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Improving Network Connectivity and Robustness
Using Trusted Nodes With Application to

Resilient Consensus
Waseem Abbas , Aron Laszka , and Xenofon Koutsoukos , Fellow, IEEE

Abstract—To observe and control a networked system,
especially in failure-prone circumstances, it is imperative
that the underlying network structure be robust against
node or link failures. A common approach for increasing
network robustness is redundancy: deploying additional
nodes and establishing new links between nodes, which
could be prohibitively expensive. This paper addresses the
problem of improving structural robustness of networks
without adding extra links. The main idea is to ensure that
a small subset of nodes, referred to as the trusted nodes,
remains intact and functions correctly at all times. We ex-
tend two fundamental metrics of structural robustness with
the notion of trusted nodes, network connectivity, and r-
robustness, and then show that by controlling the num-
ber and location of trusted nodes, any desired connectivity
and robustness can be achieved without adding extra links.
We study the complexity of finding trusted nodes and con-
struction of robust networks with trusted nodes. Finally, we
present a resilient consensus algorithm with trusted nodes
and show that, unlike existing algorithms, resilient consen-
sus is possible in sparse networks containing few trusted
nodes.

Index Terms—Dominating sets, network connectivity, re-
silient consensus, robust graphs.

I. INTRODUCTION

THE CORRECT operation of most networked and dis-
tributed systems requires information exchange and co-

operation between individual components. As a consequence,
malicious attackers may try to disconnect and disrupt networked
systems by impairing or tampering with components, for exam-
ple, using denial-of-service type cyber-attacks, wireless jam-
ming, or even physical attacks. Since it is virtually impossible
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to protect every node in a network against all possible attacks,
networks operating in potentially adversarial environment must
be designed to be structurally robust. In the literature, a wide
variety of notions has been introduced for quantifying structural
robustness (e.g., [2]–[4]) as well as an equally wide variety of
approaches for increasing robustness. A common aspect of these
approaches is that they aim to provide robustness through aug-
menting the network by deploying additional nodes and com-
munication links. In other words, these approaches increase
robustness through redundancy. For instance, network connec-
tivity can be improved by strategically adding links between
nodes, a technique commonly referred to as the connectivity
augmentation (e.g., [5], [6]).

Although effective, improving structural robustness of the un-
derlying network by adding further links between nodes may be
impossible or prohibitively expensive in practice. For instance,
to solve a distributed consensus problem by a group of nodes of
which a small subset may act maliciously, various resilient con-
sensus algorithms have been proposed. These algorithms guar-
antee consensus if the underlying network graph satisfies cer-
tain connectivity and robustness requirements. However, these
requirements are typically overly restrictive in the sense that
the network needs to be very highly connected and dense to
override the effects of even a very small number of malicious
nodes (e.g., [7]–[9]). This restriction limits the applicability of
existing algorithms in sparse networks, or in scenarios wherein
adversaries might exist in greater numbers.

In this paper, we study an alternative approach for increas-
ing structural robustness, including connectivity. We consider
improving the robustness of network structures through device
hardening. The idea is to ensure the availability and operational
integrity of a very small subset of nodes, which we call trusted
nodes, at all times by protecting them from failures and attacks.
While it is often impossible to protect most devices from attacks,
we can typically afford to harden a small set of devices. For
example, we can protect devices against physical compromise
through tamper-proof hardware and can protect them against
cyber-attacks by hardening their software. Since device hard-
ening is expensive, the set of trusted nodes must be small and
carefully chosen.

We investigate the question of how can a sparse network that
has fewer connections but contains a small number of trusted
nodes exhibit the structural attributes of a highly connected
or robust network? In this direction, we first consider network
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connectivity since it is a fundamental property of any network,
and it is by far the most widely used metric of topological
robustness. Second, we consider a recently introduced measure
of structural robustness in graphs referred to as r-robustness [2].
This robustness notion is very useful in characterizing resilience
of various dynamical processes over networks in an adversarial
environment [3], [10]. In fact, for a class of distributed consensus
algorithms, the ability to guarantee consensus among nodes,
some of which act maliciously, can be completely specified in
terms of the r-robustness of the network graph (e.g., [11]–[13]).

A. Contributions and Organization

Our main contributions are as follows.
1) We propose and characterize the notion of network con-

nectivity and robustness with trusted nodes and show that
these network properties can be significantly improved by
selecting a small subset of nodes as trusted and without
adding extra links. As a consequence, even sparse net-
works having few trusted nodes can behave as highly
connected or more robust networks.

2) For network connectivity with trusted nodes, we show
that computing an optimal set of trusted nodes to achieve
a desired connectivity is computationally hard. Then, we
present a heuristic to compute a small subset of trusted
nodes and present a numerical evaluation.

3) For robustness, we show that deploying a trusted node is
equivalent to deploying a certain number of nontrusted
nodes, thereby comparing two alternative approaches to
achieve the desired robustness in networks. We also pro-
vide results regarding a combination of smaller networks
with a given robustness to construct bigger networks with
the same robustness properties.

4) Using the notion of r-robustness with trusted nodes, we
study a resilient consensus problem. In particular, we
present necessary and sufficient conditions in terms of
the robustness of an underlying network graph to achieve
consensus in the presence of malicious nodes. By con-
trolling the number and locations of trusted nodes, the
desired robustness and, hence, resilient consensus can be
achieved even in sparse networks.

The rest of this paper is organized as follows: Section I-B
presents a brief overview of the related work. Section II de-
scribes preliminaries and definitions that will be used throughout
the paper. Section III presents the notion of network connectiv-
ity with trusted nodes, the complexity of finding an optimal
set of trusted nodes, and presents heuristics along with numeri-
cal evaluations. Section IV introduces r-robustness with trusted
nodes. Section V relates trusted nodes to other graph construc-
tions that increase robustness. Section VI utilizes the notion of
r-robustness with trusted nodes and presents a resilient consen-
sus algorithm along with necessary and sufficient conditions for
consensus. Finally, Section VII concludes this paper.

B. Related Work

To quantify changes in a network structure as a result of node
or edge removals and, hence structural robustness, various mea-
sures have been reported in the literature such as integrity, tough-

ness [14], fragmentability [15], expansion ratio [16], and others
(e.g., see [4] and [17]). Recently, the notion of r-robustness in
graphs, introduced in [18] and [2], has received much attention
for its usefulness in characterizing the resilience of dynamical
processes over networks in an adversarial environment (e.g.,
[13], [19]–[21]). Structural robustness, such as network con-
nectivity, can be improved by adding links between nodes. The
problems related to adding the minimum number of edges to
attain the desired network connectivity are referred to as the
connectivity augmentation problems. In graph-theoretic terms,
the issue was investigated in detail for the first time in [22] and
extensively studied later. For a comprehensive list of papers in
the area of connectivity augmentation, we refer readers to an
earlier survey by Frank [23] and [5, ch. 8].

Moreover, there has been an increasing interest in utilizing
game theory to create networks satisfying certain attributes [24],
[25]. In a typical network creation game, the goal is to include
or remove edges between nodes to optimize various network
performance measures such as connectivity. A cost is associated
with the creation of an edge, and the objective is to achieve a
network with the desired attributes while minimizing the cost
(e.g., [26], [27]).

Contrary to the approach of achieving the desired structural
robustness in graphs by strategically adding edges, we use the
notion of trusted nodes. In fact, we show that by selecting a small
subset of nodes as trusted, we can achieve any desired network
connectivity and r-robustness. Our notion of trusted nodes is
similar to that of anchor nodes used in [28] to maximize the
size of k-core in graphs, which is often used to model users
participation in social networking phenomena. In a recent work,
Dziubiński and Goyal [29] explore tradeoffs between the cost
of adding links and defending nodes against attacks for network
connectivity.

