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Abstract— For continuous-time port-Hamiltonian systems
(PHS), safety can be shown using the Hamiltonian function as a
barrier between the safe and unsafe states. However, the safety
property may not be preserved when the system is discretized.
This paper presents a safety analysis approach for discrete-
time models of PHS using conservative time-discretization and
applies the approach to the design of a safe integrated adaptive
cruise control (ACC) and lane keeping control (LKC) system.
Instead of performing safety analysis in continuous-time and
then imposing conditions so that safety is preserved after
discretization, safety conditions are developed for a discrete-
time model. The approach is applied to the safety analysis of
a vehicle dynamics composed with an ACC and a LKC. A
hardware-in-the-loop simulation platform is used to evaluate
the approach.

I. INTRODUCTION

Port-Hamiltonian systems (PHS) provide a compositional
framework for the modeling and design of control sys-
tems [6]. They also provide advantages for the analysis of
cyber-physical systems (CPS) such as automotive control
systems that are composed of multiple subsystems [5]. Safety
analysis is important when designing such systems. For
example, a vehicle operating in an autonomous manner can
be described as a CPS where the physical dynamics of the
vehicle interact with an adaptive cruise controller (ACC) and
a lane keeping controller (LKC). The ACC controls the speed
of the vehicle in response to a detected lead vehicle or a
desired speed set by the driver. The LKC controls the angle
of the steering wheel in order to maintain a desired lateral
position on the road. Safety analysis of the overall system
must ensure that the vehicle can operate safely and avoid
collisions and skidding.

In our previous work, we have developed an approach
for the safety analysis of multi-modal PHS and applied
the approach to the safety analysis of a vehicle equipped
with an ACC and LKC [5]. The main idea is to use the
Hamiltonian function as a barrier between the safe and unsafe
states and provide conditions that do not allow the system
trajectories to enter the unsafe regions of the state space. The
approach has been developed for continuous-time models of
PHS, however, implementation of the control system requires
discretization. The safety conditions are based on the notion
of passivity, and it is well-known that when a passive system
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is discretized, its passivity is no longer guaranteed [13] [3].
One way to address this problem is to impose conditions
on the discretization method and the sampling rate of the
system. Further, the design may be conservative, since some
“extra” passivity will need to be built into the original system
in order to address the impact of discretization (see [23]
for more information on passivity indexes). Alternatively,
the system model can be discretized and the safety analysis
can be performed using a discrete-time model of the system.
This paper considers the safety problem using discrete-time
models of PHS and its application to integrated speed and
steering control.

The theory of PHS is presented in detail in [6]. A PHS
consists of a set of ports (control, interaction, resistive, and
storage) interconnected through a power-conserving Dirac
structure [21]. PHS provide a compositional framework for
modeling complex physical lumped-parameter systems [2].
PHS have significant implications for passivity, which has
been studied extensively for control design and analysis
of nonlinear systems [10]. PHS can be used to describe
hybrid systems using a framework known as multi-modal
PHS [22]. Discrete-time models of PHS have been presented
in [18]. We consider these discretization methods in order to
formulate the safety problem for discrete-time multi-modal
PHS.

Our safety analysis approach employs a canonical coordi-
nate transform. The canonical coordinate transform method
is used extensively in classical mechanics for analyzing the
dynamical equations of physical systems. Technical details
regarding canonical coordinate transformation of PHS can
be found in [8]. The main idea of the proposed approach is
to use the Hamiltonian as a barrier certificate to show safety.
Barrier certificates are functions which show that there are
no state trajectories starting from a given set of states that
end up in an unsafe region [15]. They are similar in structure
to Lyapunov functions and are typically used for the purpose
of validating nonlinear systems with uncertainties [14]. The
use of barrier certificates allows analysis of a large class
of continuous-time nonlinear models, including differential-
algebraic systems with uncertain inputs [17].

The contributions of the paper are a safety analysis ap-
proach for discrete-time multi-modal PHS and its application
to an integrated adaptive cruise control (ACC) and lane
keeping control (LKC) system. Instead of performing safety
analysis in the continuous-time domain and then discretizing
the controllers for implementation purposes, we model and
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design the system in discrete-time [9]. The dynamics of the
plant and the control systems are described using conserva-
tive time-discretized PHS models, which enable the system
to retain passivity [11] [19]. We then prove that as long as the
safe and unsafe energy regions do not overlap, trajectories
that begin within a lower energy level (safe states) cannot
terminate within a higher energy level (unsafe states). We
apply the approach for designing an integrated ACC and
LKC system and we derive safety conditions which ensure
that the host vehicle does not collide with a lead vehicle or
skid off of the road. Finally, we evaluate the approach by
implementing the control design in a hardware-in-the-loop
simulation platform.

