F -total as-
sumption imply that either ∃i ∈ X l

M ∩N or ∃i ∈ X l
m ∩N (or

both) such that i has at least F + 1 neighbors outside of its set.
Either way, there are two cases to consider: (Case 1) None of
the F + 1 (or more) neighbors outside of its set are used in (2)
at some time t′ ∈ [tε + Δl, tε + Δ(l + 1)], or (Case 2) At least
one of the F + 1 (or more) neighbors outside of its set are used
for all t ∈ [tε + Δl, tε + Δ(l + 1)]. In what follows we prove
the inductive step whenever ∃i ∈ X l

M ∩N with at least F + 1
neighbors outside of its set. The argument for i ∈ X l

m ∩N fol-
lows a similar line of reasoning.

(Case 1): In this case, xi(t′) ≤ MN (tε) − εl (otherwise, it
would use at least one of its F + 1 neighbors’ values outside of
X l

M ). It follows from (9) that

xi(tε + Δ(l + 1)) ≤ MN (tε) − εle
−BΔ .

Using this with (9) to upper bound xi(t), for t ∈ [tε + Δ(l +
1), tε + Δ(l + 2)], we see that

xi(t) ≤ MN (tε) − εle
−2BΔ ≤ MN (tε) − εl+1 .

Therefore, i /∈ X l+1
M . The same reasoning shows that j /∈ X l+1

M

whenever j is a normal node with j /∈ X l
M .

(Case 2): We can bound the right-hand side of (2) by

ẋi(t) ≤ α(MN (tε) − εl − xi(t))+(B − α)(MN (tε) − xi(t))

≤ −Bxi(t) + BMN (tε) − αεl

for t ∈ [tε + Δl, tε + Δ(l + 1)]. Using this with integrating fac-
tor eB (t−tε −Δ l) , and integrating over this time interval yields

xi(tε+Δ(l+1))≤xi(tε+Δl)e−BΔ+(MN (tε)− αεl

B )(1−e−BΔ)

≤MN (tε) − α
B (1 − e−BΔ)εl .

Using this with (9) to upper bound xi(t) for t ∈ [tε + Δ(l +
1), tε + Δ(l + 2)], we see

xi(t) ≤ MN (tε) − α
B (1 − e−BΔ)e−B (t−tε −Δ(l+1))εl

≤ MN (tε) − α
B (1 − e−BΔ)e−BΔ εl ≤ MN (tε) − εl+1 .

Thus, i /∈ X l+1
M . The final step is to show that j /∈ X l+1

m when-
ever j is a normal node with j /∈ X l

m . Whenever j /∈ X l
m , it

means that xj (tε + Δ(l + 1)) ≥ mN (tε) + εl . Using this with
(11) to lower bound xj (t) for t ∈ [tε + Δ(l + 1), tε + Δ(l +
2)], we see that

xj (t) ≥ mN (tε) + εle
−BΔ ≥ mN (tε) + εl+1 .

Hence, j /∈ X l+1
m , as claimed. Therefore, if i ∈ X l

M ∩N has at
least F + 1 neighbors outside of its set, we are guaranteed that
|X l+1

M ∩N| < |X l
M ∩N| and |X 1+1

m ∩N| ≤ |X l
m ∩N|.
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[Necessity]: If D is not (F + 1, F + 1)-robust, then there are
nonempty, disjoint S1 ,S2 ⊂ V such that none of the conditions
1–3 of Definition 5 hold (with r = F + 1 and s = F + 1). Sup-
pose the initial state of each node in S1 and S2 is a and b, respec-
tively, with a < b. Let all other nodes have initial states taken
from the interval [a, b]. Since |X F +1

S1
| + |X F +1

S2
| ≤ F , suppose

all nodes in X F +1
S1

and X F +1
S2

are adversaries that keep their
states constant for t ≥ 0. There is still at least one normal node
in both S1 and S2 since |X F +1

S1
| < |S1 | and |X F +1

S2
| < |S2 |, re-

spectively. Therefore, each normal node in S1 (S2) removes the
F or less state values greater than a (less than b) from outside
S1 (S2). Hence, each normal node in S1 and S2 maintains the
state of a and b, respectively. Thus, no consensus is achieved,
which contradicts the assumption. �

D. Proof of Theorem 2

Proof: Let Δ < min{δ(ν), ln(3)/B, τ
N }. Fix ε as in (13)

and let t′ε ≥ 0 be a point in time such that MN (t) < AM +
ε and mN (t) > Am − ε for all t ≥ t′ε . Define tε as the next
switching time in the subsequence {t′k} after t′ε (see case 1),
or tε = max{t′ε , t′k} (see case 2). Since Δ < τ/N , the same
induction argument used in the proof of Theorem 1 shows that
Ψ(tε + TΔ) < AM − Am . �

E. Proof of Lemma 3

Proof: Let x̄i = Q−1xi . Then, The closed-loop system for
normal node i may be rewritten as

˙̄xi(t) = Rx̄i(t) + eRtΦF

({e−Rtx̄j (t)}j∈Ji (t)
)
.