II. PRELIMINARIES

We consider a network of agents that is modeled by an undi-
rected graph G(V, E), in which the vertex set V represents
agents and the edge set E corresponds to the information ex-
change among agents. An (undirected) edge between nodes
i and j is represented by ij. The neighborhood of node i is
defined as N (i) = {j ∈ V : ij ∈ E}, and the closed neighbor-
hood is N [i] = N (i) ∪ {i}. The cardinality of N (i) is called
the degree of node i. A path P of length n is a nonempty
graph with the vertex set V = {u0 , u2 , . . . , un} and the edge set
{u0u1 , u1u2 , . . . , un−1un}. The vertices u0 and un are the end
vertices, whereas all remaining vertices are the inner vertices
of the path. In a graph G, two paths are independent if they
do not have any common inner vertex. We use the terms ver-
tex and node interchangeably throughout this paper. If W ⊂ V ,
then G \W is the subgraph induced by the remaining vertices
and edges of G. If G \W has at least two components, then W
separates G. Similarly, if u and v belong to two different com-
ponents, then W separates u and v. Such a set W is referred to
as the vertex cut.

A. Network Connectivity

Connectivity is a fundamental graph property. A graph is k-
connected if there does not exist a set of k − 1 vertices whose
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removal disconnects the graph. Vertex connectivity or simply
connectivity of G, denoted by κ(G), is the maximum value of
k for which G is k-connected. The connectivity of a complete
graph with n nodes is defined to be n− 1 although no vertex
cut exists. A classical theorem of Menger relates the notion
of connectivity to the number of independent paths between
any two nodes (e.g., see [30]). It states that if u and v are
distinct, nonadjacent vertices of G, then the minimum size of a
vertex cut separating u and v is equal to the maximum number
of independent paths between u and v. Consequently, for any
k ≥ 2, a graph is k-connected if and only if any two vertices
have k-independent paths between them.

B. Network Robustness

Several measures of network robustness exist in the literature
as discussed in Section I-B. Owing to its usefulness in charac-
terizing the resilience of dynamical processes over networks, in
this paper, we consider the notion of r-robustness as introduced
in [2] and [18].

In a graph G(V, E), a subset S ⊂ V is r-reachable if there
exists a node in S that has at least r neighbors in N (i) \ S.

Definition (r-robustness [2]): A graph G(V, E) is r-robust
if for every pair of nonempty, disjoint subsets of V , at least one
of the subsets is r-reachable.

The notion of r-robustness can be further generalized as fol-
lows: let r ∈ Z+ , then define X r

S ⊆ S to be the subset of nodes
in S, each of which has at least r neighbors outside of S, that is

X r
S = {i ∈ S : |N (i) \ S| ≥ r}. (1)

Definition ((r, s)-robustness [2]): A graph G(V, E) is said
to be (r, s)-robust for some r, s ∈ Z+ , if for any pair of
nonempty and disjoint subsets of V , say S1 and S2 , at least
one of the following is true:

(i) |X r
S1
| = |S1 |,

(ii) |X r
S2
| = |S2 |,

(iii) |X r
S1
|+ |X r

S2
| ≥ s.

(2)

Note that r-robustness is the same as (r, 1)-robustness. In
Appendix B, we list all possible r-robust graphs with n nodes,
where n ∈ {3, 4, . . . , 9}.

The notion of (r, s)-robustness is very effective in character-
izing the resiliency of a class of distributed consensus algorithms
in the presence of malicious and misbehaving nodes. In compar-
ison to the classical k-connectivity, the notion of r-robustness
is more pertinent to quantify the local connectivity of nodes [3]
and, hence, is more suitable in characterizing network topologies
in the context of local-information-based algorithms, including
distributed consensus algorithms.

Next, we extend the connectivity and robustness notions to
include trusted nodes. We begin with the notion of network
connectivity with trusted nodes in the next section.

III. NETWORK CONNECTIVITY WITH TRUSTED NODES

In the traditional k-connectivity notion, the idea is to ensure
that the graph remains connected if any k − 1 nodes are removed
from the network. By adding more edges between nodes, vertex
connectivity can be improved. However, if we fix a small subset

Fig. 1. Independent paths with T = {x}.

Fig. 2. G with the set of trusted nodes {u, v, z} and the resulting G′.

of nodes such that it cannot be removed from the network, then
the minimum number of nodes from the remaining set that is
required to disconnect the network also increases. Thus, instead
of adding more edges or links, we get an alternative way to
improve network connectivity. A merit of this approach is that
by making only a very small fraction of nodes insusceptible to
removals, or as we call trusted, the overall node connectivity
can be significantly improved. In practice, trustedness can be
achieved by making such components more resilient and secure
against physical attacks, tampering, and malicious intrusions
through sophisticated security mechanisms. Next, we define the
notion of connectivity with trusted nodes T as follows.

Definition (k-connected with T ): An undirected graph
G(V, E) is said to be k-connected with T ⊆ V , if there does
not exist a set of, at most, (k − 1) vertices in V \ T whose
removal disconnects the graph. The maximum value of k for
which the graph is k-connected with T is denoted by κT (G)
and is referred to as the connectivity with T .

Analogous to the independent paths, we define the notion of
independent paths with T as follows. If T is the set of trusted
nodes, then two paths are independent with T if any inner vertex
that is common in both paths is a trusted node. For instance, in
Fig. 1, paths {u1u2 , u2x, xu3} and {v1v2 , v2x, xv3} are inde-
pendent with T = {x}. A path consisting of only trusted nodes
is referred to as the trusted path. If for any pair of nodes, there
exists a trusted path between them, then G is referred to as com-
pletely connected with T . If a graph is completely connected
with T , we define its κT =∞.

Next, we compute and relate connectivity with trusted nodes
to the traditional notion of connectivity. Let G′(V, E′) be a graph
obtained from G(V, E) as follows: for every nonadjacent pair of
nodes u and v in G, if there exists a trusted node that is adjacent
to both u and v, or if there is a trusted path connecting u and
v, then add an edge uv in G′. An example is shown in Fig. 2,
where {u, v, z} is the set of trusted nodes in G. Since nodes u
and v induce a trusted path in G, all neighbors of u and v are
pair-wise adjacent in G′. Similarly, neighbors of trusted node z
are adjacent in G′.

Proposition 3.1: Let G(V, E) be a graph that is not com-
pletely vertex connected with T , then κT (G) = κ(G′).
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Fig. 3. (a) Graph is 2-connected. (b) The graph becomes 4-connected
with T = {6, 10}. Between nodes 5 and 9, there are four independent
paths with T , shown in red, blue, green, and yellow.

Proof: Let κT (G) = k. If nodes u and v are connected
through a trusted path in G, then u and v are adjacent in G′.
Thus, if there is no subset of k − 1 nontrusted nodes in G whose
removal disconnects the graph, then there is no subset of any
k − 1 nodes in G′ whose removal disconnects G′. Similarly, we
observe that every vertex-cut in G consisting of only nontrusted
nodes is also a vertex-cut in G′. �

A direct consequence of the above-mentioned proposition is
the following Menger’s-type result.

Corollary 3.2: For a graph G(V, E) and T ⊆ V , the follow-
ing statements are equivalent.

1) G is k-connected with T .
2) For any two distinct, nonadjacent vertices u, v ∈ V , either

there exists a trusted path between u and v, or there exist
at least k paths between u and v that are independent with
T .