The rest of the paper is organized as follows. Section II
presents the energy-based safety analysis approach applied to
discrete-time multi-modal PHS. Section III applies the safety
analysis approach to a vehicle dynamics model composed
with an ACC and LKC system described by discrete-time
PHS. Section IV describes the evaluation of the discrete-
time implementation of the controllers onto a HIL platform.
The paper is concluded in Section V.

II. SAFETY ANALYSIS FOR DISCRETE-TIME PHS

An appropriate discrete-time model is required for repre-
senting PHS [18]. Our approach is based on the conservative
time-discretization for PHS, which is presented in [11].

A. Safety Problem

Given a discrete-time PHS with Hamiltonian function H
and bounded disturbances, the safety problem is to show that
there are no trajectories of the closed-loop system that reach
an unsafe region of the state space.

Definition 1: Given a discrete-time multi-modal PHS and
H(xk) with sampled states xk ∈ X , initial states x0 ∈
X0 ⊆ X , unsafe state space Xu ⊆ X , and sampled
disturbances ∆(k), a system trajectory, where k is an integer,
Γ(x(kts), s(kts)) : [0, Nts] → X is unsafe if there exists
N > 0 and a finite sequence 0 ≤ k1ts ≤ · · · ≤ kN−1ts ≤
Nts such that Γ(x0) ∈ X0 and Γ(xk) ∈ Xu. The system is
safe if there are no unsafe state trajectories.

A canonical coordinate transform Φ is needed to convert
the dynamic equations and Hamiltonian function of the
system into a form which allows to represent the minimum
energy. Typically, the canonical coordinate transform method
is used for analyzing the dynamics of PHS and there are
many possible choices for the coordinate transformations [8].
In this paper, we assume that there exists a coordinate
transformation xk = Φ(xk) for a d iscrete-time PHS. Then,
the dynamic equations of the PHS can be written as:






























xk+1−xk

ts
= [J(x̂k, s))−R(x̂k, s)]

∂H(Φ−1(xk))
∂xk

(x̂k)

−J(x̂k, s))H
g
(k)xk+1−xk

Q(k)

+

[

L(x̂k, s)
0

]

δ(k)

ζ(k) =
[

L
T

(x̂k, s) 0
]

∂H(Φ−1(xk))
∂xk

(x̂k)

(1)

H
g
(k) = H(Φ−1(xk+1))−H(Φ−1(xk))

+〈∂H(Φ−1(xk))
∂xk

(x̂k), J
g
(k)〉

J
g
(k) = J

+
(xk, s)J(xk, s)(xk+1 − xk)

Q(k) = (xk+1 − xk)
TJ

g
(k)

where xk ≡ x(kts) are the discrete samples of the contin-
uous state variables (k is a non-negative integer and ts is
the sampling period), x̂k = xk+1+xk

2 , and J+ is the Moore-
Penrose pseudo-inverse matrix of J .

B. Safety Analysis of Discrete-Time Multi-Modal Port-
Hamiltonian Systems

We consider the following definitions for initial states,
unsafe states, and guard conditions that specify mode tran-
sitions. For each discrete mode s ∈ S, the initial states
are defined as Init(s) = {xk ∈ X : (xk, s) ∈ X0 × S0}
and the unsafe states are defined as Unsafe(s) = {xk ∈
X : (xk, s) ∈ Xu × Su}. Each mode transition s →
s′ is associated with the guard condition Guard(s, s′) =
{xk, x

′

k ∈ X : {x, s} → {x′, s′} ∈ T}.
Theorem 1: A multi-modal PHS described by (1) and

H(Φ−1(xk)), with states xk ∈ X , initial states Init(s),
unsafe states Unsafe(s), and bounded disturbances δ(k) ∈
∆(k) is safe if the transformed Hamiltonian function
H(Φ−1(xk)) satisfies the following conditions with α ≤ β

1) H(Φ−1(xk)) ≤ α, ∀x ∈ Init(s)
2) H(Φ−1(xk)) > β, ∀x ∈ Unsafe(s)