We assume A has p ≥ 0 nondefect zero eigenvalues and
2q simple nonzero eigenvalues on the imaginary axis. If
A has p ≥ 1 (nondefect) zero eigenvalues, then each com-
ponent x̄i,k (t) ∈ R, k = 1, . . . , p, evolves as an integrator
using ARC-P. It follows from Theorem 2 that there ex-
ists x̄0,k (0) ∈ [mini∈N{x̄i,k (0)},maxi∈N{x̄i,k (0)}] and κk :
R≥0 → R≥0 with κk (t) → 0 as t → ∞, such that for all t ≥ 0
and for all i ∈ N

||x̄i,k (t) − x̄0,k (0)||2 ≤ κk (t)||x̄i,k (0) − x̄0,k (0)||2 .
Next, consider the q oscillatory modes each with states [x̄i ]l �

[x̄i,p+2l−1 , x̄i,p+2l ]T ∈ R2 , for l = 1, 2, . . . , q and i ∈ V , and
denote R2(ωl) = R2,l for brevity. The closed-loop system for
this component is given by

[ ˙̄xi ]l(t) = R2,l [x̄i ]l(t) + eR2 , l tΦF

({e−R2 , l t [x̄j ]l(t)}j∈Ji (t)
)
.

Consider the change of variable

[zi ]l(t) = e−R2 , l t [x̄i ]l(t), i ∈ V.

Then, for all i ∈ N
[żi ]l(t) = ΦF

({[zj ]l(t)}j∈Ji (t)
)
.

where we have used the fact that R2,le
−R2 , l t = e−R2 , l tR2,l .

It follows from Theorem 2 that the [zi ]l’s asymptoti-
cally converge to a common state, denoted [x̄0 ]l(0) �
[x̄0,p+ l(0), x̄0,p+ l+1(0)]T ∈ R2 . Since [zi ]l(0) = [x̄i ]l(0) for all

i ∈ N , Theorem 2 implies that the common limit of the consen-
sus process [x̄0 ]l(0) satisfies for each element r ∈ {0, 1}

x̄0,p+2l−r (0) ∈
[
min
i∈N

{x̄i,p+2l−r (0)},max
i∈N

{x̄i,p+2l−r (0)}
]

.

Because the [zi ]l’s asymptotically converge to [x̄0 ]l(0), there
exists a positive-definite function κp+ l : R≥0 → R≥0 that sat-
isfies κp+ l(t) → 0 as t → ∞, such that for all t ≥ 0 and for all
i ∈ N

||[zi ]l(t) − [x̄0 ]l(0)||2 ≤ κp+ l(t)||[zi ]l(0) − [x̄0 ]l(0)||2 .
By multiplying each side of the inequality by ||eR2 , l t ||2 and
using the submultiplicative property of matrix norms [41], it
follows that ∀i ∈ N

||[x̄i ]l(t) − eR2 , l t [x̄0 ]l(0)||2
≤ κp+ l(t)||eR2 , l t ||2 ||[x̄i ]l(0) − [x̄0 ]l(0)||2

where we have also used the fact that [zi ]l(0) = [x̄i ]l(0). An
important bound, derived by Dahlquist [42], is

||eAt ||2 ≤ eμ(A)t ∀t ∈ R≥0

where μ(A) is the logarithmic norm of A. It is shown in [43]
that μ(A) ≤ 0 whenever A is weakly stable.5 Hence, it follows
that there exists δl ≥ 0 such that ∀i ∈ N

||[x̄i ]l(t) − eR2 , l t [x̄0 ]l(0)||2
≤ κp+ l(t)e−δl t ||[x̄i ]l(0) − [x̄0 ]l(0)||2