As an example, consider a 2-connected graph in Fig. 3, which
becomes 4-connected with two trusted nodes T = {6, 10}. To
compute the connectivity of G with T , we first obtain G′ as
above, and then can use any algorithm to compute the connec-
tivity ofG′. There is extensive literature on such algorithms [31].
A typical approach is to utilize the max-flow-min-cut theorem
(e.g., see [5]).

A. Computing a Set of Trusted Nodes

In this section, we present heuristics to select a minimum set
of trusted nodes T to achieve desired connectivity.

1) Problem Complexity: First, we show that finding a min-
imum set of trusted nodes that achieve certain connectivity is a
computationally hard problem. We begin by formulating this as
a decision problem.

Definition Trusted connectivity augmentation problem
(TCAP): Given a graph G(V, E), a desired connectivity k′, and
the number of trusted nodes T , determine if there exists a set
of trusted nodes T of cardinality T such that G is k′-connected
with T .

Theorem 3.3: TCAP is NP-hard.
We show that TCAP is NP-hard using a reduction from a

well-known NP-hard problem, the set cover problem (SCP).
Set cover problem (SCP): Given a base set U , a family F

of subsets of U , and a threshold size t, determine if there exists
a subfamily C ⊆ F of cardinality t whose union is U .

Proof: Given an instance of SCP, we construct an instance
of TCAP as follows.

1) For each element u ∈ U , create a node u. Similarly, for
each member F of the family F , create a node F .

2) For each u ∈ U and F ∈ F , create an edge (u, F ) if
u ∈ F .

3) For each F1 , F2 ∈ F , create an edge (F1 , F2).
4) Let the number of trusted nodes be T = t, and let the

desired connectivity be k′ = |F|.
It is clear that the reduction can be performed in polynomial

time. As a consequence, we only need to show that TCAP has a
solution if and only if SCP does.

First, let us suppose that there exists a set cover C of cardinal-
ity t. Then, let the set of trusted nodes be T = C. Since C is a
set cover of U , every node corresponding to an element of U is
connected to a trusted node in T . Furthermore, every node cor-
responding to a member of F \ C is also connected to a trusted
node in T , and the trusted nodes are connected to each other.
Consequently, G cannot be separated by the removal of any set
of nontrusted nodes, which proves that T = C is a solution for
TCAP.

Second, let us suppose that there does not exist a set cover
of cardinality t. Now, we will show that the graph G cannot
be k′-connected with any set of trusted nodes T of cardinality
T = t. Let T be an arbitrary set of trusted nodes of cardinality
T , and consider the removal of all nontrusted nodes correspond-
ing to members of F . Since T ∩ F cannot be a set cover due
to our supposition, there exists an element u ∈ U that is con-
nected only to nontrusted nodes. Consequently, the removal of
the nontrusted nodes corresponding to members of F separates
u from the remainder of the graph, which proves that T cannot
be a solution for TCAP. �

2) Heuristic: In a graph, complete connectivity with T is
obtained whenever any two nodes are connected through a
trusted path between them. A node trusted path exists between
any pair of nodes if and only if T is a connected dominating set,
which is defined as follows.

Definition (Connected dominating set): In a graph
G(V, E), a subset of nodes Σ ⊆ V is a connected dominating set
if for every u ∈ V , either u ∈ Σ or u is adjacent to some v ∈ Σ,
and the nodes in Σ also induce a connected subgraph. The car-
dinality of the smallest connected dominating set is known as
the connected domination number, denoted by γG .

For any k, the minimum cardinality of trusted nodes that are
required to achieve the desired k-connectivity withT is bounded
by γG

|T | ≤ γG . (3)

Thus, starting from the set T = Σ, we can iteratively reduce the
cardinality of T to obtain a minimal set of trusted nodes with
which the graph remains k-connected with T . The notion of
connected dominating set in graphs has been extensively studied
in both graph theory and sensor network literature (e.g., see [32]
and [33]), wherein a wide variety of applications along with
various distributed algorithms for constructing small connected
dominating sets have been reported.
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Algorithm 1: Trusted Nodes for Connectivity.

1: Input: G(V, E), k′

2: Output: T ⊆ V
3: Σ← Conn Dom Set(G)
4: T ← Σ
5: for i = 1 to |Σ| do
6: v ← V Conn Trust(G, T \ {Σ(i)})
7: if v ≥ k′ do
8: T ← T \ {Σ(i)}
9: end if

10: end for

Let V Conn Trust(G, T ) denote the procedure for determin-
ing connectivity with a given T , and let Conn Dom Set(G) de-
note the procedure for finding a minimal connected dominating
set. Then, a minimal T required to achieve a desired connec-
tivity k′ with trusted nodes can be obtained using Algorithm 1.
Starting from T = Σ, in each iteration, a node is removed if
the resulting connectivity is greater than or equal to the desired
connectivity with T .

Note that in Algorithm 1, O(|Σ|) calls are made to the sub-
routine that computes connectivity with trusted nodes.

B. Numerical Evaluation

We evaluate our results for three different types of networks,
including preferential attachment (PA) networks, Erdős–Rényi
(ER) networks, and random geometric (RG) networks. These
networks are frequently used to model various networking phe-
nomena existing in nature and for various engineering applica-
tions. The details of networks considered for our simulations
are stated as follows.

1) PA networks with n = 100 nodes were obtained by
adding nodes to existing networks one-by-one. Each new
node was connected to m = 3 existing nodes such that
the probability of connecting to an existing node was
proportional to its degree.

2) ER networks consisting of n = 100 nodes were generated
such that the probability of an edge between any two
nodes was p = 0.07.

3) RG networks consisting of n = 100 nodes were generated
by distributing the nodes uniformly at random in a unit
square. An edge exists between any two nodes if the
Euclidean distance between them is, at most, 0.18.

Every single point in the plots in Fig. 4 is an average taken
over 30 randomly generated instances. The minimum number
of trusted nodes (computed byAlgorithm 1) sufficient to achieve
the desired connectivity with T is plotted in Fig. 4. In the case
of the PA networks, connectivity without trusted nodes is 3. To
increase the connectivity from 3 to 4, we observe a big jump in
|T |, which is almost equal to the size of the minimum-connected
dominating set. In the case of our PA networks, connectivity with
T is exhibited as an “all-or-nothing” type phenomenon, that is,
to increase connectivity even by one, the number of trusted
nodes needed is sufficient to make the network completely con-
nected with T . However, in the cases of ER and RG networks,

Fig. 4. Number of trusted nodes |T | as a function of connectivity with
trusted nodes T . For each connectivity value, a set T is found using
Algorithm 1.

we observe a rather continuous increase in |T |. The plot of
T is plateaued once |T | is equal to the size of the connected
dominating set.

IV. ROBUSTNESS WITH TRUSTED NODES

In this section, we extend (r, s)-robustness in graphs (defined
in Section II-B) by incorporating the notion of trusted nodes.
We then show that by having a small number of trusted nodes,
networks exhibit improved robustness that otherwise could be
achieved only by adding extra edges.

Given a graph G(V, E), let T ⊆ V be a set of trusted nodes.
Then, for a nonempty subset S ⊆ V , we define YS to be the
subset of nodes in S, each of which has at least one trusted
neighbor outside of S, that is

YS = {i ∈ S : (N (i) \ S) ∩ T �= ∅}. (4)

Recall that X r
S [defined in (1)] is the subset of nodes in S, each

of which has at least r neighbors outside of S. Next, for a given
S, we define Zr

S using (1) and (4) as follows:

Zr
S = X r

S ∪ YS . (5)

Note that Zr
S is simply the subset of nodes in S, each of

which has either at least r neighbors outside of S or has at least
one trusted neighbor outside of S. Moreover, we say that a set
S is r-reachable with trusted nodes if the corresponding Zr

S
is nonempty. Now, we define the notions of r-robust and then
(r, s)-robust graph with trusted nodes as follows.