3) ζ(k)Tδ(k) ≤ ∂H(Φ−1(xk))
∂xk

T

R(xk, s)
∂H(Φ−1(xk))

∂xk
,

∀{xk, δ} ∈ X ×∆
4) H(Φ−1(xk)) ≤ α, ∀xk ∈ Guard(s, s′)

Proof: Assuming that the Hamiltonian function
H(Φ−1(xk)) satisfies the four conditions in Theorem 1, yet
there exists a time T ≥ 0, an input δ, and initial states Init(s),
and a trajectory Γ(x0)) such that Γ(xT ) ∈ Unsafe(s). We
show that the Hamiltonian function cannot simultaneously
satisfy the four condition and reach the unsafe region, thus
proving safety by contradiction. The time difference of the
Hamiltonian functions,∂H(Φ−1(xk))

∂xk
(x̂k)

T xk+1−xk

ts
, can be

written as:

= ∂H(Φ−1(xk))
∂xk

(x̂k)
T[J(x̂k, s)−R(x̂k, s)]

∂H(Φ−1(xk))
∂xk

(x̂k)

−∂H(Φ−1(xk))
∂xk

(x̂k)
TJ(x̂k, s)H

g
(k)xk+1−xk

Q(k)

+∂H(Φ−1(xk))
∂xk

(x̂k)
T

[

L(x̂k, s)
0

]

δ(k)

The important part of the proof is showing that the interac-
tion structure J and the conservative Hamiltonian structure
J(x̂k, s))H

g
(k)xk+1−xk

Q(k)
contribute zero energy. As a result

of the skew symmetric nature of J and the third term of the
conservative Hamiltonian structure, we can conclude that:

∂H(Φ−1(xk))

∂xk

(x̂k)
TJ(x̂k, s)

∂H(Φ−1(xk))

∂xk

(x̂k) = 0

The sum of the remaining two terms of the conservative
Hamiltonian structure can be simplified to zero as well.

2981



Fig. 1. Closed-loop system

Condition (3) shows that the system trajectory on the interval
of [0, T ] is non-increasing, which indicates that H(xT ) ≤
H(x0). Additionally, condition (4) asserts that during a
discrete transition, the Hamiltonian function will not jump
to an increasing value. These statements, however, contradict
the original assumption that the system states start at Init(s)
and end at Unsafe(s). As a result, we can conclude that the
system is safe.

III. SAFETY ANALYSIS OF INTEGRATED ACC AND LKC

We consider the safety problem of a vehicle equipped
with both an ACC and a LKC system following a lead car.
Figure 1 shows the multi-modal PHS of the vehicle dynamics
connected to the ACC and LKC systems via power ports.
Disturbances from wind are modeled as ports attached to the
longitudinal and lateral vehicle dynamics, while disturbance
from the slope of the road is modeled as a port attached to
the longitudinal vehicle dynamics.

A. PHS Representation of the System Model

We derived the discrete-time PHS representation of the
system model from the continuous-time PHS presented
in [5]. For length considerations, we will omit detailed
explanations of the variables that can be found in [5].

1) Vehicle Longitudinal Dynamics: The longitudinal dy-
namics has the following Hamiltonian function:

Hx(qx,k, px,k) =
1

2m
p2x,k + Ux(qx,k),

and it is modeled as:






























































[

qx,k+1−qx,k

ts
px,k+1−px,k

ts

]

=

[

0 1
−1 −Rx,k

]

[

∂Hx

∂qx,k

∂Hx

∂px,k

]

+Qx(px,k)

+

[

0
Gx

]

ux(k) +

[

0
1

]

dx(k) +

[

δg(k)

δwx(k)

]

yx(k) =
[

0 GT

x

]

[

∂Hx

∂qx,k

∂Hx

∂px,k

]T

zx(k) =
[

0 1
]

[

∂Hx

∂qx,k

∂Hx

∂px,k

]T

[

ζg(k)
ζwx(k)

]

=

[

0 1
0 1

]

[

∂Hx

∂qx

∂Hx

∂px

]T

,

(2)

Fig. 2. Free-body diagram of the vehicle dynamics

Qx(px,k) =

[

0 1
2mp2x,k+1 −

1
2mp2x,k

1
2mp2x,k − 1

2mp2x,k+1 0

]

2) Vehicle Lateral Dynamics: The lateral dynamics has
the following Hamiltonian function:

Hl(qy,k, qr,k, py,k, pr,k) =
1

2m
p2y,k+

1

2I
p2r,k+Ul(qy,k, qr,k),

and it is modeled as:


























































[

ql,k+1−ql,k
ts

pl,k+1−pl,k

ts

]

=

[

0 E
−E −Rl,k

]

[

∂Hl

∂ql,k
∂Hl

∂pl,k

]

+Ql(pl,k)

+

[

0
Gl

]

Tl(k) +

[

0
Kl

]

dl(k) +

[

0
Ll

]

δwl(k)

yl(k) =
[

0 GT

l

]

[

∂Hl

∂ql,k

∂Hl

∂pl,k

]T

zl(k) =
[

0 KT

l

]

[

∂Hl

∂ql,k

∂Hl

∂pl,k

]T

ζwl(k) =
[

0 LT

l

]

[

∂Hl

∂ql

∂Hl

∂pl

]T

,

(3)

Rl,k =

[

W1

Vx,k

W2

Vx,k

W2

Vx,k

W3

Vx,k

]

,

Ql(pl,k)[i, j] =































1
2mp2y,k+1 −

1
2mp2y,k, if (i, j) = (1, 3)

1
2I p

2
r,k+1 −

1
2I p

2
r,k, if (i, j) = (2, 4)

1
2mp2y,k − 1

2mp2y,k+1, if (i, j) = (3, 1)
1
2I p

2
r,k − 1

2I p
2
r,k+1, if (i, j) = (4, 2)

0, if (i, j) = any other pair

3) Interaction Between Longitudinal and Lateral Dynam-
ics: Interactions between the longitudinal and lateral dynam-
ics are a result of the vehicle heading angle being affected
by longitudinal velocity and can be derived by analysis of
the free-body diagram in Figure 2 [16]. Composition of the
longitudinal and lateral dynamics is modeled through the
interaction structure of (4) modulated by the sampled angular
momentum pr,k:

[

dx(k)
dl(k)

]

=

[

0 −
mpr,k

I

−
mpr,k

I
0

]

[

zx(k)
zl(k)

]

. (4)

4) Adaptive Cruise Control Design: The ACC is con-
nected to the longitudinal vehicle dynamics through the
control ports of Ta(k) and Tb(k). The ACC has the following
Hamiltonian function:

Ha(xa,k) =
1

2
(stktix

2
at,k + sbkbix

2
ab,k),
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and it is represented by the following discrete-time model:


















xa,k+1−xa,k

ts
= −Ra

∂Ha

∂xa,k
+Gayx(k) +Ka1da1(k)

ux(k) = GT

a
∂Ha

∂xa,k
+ Sayx(k) +Ka2da2(k)

[

za1(k)
za2(k)

]

=

[

KT

a1 0
0 KT

a2

] [

∂Ha

∂xa,k

yx(k)

]

.

(5)

Ra =

[

stkt 0
0 sbkb

]

, Ga =

[

stP 0
0 sb

]

,

Ma =

[

stktd 0
0 sbkbd

]

.

5) Lane Keeping Control Design: The LKC connects with
the lateral vehicle dynamics through the control port of Tl.
The LKC has the following Hamiltonian function:

Hb(xb,k) =
1

2
ksix

2
b,k,

and it is represented by the following discrete-time model:






















xb,k+1−xb,k

ts
= yl(k) + db1(k)

Tl(k) = ∂Hb

∂xb,k
+ ksdyl(k) + db2(k)

[

zb1(k)
zb2(k)

]

=

[

1 0
0 1

]

[

∂Hb

∂xb,k

yl(k)

]

.

(6)

6) Interaction Between the Controllers: We connect the
ACC and LKC using the following interaction structure, so
that the state variables and outputs of the ACC are affected
by the state variable of the LKC, and vice versa.









da1(k)
da2(k)
db1(k)
db2(k)









=









0 0 Jc 0
0 0 0 Mc

−JT

c 0 0 0
0 −MT

c 0 0

















za1(k)
za2(k)
zb1(k)
zb2(k)









, (7)

where the parameters Jc and Mc define how the speed
control and the steering control interact. The purpose of the
interaction structure is to lower the speed of the vehicle in
the event of a turn by transferring energy from the ACC to
the LKC.