Since κp+ l(t) → 0 as t → ∞, resilient asymptotic synchroniza-
tion is achieved for each weakly stable component [x̄i ]l ∈ R2

for l = 1, 2, . . . , q in the x̄i coordinates.
Combining the aforementioned inequalities, it follows that

there exists κ : R≥0 → R≥0 with κ(t) → 0 as t → ∞, such
that for all t ≥ 0

||x̄i(t) − eRt x̄0(0)||2 ≤ κ(t)||x̄i(0) − x̄0(0)||2 ∀i ∈ N
where the elements x̄0,k for k = 1, 2, . . . ,m have initial values
that satisfy

x̄0,k (0) ∈
[
min
i∈N

{x̄i,k (0)},max
i∈N

{x̄i,k (0)}
]

so that x0,k (0) ∈ [mN ,k (t),MN ,k (t)], where x0 = Qx̄0 . Fi-
nally, multiplying each side of the aforementioned inequality
by ||Q||2 , using again the submultiplicative property of matrix
norms, and substituting x̄0(t) = eRt x̄0(0), it follows that

||xi(t) − eAtx0(0)||2 ≤ κ(t)||Q||2 ||Q−1 ||2 ||xi(0) − x0(0)||2
for all i ∈ N . Since limt→∞ κ(t) = 0, RAWSS is achieved. �

5The matrix A is said to be weakly stable if all eigenvalues are in the left-half
plane and no eigenvalue on the imaginary axis is defect [43].
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F. Proof of Theorem 3

Proof: The dynamics of xi and ξi for each normal agent
i ∈ N may be rewritten as

ẋi(t) = (A + BK)xi(t) − BKξi(t) (14)

ξ̇i(t) = Aξi(t) + QeRtΦF

({e−RtQ−1ξj (t)}j∈Ji (t)
)
. (15)

Observe that (15) matches (5) in Lemma 3. Note that since
ηi(0) = 0, it follows that ξi(0) = xi(0) for all i ∈ N . There-
fore, Lemma 3 implies that the solutions of (15) converge to a
solution of ξ̇0 = Aξ0 such that ξ0(0) ∈ S0,N . Because the ξi’s
synchronize, it follows that the consensus term in (6) converges
to zero. Combining this with the fact that A + BK is Hurwitz,
implies that ηi → 0 as t → ∞. Thus, for any ε > 0, there exists
T ∈ R>0 such that for all t > T

||ξi(t) − eAtξ0(0)||2 < ε/2 and ||ηi(t)||2 < ε/2 for all i ∈ N .

Therefore, for t > T

||xi(t) − eAtξ0(0)||2 = ||ξi(t) + ηi(t) − eAtξ0(0)||2
≤ ||ξi(t) − eAtξ0(0)||2 + ||ηi(t)||2
< ε, ∀i ∈ N

so that RAWSS is achieved. �

G. Proof of Theorem 4

Proof: Define ei = xi − x̂i . Then, the dynamics of xi , ξ̂i ,
and ei for each normal agent i ∈ N may be rewritten as

ẋi(t) = (A + BK)xi(t) − BK(ei(t) + ξ̂i(t)) (16)

˙̂
ξi(t) = Aξ̂i(t) + QeRtΦF

(
{e−RtQ−1 ξ̂j (t)}j∈Ji (t)

)
(17)

ėi(t) = (A + HC)ei(t). (18)

Observe that (17) and (18) are decoupled from each other
and from (16). Note that (17) matches (5) in Lemma 3. Since
ηi(0) = 0, it follows that ξ̂i(0) = x̂i(0) for all i ∈ N . There-
fore, Lemma 3 implies that the solutions of (17) converge to a

solution of ˙̂
ξ0 = Aξ̂0 such that ξ̂0(0) ∈ S0,N (since the x̂i(0)’s

are in some orthotope within S0,N ). The ei’s converge to zero
because A + HC is Hurwitz. Therefore, the observer error term
in (7) converges to zero. Because the ξ̂i’s synchronize, it follows
also that the consensus term in (7) converges to zero. Combining
these with the fact that A + BK is Hurwitz, implies that ηi → 0
as t → ∞. Thus, for any ε > 0, there exists T ∈ R>0 such that
for all t > T

||ξ̂i(t) − eAt ξ̂0(0)||2 < ε
3 , ||ei(t)||2 < ε

3 , and ||ηi(t)||2 < ε
3

for all i ∈ N . Therefore, for t > T

||xi(t) − eAt ξ̂0(0)||2 = ||x̂i(t) + ei(t) − eAt ξ̂0(0)||2
= ||ξ̂i(t) + ηi(t) + ei(t) − eAt ξ̂0(0)||2
≤ ||ξ̂i(t) − eAt ξ̂0(0)||2 + ||ei(t)||2 + ||ηi(t)||2
< ε ∀i ∈ N

so that RAWSS is achieved. �
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