Definition: A graph is r-robust with a set of trusted nodes
T if for any pair of nonempty, disjoint subsets S1 ,S2 ⊂ V , at
least one of the subsets is r-reachable with trusted nodes T .

More generally, we define (r, s)-robustness with trusted
nodes as follows.

Definition ((r, s)-robustness with trusted nodes): A
graph is said to be (r, s)-robust with a set of trusted nodes
T if for any pair of nonempty, disjoint subsets S1 ,S2 ⊂ V , at
least one of the following conditions is true:
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Fig. 5. (a) A Petersen graph with ten nodes. (b) A 2-robust graph. (c) A (2, 2)-robust graph. (d) A 3-robust graph.

(i) |Zr
S1
| = |S1 |

(ii) |Zr
S2
| = |S2 |

(iii) |Zr
S1
|+ |Zr

S2
| ≥ s

(iv) (Zr
S1
∪ Zr

S2
) ∩ T �= ∅.

(6)

Condition (iv) mentioned above simply means that there ex-
ists a trusted node in S1 ∪ S2 that has at least r nontrusted
neighbors outside or at least one trusted neighbor outside its
respective set. Note that an r-robust graph with T is equiva-
lent to an (r, 1)-robust graph with T . It is shown in [2] that
r-robustness implies r-connectivity. It can be shown easily that
the same result also holds in the case of trusted nodes, that is,
an r-robust graph with trusted nodes is also r-connected with
trusted nodes.

Examples: Petersen graph in Fig. 5(a) is not 2-robust; for
instance, consider S1 = {1, 2, 3, 4, 5} and S2 = {6, 7, 8, 9, 10},
and note that neither of these sets contain a node with at least
two neighbors outside of its respective set. However, the graph
becomes 2-robust with any single trusted node. Moreover, the
graph becomes 3-robust with any three trusted nodes that form
a path, for instance, {1, 4, 9}. The graph in Fig. 5(b) is 2-robust,
but not (2, 2)-robust; for instance, consider S1 = {1, 2, 5} and
S2 = {3, 4, 6, 7, 8}, and note that none of the conditions in (2)
are satisfied by S1 and S2 . However, the graph becomes (2, 2)-
robust with a single trusted node T = {i}, where i ∈ {2, 3, 8},
and becomes 3-robust with two trusted nodes, for instance
with T = {j, 2j}, where j ∈ {1, 3, 4}. Similarly, the graph in
Fig. 5(c) is (2, 2)-robust but not 3-robust [2], but becomes 3-
robust with three trusted nodes, for instance with T = {2, 3, 5}.
Finally, the graph in Fig. 5(d) is 3-robust [2]. However, the
graph becomes 5-robust with a single trusted node T = {i},
where i ∈ {1, 2, 5, 8}.

The above-mentioned examples illustrate the significance of
trusted nodes in improving the robustness properties of graphs
without adding extra links. We also note that in a network,
a set of trusted nodes through which the desired robustness
can be achieved is not necessarily unique, and there could
be multiple choices for such a set. For instance, the Peter-
son graph in Fig. 5(a) becomes 2-robust if any single node
is trusted. This can be useful as it allows switching between
different sets of trusted nodes with time. Thus, a particular set
of nodes does not have to remain trusted for the entire time,
which allows for its repair and maintenance while ensuring that
the network satisfies the desired robustness specification at all
times.

Fig. 6. (a) An r-robust graph with a trusted node τ . (b) An r-robust
graph obtained from G by replacing the trusted node by a clique Kr .

V. COMPARING TRUSTED NODES WITH

REDUNDANCY IN GRAPHS

To better understand how trusted nodes increase robustness,
we next relate trusted nodes to other constructions that increase
robustness. More specifically, we show equivalence between
making nodes trusted and deploying a certain number of ad-
ditional nodes and links in a graph, thereby providing a clear
comparison between these two alternative approaches, that is,
between trustedness and redundancy. As a result, we compute
the number of nontrusted nodes that could replace a trusted node
while preserving the robustness property of the network. Later
in this section, we present a way of growing a robust network
with trusted nodes by adding new nodes to it one at a time. We
also present an upper bound on the number of trusted nodes
sufficient to achieve any desired robustness. First, we state the
following lemma.

Lemma 5.1: If graph G(V, E) is r-robust with T , then each
trusted node in T is adjacent to at least r nodes in V \ T or to
at least one other trusted node.

Proof: See Appendix A.
Next, we show in the following result that making a single

node trusted may increase robustness as much as replacing the
node with an r-sized clique1 does. The construction used in
Theorem 5.2 is illustrated in Fig. 6.

Theorem 5.2: Let G(V, E) be an r-robust graph with a set
of trusted nodes T ⊂ V . Let H be a graph obtained from G by
replacing each trusted node τ ∈ T with a clique of r nodes, such
that if a node u is adjacent in G to a trusted node τ ∈ T , then in
H, u is adjacent to all the nodes in the clique corresponding to
the trusted node τ . Then,H is r-robust.

Proof: Let V =W ∪ T , where W = {v1 , . . . , vn} and
T = {τ1 , . . . , τm} are the disjoint sets of nontrusted and

1An r-sized clique Kr is a graph consisting of r nodes with the property that
all nodes are pair-wise adjacent.
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Fig. 7. (a) A unit-disk proximity network that is 2-robust with a trusted
node τ . (b) A 2-robust network obtained by replacing the τ with two other
nodes.

trusted nodes, respectively. In H, each τi ∈ T is replaced
by a clique with nodes τ 1

i , . . . , τ r
i . The corresponding ver-

tex set ofH is V′ =W ∪ T ′, where T ′ = {τ 1
1 , τ 2

1 , . . . , τ r
1 , . . . ,

τ 1
m , τ 2

m , . . . τ r
m}.

Consider two nonempty, disjoint subsets S′1 ,S′2 ⊂ V′ in H.
We need to show that at least one of them is r-reachable. For
this, consider S1 ,S2 ⊂ V in G such that for x ∈ {1, 2}, Sx =
(S′x ∩W) ∪ {τj : τk

j ∈ S′x for k ∈ {1, 2, . . . , r}}. Note that S1
and S2 are not necessarily disjoint. We have two cases.

Case 1: S1 ∩ S2 = ∅: If a nontrusted node vi ∈ Sx , for some
x ∈ {1, 2}, has at least r nontrusted or a single trusted neighbor
outside of Sx , then by the construction of H, there is vi in S′x
having at least r neighbors outside S′x .

Case 2: S1 ∩ S2 �= ∅: Since only a trusted node can be
common, let τi ∈ S1 ∩ S2 . Then, there exist distinct k, � ∈
{1, . . . , r} such that τk

i ∈ S′1 and τ �
i ∈ S′2 in H. By Lemma

5.1, each trusted node in G is adjacent to (i) at least r nontrusted
nodes or to (ii) at least one other trusted node.

Considering (i), let τi in G be adjacent to at least r nontrusted
nodes, i.e., if Wi = N (τi) ∩W , then |Wi | ≥ r. This implies
that in H, Wi is also a subset of both N (τk

i ) and N (τ �
i ). If

|Wi ∩ S′1 | = a and |{τ 1
i , τ 2

i , . . . , τ r
i } ∩ S′1 | = b, then τk

i has at
least (r − a) + (r − b) = 2r − (a + b) neighbors outside ofS′1 .
They include (r − a) nontrusted nodes inWi and (r − b) nodes
in {τ 1

i , τ 2
i , . . . , τ r

i }. Since S′1 ∩ S′2 = ∅, this also implies that
τ �
i ∈ S′2 has at least a + b neighbors outside S′2 . They include a

nodes inWi ∩ S′1 and b nodes in {τ 1
i , . . . , τ k

i } ∩ S′1 . If a + b ≥
r, S′2 is r-reachable. If a + b < r, then 2r − (a + b) > r and
S′1 is r-reachable, thus makingH r-robust.