7) Closed-Loop System: The closed-loop system, com-
posed from (2), (3), (4), (5), (6), and (7), has a Hamiltonian
function H̃(qk, pk, zk) = Hx + Hl + Ha + Hb, sampled
continuous states {qk, pk, xk} ∈ X̃ , initial states X̃0 =
X̃p0× X̃c0×Sa, discrete transitions T̃ ⊆ (X̃×Sa) → (X̃×
Sa), and disturbances δ(k) = {δg(k), δwx(k), δwy(k)} ∈
∆g(k)×∆wx(k)×∆wy(k).





























































qk+1−qk
ts

pk+1−pk

ts
xk+1−xk

ts






=







0 I 0

−I J̃k − R̃k K̃

0 −K̃T −Q̃















∂H̃
∂qk

∂H̃
∂pk

∂H̃
∂xk









+







0

L̃

0






δ(k)

ζ(k) =
[

0 L̃ 0
]

[

∂H̃
∂qk

∂H̃
∂pk

∂H̃
∂xk

]T

(8)

where J̃k, K̃, L̃, R̃k, and Q̃ are defined as:

J̃k =







0
mpr,k

I
−Mc −lfMc

−
mpr,k

I
+Mc 0 0

lfMc 0 0






,

R̃k =







Rx,k 0 0

0 mW1

px,k
+ ksd

mW2

px,k
+ lfksd

0 mW2

px,k
+ lfksd

mW3

px,k
+ l2fksd






,

K̃ =







stP sb 0

0 0 −1

0 0 −lf






, L̃ =







1 1 0

0 0 1

0 0 0






,

Q̃ =





stkt 0 −Jc

0 sbkb 0
Jc 0 0



 .

B. Safety Problem

The safety condition for the longitudinal dynamics asserts
that the relative distance between the two vehicles will fall
below a minimum distance qm.

Xku =

{

qx,k ∈ R : qx,k ≥

k
∑

i=0

tsVl,i + ql(0) + qm

}

, (9)

where ql(0) is the initial displacement value of the lead
vehicle. The unsafe set states that the system is unsafe if
the displacement of the host vehicle exceeds that of the lead
vehicle extended by qm, which is indicative of an impending
collision. Given (8), the safety condition for the closed-loop
system states that that all possible trajectories cannot reach
the unsafe region described by (9).

In order for the vehicle to operate safely on the road, its
lateral acceleration must not exceed a maximum value Am.
If the lateral acceleration exceeds Am, the vehicle will skid.
This lateral acceleration value of the vehicle is affected by
the yaw rate and longitudinal velocity of the vehicle.

Xlu = {pxk
∈ R, prk ∈ R : pxpr ≥ m2IAm}. (10)

This safety condition indicates that longitudinal and lateral
motion are bounded by a hyperbolic relationship. Using
this safety constraint we must verify that the product of
longitudinal momentum and yaw rate does not exceed a
maximum threshold. Given (8) and H̃(q, p, z), the safety
condition for the vehicle dynamics, ACC system, and LKC
system states that that all possible trajectories cannot reach
the unsafe region described by (9) and (10).

C. Safety Analysis

The initial states are defined as Init(sa) = {(qk, pk, xk) ∈
X̃ : (qk, pk, xk, sa) ∈ X̃0} and the unsafe states
are defined as Unsafe(sa) = {(qk, pk, xk) ∈ X̃ :
(qx,k, px,k, pr,k) ∈ Xku × Xlu. Each transition from
sa ∈ Sa to s′a ∈ Sa is associated with the guard
set Guard(sa, s′a) = {(qk, pk, xk), (qk, pk, xk)

′ ∈ X̃ :
(qk, pk, xk, sa) → (q′k, p

′

k, x
′

k, s
′

a)}. Using similar assump-
tions as in the continuous-time case [5], we can prove that
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Fig. 3. HIL simulator architecture [7]

(8) is guaranteed to be safe, given the following coordinate
transformation Φ̃k =

[

Φ̃x,k Φ̃y,k Φ̃r,k

]T

:




px,k
py,k
pr,k



 =





Φ̃x,k(px,k)

Φ̃y,k(py,k)

Φ̃r,k(pr,k)





=







px,k −m(1 + γXr−Xd

Xd
)Vl −Mcxb,k

py,k + ksi(qy,k − qd) +Mc(xat,k + xab,k)

pr,k + ksi(qr,k − qd
lf
) +Mc

xat,k+xab,k

lf






.