Considering (ii), let τi be adjacent to some other trusted node
τx in G. This means that in H, both τk

i ∈ S′1 and τ �
i ∈ S′2 are

adjacent to r nodes in {τ 1
x , τ 2

x , . . . , τ r
x }. If |{τ 1

x , τ 2
x , . . . , τ r

x } ∩
S′1 | = a and |{τ 1

i , τ 2
i , . . . , τ r

i } ∩ S′1 | = b, then using the same
argument as in (i), at least one of S′1 or S′2 is r-reachable, and
hence,H is r-robust. �

Example: The above-mentioned result provides a way of
replacing a trusted node with a certain number of nontrusted
nodes while preserving the robustness property of the network.
For instance, consider a unit-disk proximity network, in which
an edge exists between any two nodes if and only if they are at
most a unit (Euclidean) distance away from each other, as shown
for example in Fig. 7. Suppose that this network is r-robust with
trusted nodes. By the above-mentioned result, we can replace a
trusted node with r number of nontrusted nodes while preserving
the r-robustness of the resulting network. So, we can quantify

Fig. 8. (a) G1 is an r-robust graph with a trusted node τ . Nodes in
N (τ ) are highlighted. (b) G2 is an r-robust graph with a subset ℵ that
is not r-reachable. (c) The graph Γ obtained by combining G1 and G2 is
also r-robust.

Fig. 9. (a) A 3-robust graph with T = {τ }. (b) A 3-robust graph G2 .
(c) A 3-robust graph Γ.

the relationship between trustedness and redundancy, which
here means having multiple nontrusted nodes instead of a single
trusted node at a certain location. In Fig. 7, G is 2-robust with
a single trusted node τ . The network G̃ obtained from G by
replacing the trusted node with two nontrusted nodes x and y is
also 2-robust. We note that the neighborhood of trusted node τ
in G and the neighborhood of each nontrusted node replacing τ
in G̃ remains the same. In general, we can replace a trusted node
in a proximity graph with r nontrusted nodes that are deployed
at the same location as the trusted node was.

We also note that in Fig. 7(a), if all nodes are nontrusted,
then the network graph can be made 2-robust even by adding
further links between nodes. This would require increasing the
transmission ranges of the nodes resulting in more connections
between them. Thus, we have multiple ways of improving r-
robustness in such networks: by having trusted nodes, by re-
placing trusted nodes with other nontrusted nodes, or by adding
more links between nodes through increasing the transmission
ranges of nodes.

Next, in Theorem 5.4, we show how to replace a trusted
node with another robust graph while preserving the robustness
property of the overall network. First, we recall from Section
II-B that an r-reachable subset of nodes is a subset in which
there exists a node that has at least r neighbors outside of the
subset. Thus, in a subset that is not r-reachable, each node has at
most r − 1 neighbors outside of the subset. An r-robust graph
can have multiple subsets that are not r-reachable. For example,
G2 in Fig. 9(b) is 3-robust, and {a, b, c}, {a, d, e}, {a, b, e} are
examples of subsets that are not 3-reachable.

Lemma 5.3: Let G(V, E) be an r-robust graph, and ℵ1 ⊂ V
be a subset that is not r-reachable; then, |ℵ1 | ≥ r. Moreover,
for any two subsets ℵ1 and ℵ2 that are not r-reachable, we have
ℵ1 ∩ ℵ2 �= ∅.

Proof: See Appendix A.
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Fig. 10. (a) A 1-robust graph. (b) The graph becomes 4-robust by
including eight extra edges. (c) Nodes 3 and 5 constitute a connected
dominating set and are also trusted.

Now, we relate a trusted node in a graph to replacing it with
another robust graph. The construction used in the below theo-
rem is illustrated in Fig. 8.

Theorem 5.4: Let G1(V1 , E1) be an r-robust graph with
a trusted node τ ∈ V1 , and let G2(V2 , E2) be another r-robust
graph with a subset ℵ ⊂ V2 that is not r-reachable. Let Γ be the
graph obtained from G1 by replacing the trusted node τ with the
graph G2 such that each vertex of N (τ) in G1 is adjacent to all
vertices of ℵ in Γ. Then, Γ is also r-robust.

Proof: See Appendix A.
Example: In Fig. 9,G1 is 3-robust with a trusted node τ , whose

neighbors are {x, y, z}. On the other hand, G2 is also 3-robust
(without any trusted node). The set of nodes ℵ = {a, b, c} is not
3-reachable inG2 . Γ is also a 3-robust graph that is obtained from
G1 and G2 by removing τ and by making every node in {x, y, z}
adjacent to every node in ℵ. Note that we can use Theorem
5.4 to construct bigger networks from the smaller ones while
preserving the r-robustness property.

Next, we present an upper bound on the number of trusted
nodes that are sufficient to achieve any desired robustness in the
network. If the set of trusted nodes forms a connected dominat-
ing set (as defined in Section III-A) in the network, then any
desired (r, s)-robustness can be attained by such a set of trusted
nodes, as shown in the following result.

Theorem 5.5: For any given r, s ∈ Z+ , a network G(V, E)
is (r, s)-robust with T if T is a connected dominating set of G.

Proof: See Appendix A.
Consequently, the connected domination number γG becomes

an upper bound on the minimum number of trusted nodes
required to achieve the desired network robustness with trusted
nodes. For instance, consider the network graph in Fig. 10(a),
which is 1-robust. Since a graph with n nodes and containing
no trusted node could be at most �n

2 � robust, we can make the
graph 4-robust. The minimum number of extra edges required
to achieve 4-robustness is eight as illustrated in Fig. 10(b).
However, if nodes 3 and 5—which also constitute a connected
dominating set—are trusted, the graph becomes 4-robust with
trusted nodes without adding any extra links. Thus, we can
achieve the same robustness by creating eight more links or
by making two nodes trusted. If the cost of creating extra links
is higher, then trusted nodes provide a useful alternative for
achieving robustness.

Finally, we present a way of growing a network by adding
new nodes to it one at a time such that the robustness property
of the network is preserved at every step.

Theorem 5.6: Let G(V, E) be an (r, s)-robust graph with
trusted nodes T ⊂ V . Then, the graph G′ obtained by adding a

new vertex vnew to G is also (r, s)-robust with trusted nodes if
vnew is adjacent to at least r + s− 1 nontrusted nodes or if it is
adjacent to at least one trusted node.

Proof: See Appendix A.
In the next section, we present a resilient consensus algorithm

with trusted nodes and analyze its performance using the robust-
ness of network graphs. We show that resilience of the consensus
algorithm against malicious nodes is significantly improved by
having few trusted nodes within a network.

VI. RESILIENT CONSENSUS PROBLEM AND ROBUSTNESS

WITH TRUSTED NODES

Owing to a wide variety of applications in data aggregation,
distributed optimization, parameter estimation, and flocking, the
consensus problem is of significant importance in distributed
networks and cooperative control [34]. In a network of nodes
(e.g., decision making components), the goal is to reach consen-
sus on the quantity of interest by a local exchange of informa-
tion. The resilient consensus problem deals with the situations
wherein a subset of nodes becomes faulty or acts maliciously,
and the goal is to ensure consensus among the normal nodes.

A. Resilient Consensus Problem

1) System Model: We consider a network consisting of two
basic types of nodes: normal nodes and adversarial nodes. Nor-
mal nodes have a special subclass referred to as the trusted
nodes. Each node i has a state value at a given time instant
k, denoted by xi(k). This value can be a sensor measurement,
position variable, or any other observation. For simplicity, we
assume xi(k) ∈ R. However, our results can be easily extended
to consider multidimensional state values.

Normal nodes (S ⊆ V)—These nodes update their state val-
ues by synchronously interacting with their neighbors and fol-
lowing an update rule that depends only on the state values of
neighbors. More specifically, ∀i ∈ S

xi(k + 1) = f({xj (k)}), j ∈ N [i]. (7)

The neighborhood of a normal node i might contain adversarial
nodes, whose identities are unknown to i.

Trusted nodes (T ⊆ S)—These nodes are the subclass of nor-
mal nodes that cannot be compromised by an adversarial attack
(e.g., because of their high security investment, more resources,
sophisticated hardware and software), and we can safely assume
that they do not deviate from their normal behavior. Trusted
nodes also update their values according to the update rule (7).
Moreover, each normal node i ∈ S is aware of the identities of
only trusted nodes in N (i).

Adversaries and threat models—An adversary is a node that
does not follow the update rule (7) to update its state value,
and therefore, might prevent the network from achieving con-
sensus among normal nodes. If an adversarial node sends the
same value to all of its neighbors, then it is commonly called
a malicious attacker. On the other hand, if a misbehaving node
sends different values to different nodes in its neighborhood, the
term byzantine attacker is typically used. We call these nodes
collectively as adversaries. Moreover, the scope of threat is typ-
ically defined in terms of the maximum number of attacks (i.e.,
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adversarial nodes) that can occur within the system. Follow-
ing [2] and [35], we consider two threat models: F -total and
F -local. In the F -total model, there are at most F adversarial
nodes within the whole network. In the F -local model, there are
at most F adversarial nodes in the neighborhood of each normal
node.

2) Main Objective—Resilient Consensus in the Presence
of Trusted Nodes: The objective is to design an update rule (7),
for the normal nodes so that they all reach a common state value
even in the presence of adversaries (under the F -total or F -local
models). More precisely, we want to achieve the following.

i) As k →∞, xi(k) = xj (k) = x for all normal nodes i, j.
ii) Let xmin(0) and xmax(0) be the minimum and the max-

imum of the initial values of the normal nodes, respec-
tively. Then, xmin(0) ≤ xi(k) ≤ xmax(0) for all k and
for any normal node i.

iii) For a given network G and adversary model, determine
necessary and sufficient conditions in terms of robust-
ness of G with trusted nodes to achieve (i) and (ii).

Conditions (i) and (ii) are typically referred to as the agree-
ment and safety conditions, respectively. We mention here that
existing algorithms for resilient consensus require the network
to be highly connected, even if the number of adversaries F is
small. We aim to provide a scheme that is resilient even in the
case of sparse networks, in which the existence of few trusted
nodes makes up for the typically high connectivity requirements.

B. Resilient Consensus Algorithm With Trusted Nodes

Now, we propose an algorithm, which we call the resilient
consensus algorithm with trusted nodes (RCA-T), and describe
it as follows.

Step 1: At each time step k, node i receives state values from
its neighbors Ni(k).

Step 2: The nodes in Ni(k) are categorized into Ni(k) and
Ni(k) as follows:

Ni(k) = {j ∈ Ni(k) : xj (k) > xi(k)}
Ni(k) = {j ∈ Ni(k) : xj (k) < xi(k)}.

Next, we define Ri(k) = Ni(k) if |Ni(k)| < F . Otherwise,
Ri(k) consists of the F nodes in Ni(k) with the highest
state values (ties are broken arbitrarily). Similarly, we define
Ri(k) = Ni(k) if |Ni(k)| < F . Otherwise, Ri(k) consists of
the F nodes Ni(k) with the lowest state values (again, ties are
broken arbitrarily). Finally, we defineRi(k) = Ri(k) ∪Ri(k).

Step 3: Let Ti(k) be the subset of trusted nodes in the neigh-
borhood of node i at time step k, i.e., Ti(k) = Ni(k) ∩ T .

Step 4: Each normal node i updates its value according to the
following rule:

xi(k + 1) =
∑

j∈[(Ni [k ]\Ri (k))∪Ti (k)]

wij (k)xj (k). (8)

Here, wij is the weight assigned to the value of node j by
node i at time step k.2 We note that if there is no trusted node

2For a discrete time linear consensus strategy as in (8), it is typically as-
sumed that wij (k) ≥ α, ∀j ∈ N [i] and ∀k; where α ∈ R and 0 < α < 1.
Moreover,

∑n

j=1wij (k) = 1 for a normal node i and ∀k (e.g., see [34]).

Fig. 11. Resilient consensus with a single malicious node under the
F -total model. (a) Consensus is not achieved without any trusted node.
(b) Consensus is achieved with a single trusted node.

in the network, then RCA-T is the same as the weighted-mean-
subsequence-reduced (W-MSR) algorithm in [2].

C. Analysis

Next, we provide necessary and sufficient conditions for
achieving consensus using RCA-T in the presence of malicious
nodes.

Theorem 6.1: Let G(V, E) be a time-invariant network, in
which T ⊂ V is a subset of trusted nodes and each normal node
implements RCA-T algorithm. Then

1) under the F -total malicious model, consensus is achieved
asymptotically if and only if G is (F + 1, F + 1)-robust
with T .

2) under the F -local model, to achieve asymptotic consen-
sus, it is necessary that G is F + 1-robust with T and is
sufficient that G is (2F + 1)-robust with T .

The proof of Theorem 6.1 is given in Appendix A.

D. Simulation Results

Here, we illustrate the resilient consensus algorithm with
trusted nodes and compare it with the W-MSR algorithm [2]
with no trusted nodes. In the first example, we consider the F -
total model for the network in Fig. 5(b). We assume that F = 1,
that is, there is only one malicious node (node 2) in the network
that does not follow the state update rule (8). Without any trusted
node, the graph is not (2, 2)-robust, and hence does not satisfy
the necessary condition for achieving resilient consensus. As a
result, normal nodes fail to reach consensus using the W-MSR
algorithm, as shown in Fig. 11(a). However, with node 8 as
a trusted node, the graph becomes (2, 2)-robust with a trusted
node, and consensus is guaranteed using the resilient consensus
algorithm with trusted nodes, as illustrated in Fig. 11(b).

Similarly, we consider the F -local model for the network in
Fig. 5(a). We assume that F = 1, that is, there can be at most
one malicious node in the neighborhood of any node, and we
let nodes 8 and 10 to be malicious. In the absence of any trusted
node, the graph is not 2-robust. Since the necessary condition
for resilient consensus is not satisfied, consensus is not achieved
using the W-MSR algorithm, as shown in Fig. 12(a). However,
with nodes T = {1, 4, 9} as trusted, the graph becomes 3-robust
with T , thus satisfying the sufficient condition for resilient con-
sensus in Theorem 6.1. As a result, consensus is achieved in
the presence of two malicious nodes (F -local model) using the
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Fig. 12. Resilient consensus with two malicious nodes under the F -
local model. (a) Consensus is not achieved without any trusted node.
(b) Consensus is achieved with trusted nodes.

resilient consensus algorithm with trusted nodes, as illustrated
in Fig. 12(b).