We restate the first condition of Theorem 1 as
H̃(Φ̃−1

k (pk)) ≤ α̃k, ∀(qk, pk, xk) ∈ Init(sa), where

α̃ = mktd+kbd

2 (Vx,0 − (1 + γ
Xr,0−hVl,k−S0

hVl,0+S0
)Vl,0)

2

+m
2 V

2
x,0 sin

2(ρ(0)Vx,0 + ω(0)) + I
2ρ

2(0)V 2
x,0.

We restate the second condition of Theorem 1 as
H̃(Φ̃−1

k (pk)) > β̃k, ∀(qk, pk, xk) ∈ Unsafe(sa), where

β̃ = mktd+kbd

2 (Vx,k − (1− γ)Vl,k − Mc

m
(qy,k − qd))

2

+m
2 (Vx,k sin(ρVx,k + ω) + ksi(qy,k − qd))

2

+ I
2 (ρVx,k + ksi(qy,k − qd

lf
))2.

Given the disturbances {δg(k), δwx(k), δwy(k)} ∈ ∆, we
must guarantee that the system trajectory will never begin
in Init(sa) and end in Unsafe(sa). Consequently, we restate
the third condition of Theorem 1 as

ζg(k)δg(k) + ζwx(k)δwx(k) + ζwy(k)δwy(k)

≤
∂H̃(Φ̃−1

k (pk))

∂(qk, pk)

T

∂Φ̃k

∂pk
R̃(Φ̃−1

k (pk))
∂Φ̃k

∂pk

T

∂H̃(Φ̃−1
k (pk))

∂(qk, pk)
.

Discrete transitions between throttle and brake control mode
must also be taken into account in order to guarantee that
the system will not transition into Unsafe(sa). We restate
the fourth condition of Theorem 1 as H̃(Φ̃−1

k (pk)) ≤
α̃k, ∀(qk, pk, xk) ∈ Guard(st, sb) ∪ Guard(sb, st).

IV. EVALUATION AND VALIDATION

Our objective is to implement the proposed control design
into a hardware-in-the-loop (HIL) simulation platform and
ensure that the system is safe. The HIL platform, shown in

Fig. 4. Trajectory of the road

Figure 3 and detailed in [7], provides a realistic environment
for validating automotive control software. The physical
dynamics of the vehicle is modeled in CarSim [1] and
is simulated in real-time. The vehicle simulation interfaces
with three electronic control units (ECUs) that form a time-
triggered network (100Mbps TTEthernet developed by TT-
Tech [20]). We selected the control parameters (from Table I)
using the method presented in [4]. We used a sampling period
of 10 ms. We quantized the controllers using Simulink’s
Fixed-Point Toolbox, which allows us to set the word lengths
as 32-bit fixed point data. The safety analysis method of this
paper ensures that the control parameters will result in a safe
closed-loop system.

TABLE I

TABLE OF CONTROLLER GAINS

kti kbi kt ktd kb kbd ksi ksd

0.05 0.01 0.1 0.02 0.2 0.02 40 15

In this section we present simulation results to validate
the safety analysis approach and to compare them to the
continuous-time results presented in [5]. Simulation of the
closed-loop system consists of two minutes of running time
in which the host vehicle follows a lead vehicle on the road
on a trajectory (Figure 4). The safety conditions derived in
Section III are valid for vehicle velocities given a maximum
road decline angle of 15 degrees which corresponds to δg =
4200 N and a maximum lead vehicle deceleration of 5 m/s2

which corresponds to a braking distance of 50 m from 80
km/hr to 0 km/hr.

Figure 5 shows the relative distance between the two vehi-
cles for the continuous-time case and the conservative time-
discretization case. Figure 6 shows the lateral acceleration
of the host vehicles for the continuous-time case and the
conservative time-discretization case. The continuous-time
results are derived from simulations using only Simulink [12]
and CarSim [1] [5]. The conservative time-discretization
results indicate that the system behaves in a safe manner.
One of the main goals of using this discretization method
is for the discrete-time results to match the continuous-time
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Fig. 5. Relative distance comparison

Fig. 6. Lateral acceleration comparison

results. Figures 5 and 6 indicate that the continuous-time and
discrete-time results mostly match.