VII. CONCLUSION AND DISCUSSION

A typical approach to improving structural robustness is to
add links in a strategic manner, that is, by “redundancy.” We
adapted a different approach to achieve the desired structural
robustness, defined in terms of network connectivity and r-
robustness in this work. The basic idea was to make a small
subset of nodes trusted, that is, insusceptible to failures. We
then showed that existence of such nodes has an effect of hav-
ing a higher network connectivity or an improved r-robustness
property. We also presented heuristic to select a small subset of
trusted nodes to achieve any desired value of network connectiv-
ity. Using this approach, even the sparse networks can be made
structurally robust without adding edges. As an application, we
illustrated that resilient consensus in the presence of malicious
nodes can be achieved even in sparse networks containing a
small number of trusted nodes.

Both approaches to improving structural robustness—adding
extra links and making few nodes trusted—incur cost. The
trusted nodes based approach is particularly useful in scenar-
ios where adding links is not economical or simply infeasible.
From an economic perspective, a thorough comparison of the
two approaches would be an interesting direction for future
work, along with determining conditions under which one ap-
proach is strictly better than the other. In future, we aim to
apply the notion of trusted nodes to improve other metrics of
structural robustness. Moreover, we would like to combine both
approaches—redundancy and trustedness—to devise a more ef-
ficient strategy to improve structural robustness in networks.

APPENDIX A
PROOFS

A. Proof of Lemma 5.1

Proof: For the sake of contradiction, suppose that G is
r-robust, but τ ∈ T is such that N (τ) ∩ T = ∅ and |N (τ)| ≤
r − 1. ConsiderS1 = {τ} andS2 = V \ N [τ ]. Here, |Zr

S1
| = 0,

where Zr
S1

is defined in (5). At the same time, there is no node
in S2 that is adjacent to τ . As a result, for each v ∈ S2 , there

are at most r − 1 neighbors of v outside of S2 . Thus, |Zr
S2
| = 0,

and G cannot be r-robust, which is a contradiction. �

B. Proof of Lemma 5.3

Proof: For the sake of contradiction, let |ℵ1 | < r. Con-
sider S1 = ℵ1 and S2 = V \ ℵ1 . Since |S1 | < r, S2 is not r-
reachable. As a result both S1 and S2 , which are nonempty and
disjoint subsets, are not r-reachable in an r-robust graph, which
is not possible, hence |ℵ1 | ≥ r.

Similarly, if ℵ1 and ℵ2 are nonempty, disjoint, and not r-
reachable subsets, then by the definition of r-robustness, G is
not r-robust, which is a contradiction. Hence, ℵ1 ∩ ℵ2 �= ∅. �

C. Proof of Theorem 5.4

Proof: Let S1 and S2 be a pair of nonempty disjoint subsets
in Γ. The vertex set of Γ is V = (V1 \ {τ}) ∪ V2 . We have three
cases.

Case 1: Both S1 and S2 have nonempty intersections with
V2 . Let S′1 = S1 ∩ V2 and S′2 = S2 ∩ V2 . Since G2 is r-robust,
at least one of S′1 and S′2 is r-reachable in G2 . Without loss of
generality, assume S′1 to be r-reachable in G2 . Then, ∃v ∈ S′1
having at least r neighbors in V2 \ S′1 , which directly implies
that a node exists inS1 in Γ having at least r neighbors inV \ S1 ,
thus making S1 an r-reachable subset in Γ.

Case 2: Exactly one of the subsets S1 and S2 has a nonempty
intersection with V2 . Again without loss of generality, we as-
sume that S1 ∩ V2 �= ∅ and S2 ∩ V2 = ∅. Then, we have two
subcases.

a) S1 ∩ (V \ V2) = ∅: This simply means that S1 ⊆ V2 and
S2 ⊆ (V1 \ {τ}). If S1 is r-reachable in G2 , then S1 is r-
reachable in Γ. So, we assume thatS1 is not r-reachable in
G2 . In this case, let x ∈ S1 ∩ ℵ. Such x exists by Lemma
5.3. Since x is adjacent to all nodes inN (τ) ⊂ (V1 \ {τ})
and |N (τ)| ≥ r by Lemma 5.1, we deduce that S1 is r-
reachable in Γ, which implies the r-robustness of Γ.

b) S1 ∩ (V \ V2) �= ∅: In this case, corresponding to S1 and
S2 in Γ, consider two nonempty disjoint subsets S′1 and
S′2 inG1 . Here,S′2 = S2 ; andS′1 = S1 \ V2 ifS1 ∩ ℵ = ∅
and S′1 = (S1 \ V2) ∪ {τ} if (S1 ∩ ℵ) �= ∅. Since G1 is
r-robust with a trusted node, at least one of S′1 and S′2 is
r-reachable. We now show that the r-reachability of S′1 in
G1 implies the r-reachability of S1 in Γ, and similarly the
r-reachability of S′2 in G1 implies that S2 is r-reachable
in Γ.
Let S′2 be r-reachable in G1 . If a node x ∈ S′2 has r (non-
trusted) neighbors outside of S′2 , then it follows readily
that a node exists in S2 in Γ with at least r neighbors
outside of S2 . If a node x ∈ S′2 in G1 is adjacent to a
trusted node τ outside of S′2 , then by the construction of
Γ, a node exists in S2 in Γ that is adjacent to all nodes in
ℵwhere |ℵ| ≥ r and S2 ∩ ℵ = ∅. Thus, S2 is r-reachable
in Γ if S′2 is r-reachable in G2 . Similarly, r-reachability
of S′1 in G1 , which is defined as above, directly implies
that S1 is also r-reachable in Γ.

Case 3: (S1 ∩ V2) = ∅ and (S2 ∩ V2) = ∅. Using a similar
argument as in case 2(b), we can show that at least one of S1
and S2 is r-reachable. �
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D. Proof of Theorem 5.5

Proof: Let T be a CDS, and S1 ,S2 be two disjoint,
nonempty subsets of V . Then, there are two cases.

1) Sj ∩ T = ∅ for both j ∈ {1, 2}: Since T is a CDS, each
node in such Sj is adjacent to some trusted node outside
Sj . Thus, condition (i) or (ii) in (6) is satisfied.

2) Sj ∩ T �= ∅ for some j ∈ {1, 2}: Assume without loss of
generalityS1 ∩ T �= ∅. IfS1 = T , thenYS2 = S2 [where
YS is defined in (4)], and condition (ii) in (6) is satisfied.
If |S1 ∩ T | < |S1 |, then there is a trusted node in S1 that
is adjacent to some trusted node outside of S1 (as T is a
CDS). Consequently, YS1 ∩ T �= ∅ and condition (iv) in
(6) is satisfied.

�

E. Proof of Theorem 5.6

Proof: For any two nonempty, disjoint subsets S′1 and S′2 ,
there are three cases: for some i ∈ {1, 2}, (a) vnew /∈ S′i , (b)
{vnew} = S′i , and (c) vnew ∈ S′i .

In case (a), since G is (r, s)-robust with trusted nodes, the
conditions in (6) are satisfied directly by S′1 and S′2 in G′.

In case (b), either condition (i) or (ii) in (6) is always satisfied
under the condition of the theorem.