V. CONCLUSION

This paper considers the safety problem of PHS and
its application to adaptive cruise control and lane keeping
control. Safety analysis can be performed using continuous-
time models and passivity but implementation of the control
system may not preserve passivity because of the fact that
passivity degrades during discretization. Our objective is
to perform safety analysis using discrete-time models, so
that we can use the results to reason about safety of the
implementation of the control system in a realistic setting.
We developed a safety analysis method using conservative
time-discretization and we presented a case study for the
safety analysis of a automotive control systems that shows
collision and skidding avoidance. The method is evaluated

by implementing the control design in a HIL simulation
platform and comparing the results with simulations of the
continuous-time design.

ACKNOWLEDGEMENT

This work is supported in part by the National Science
Foundation (CNS-1035655).

REFERENCES

[1] CarSim. http://www.carsim.com. Mechanical Simulation Corporation,
Ann Arbor, MI, USA, 2013.

[2] J. Cervera, A. J. van der Schaft, and A. Baños. Interconnection of port-
hamiltonian systems and composition of dirac structures. Automatica,
43:214–217, February 2007.

[3] R. Costa-Castello and E. Fossas. On preserving passivity in sampled-
data linear systems. Proceedings of the 2006 American Control
Conference, pages 4373–4378, June 2006.

[4] S. Dai and X. Koutsoukos. Model-based automotive control design
using port-hamiltonian systems. International Conference on Complex
Systems Engineering (ICCSE 2015), November 2015.

[5] S. Dai and X. Koutsoukos. Safety analysis of automotive control
systems using multi-modal port-hamiltonian systems. 19th ACM In-
ternational Conference on Hybrid Systems: Computation and Control
(HSCC 2016), April 2016.

[6] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx. Model-
ing and Control of Complex Physical Systems: The Port-Hamiltonian
Approach. Springer, New York, NY, 2009.

[7] E. Eyisi, Z. Zhang, X. Koutsoukos, J. Porter, G. Karsai, and J. Szti-
panovits. Model-based design and integration of cyber-physical
systems: An adaptive cruise control case study. Journal of Control
Science and Engineering, Special Issue on Embedded Model-Based
Control, 2013.

[8] K. Fujimoto and T. Sugie. Canonical transformation and stabilization
of generalized hamiltonian systems. Systems and Control Letters,
42:217–227, 2001.

[9] O. Gonzalez. Time integration and discrete hamiltonian systems.
Journal of Nonlinear Science, 6:449–467, 1996.

[10] H. Khalil. Nonlinear Systems. Prentice-Hall, Inc., Upper Saddle River,
NJ, 2002.

[11] D. S. Laila and A. Astolfi. Construction of discrete-time models
for port-hamiltonian systems with applications. Systems and Control
Letters, 55:673–680, 2006.

[12] MATLAB. Version R2012a, http://www.mathworks.com. The Math-
works, Inc., Natick, MA, USA, 2012.

[13] Y. Oishi. Passivity degradation under the discretization with the zero-
order hold and the ideal sampler. 49th IEEE Conference on Decision
and Control, December 2010.

[14] S. Prajna. Barrier certificates for nonlinear model validation. Auto-
matica, 42:117–126, 2006.

[15] S. Prajna and A. Rantzer. Primal-dual tests for safety and reachability.
In In: Hybrid Systems Computation and Control, pages 542–556.
Springer-Verlag, 2005.

[16] R. Rajamani. Vehicle Dynamics and Control. Mechanical Engineering
Series, 2012.

[17] C. Sloth, G. J. Pappas, and R. Wisniewski. Compositional safety
analysis using barrier certificates. 2012 Conference on Hybrid Systems
Computation and Control, April 2012.

[18] O. J. Staffans. Passive linear discrete time-invariant systems. Proceed-
ings of the International Congress of Mathematicians, 2006.

[19] S. Stramigioli, C. Secchi, A. J. van der Schaft, and C. Fantuzzi.
Sampled data systems passivity and discrete port-hamiltonian systems.
IEEE Transactions on Robotics, 21(4):574–587, 2005.

[20] TTEthernet. http://www.tttech.com/en/products/ttethernet/. TTTech
Computertechnik AG, Vienna, Austria, 2013.

[21] A. van der Schaft. Port-hamiltonian systems: Network modeling
and control of nonlinear physical systems. Advanced Dynamics and
Control of Structures, 2004.

[22] A. van der Schaft. Port-hamiltonian systems: An introductory survey.
Proceedings of the International Congress of Mathematicians, 2006.

[23] H. Yu and P. Antsaklis. A passivity measure of systems in cascade
based on passivity indices. 49th IEEE Conference on Decision and
Control, December 2010.

2985