In case (c), assume without loss of generality that vnew ∈ S′2 .
Also, let S2 = S′2 \ {vnew} and S1 = S′1 . Note that the subsets
S1 and S2 in G satisfy at least one of the conditions in (6) due
to the (r, s)-robustness of G with trusted nodes. If S1 and S2
in G satisfy any of the conditions (i), (iii), or (iv) in (6), then
the same conditions are satisfied by S′1 and S′2 in G′. So, we
assume that condition (ii), i.e., |Zr

S2
| = |S2 | is satisfied. Note

that if S2 contains a trusted node and |Zr
S2
| = |S2 |, then (iv) is

automatically satisfied. So, we assume that S2 consists of only
nontrusted nodes. Since |Zr

S1
|+ |Zr

S2
| < s and |Zr

S2
| = |S2 |,

there are at most s− 1 nodes in S2 . If vnew in G′ is connected
to at least one trusted node, it must be connected to a trusted
node outside S′2 . Similarly, if vnew in G′ is connected to at least
r + s− 1 nontrusted nodes, then it must be connected to at
least r nodes outside S′2 . In both situations, |Zr

S′2
| = |S′2 |, thus

satisfying the (r, s)-robustness condition with trusted nodes. �

F. Proof of Theorem 6.1

We use a similar approach used in the proof in [2, Th. 1].
Proof: In the F -total model, (F + 1, F + 1)-robustness

with T is a necessary condition.
LetG be a graph that is not (F + 1, F + 1)-robust. Then, there

exist nonempty, disjoint subsets S1 ,S2 ⊂ V that do not satisfy
any of the conditions in (6). As a result, there is a maximum
number of F nodes in S1 ∪ S2 that are adjacent to at least one
trusted node, or adjacent to at least F + 1 nontrusted nodes
outside of their respective sets, that is, |ZF +1

S1
|+ |ZF +1

S2
| ≤ F .

At the same time, none of the nodes in ZF +1
S1
∪ ZF +1

S2
are

trusted [as otherwise condition (iv) in (6) is satisfied]. Thus, we
assume that all nodes in ZF +1

S1
∪ ZF +1

S2
are malicious. Since,

|ZF +1
Si
| < |Si | for i ∈ {1, 2}, there exists at least one normal

node (either trusted or nontrusted) in S1 , say x1 , and in S2 , say
x2 . Note that both x1 and x2 have less than F + 1 neighbors

Fig. 13. Illustration of the proof of Theorem 6.1. Every node in ZF +1
M

and ZF +1
m has at least F + 1 neighbors outside or at least one trusted

neighbor outside the set containing the node.

outside of their respective sets and are not connected to any
trusted node outside of their respective sets. Now, consider that
the state values for all nodes in S1 be a, for all nodes in S2 be
b > a, and for all nodes inV \ (S1 ∪ S2) be in the interval (a b).
Moreover, all malicious nodes keep their state values constant
throughout. Since both x1 and x2 ignore all values (F or less)
outside of their sets and cannot consider a value of a trusted node
outside of their set during the update phase, consensus cannot
be achieved.

In the F -total model, (F + 1, F + 1)-robustness with T is a
sufficient condition.

SupposeM⊂ V is the set of malicious nodes, then the set of
normal nodes (both trusted and nontrusted) in G is V \M. We
define M(k) = maxi∈V\M xi(k) and m(k) = mini∈V\M xi(k).
Since for all normal nodes i ∈ V \M and time steps k, xi(k +
1) is a convex combination of values in [m(k) M(k)], we deduce
that both m(k) and M(k) are monotone and bounded functions
of k. Consequently, by monotone convergence theorem, both
m(k) and M(k) have some limit, sayDm andDM , respectively.
For the consensus among normal nodes, we need to show that
DM = Dm .

On the contrary, suppose that DM > Dm . Then, ∃ε0 ∈ R+

such that DM − ε0 > Dm + ε0 . Moreover, for any time step k
and εi ∈ R+ , we define

SM (k, εi) = {j ∈ V : xj (k) > DM − εi}, (9)

Sm (k, εi) = {j ∈ V : xj (k) < Dm + εi}. (10)

Also, let ZF +1
M (k, εi) ⊆ SM (k, εi) be the subset in which

each node has either at least F + 1 nontrusted neighbors in V \
SM (k, εi) or has at least one trusted neighbor in V \ SM (k, εi).
Similarly, define ZF +1

m (k, εi) ⊆ Sm (k, εi) (see Fig. 13 for
illustration).

Now, assuming that V is the total number of normal nodes
(trusted and nontrusted), we fix ε < αV

1−αV ε0 . Here, ε0 > ε > 0.
Note that there exists kε such that the maximum and minimum
values of normal nodes at any time k ≥ kε are bounded by
DM + ε and D − ε.
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Now, since SM (kε, ε0) ∩ Sm (kε, ε0) = ∅ and G is (F +
1, F + 1)-robust, one of the following conditions is satis-
fied, that is, either |ZF +1

M (k, ε0)|+ |ZF +1
m (k, ε0)| ≥ F + 1 or(

ZF +1
M (k, ε0) ∪ ZF +1

m (k, ε0)
)
∩ T �= ∅. Since there are at most

F malicious nodes, in either case, there must exist a normal
node (trusted or nontrusted) in ZF +1

M (kε, ε0) ∪ ZF +1
m (kε, ε0).

Assume without loss of generality that i ∈ ZM (kε, ε0) is one
such normal node. Next, we show

Claim: xi(kε + 1) ≤ DM − ε1 , where ε1 < ε0 .
To compute xi(kε + 1), node i ignores its F neighbors whose

state values are lesser than its own value. Node i has at least
F + 1 neighbors with values lesser than its own or has at least
one trusted neighbor whose value is lesser than the node i’s
value. Thus, there is always a neighbor of i whose value is lesser
than i and is not ignored in computing xi(kε + 1). Moreover,
the maximum value of such a neighbor is DM − ε0 as it lies in
the subset V \ SM (kε, ε0). At the same time, the values of all
other neighbors of i are bounded by M(kε). Since at each time
step node i’s state value is a convex combination of the state
values of its neighbors and each coefficient in the combination
is lower bounded by α, we have

xi(kε + 1) ≤ (1− α)M(kε) + α(DM − ε0)

≤ (1− α)(DM + ε) + α(DM − ε0)

≤ DM − αε0 + (1− α)ε

= DM − ε1 . (11)

Here, ε1 = αε0 + (1− α)ε, which satisfies ε1 < ε0 . �
Similarly, if i ∈ Zm (kε, ε0), then we can show that

xi(kε + 1) ≥ Dm + ε1 . (12)

As a consequence of (11) and (12), at least one of the following
is always true.

1) |SM (kε +1, ε1) ∩ (V \M)|< |SM (kε, ε0) ∩ (V \M)|,
i.e., the number of normal nodes in SM (kε + 1, ε1) is
strictly lesser than the normal nodes in SM (kε, ε0).

2) |Sm (kε + 1, ε1) ∩ (V \M)| < |Sm (kε, ε0) ∩ (V \M)|.
Note that SM (kε + 1, ε1) and Sm (kε + 1, ε1) are disjoint as

ε1 < ε0 . Next, we define εj = αεj−1 − (1− α)ε for any j ≥ 1.
Note that εj < εj−1 . Then, for any time step kε + j, the above-
mentioned analysis can be repeated as long as SM (kε + j, εj )
and Sm (kε + j, εj ) contain normal nodes. Since the number of
normal nodes is finite, there exists a time step kε + K such that
at least one of the following is always satisfied.

a) SM (kε + K, εK ) = ∅, which implies that the maximum
value of any normal node at time step kε + K is upper
bounded by DM − εK , or

b) Sm (kε + K, εK ) = ∅, which implies that the minimum
value of normal nodes is lower bounded by Dm + εK .

If εK > 0, then (a) implies a contradiction to the fact that the
largest value converges monotonically to DM , and (b) contra-
dicts to the fact that the smallest value converges monotonically
to Dm . Next, we show that εK > 0:

εK = αεK−1 − (1− α)ε = αK ε0 − (1− αK )ε

≥ αV ε0 − (1− αV )ε. (13)

TABLE I
NUMBER OF r-ROBUST GRAPHS

Number of r-robust graphs

n Total number
of graphs r = 1 r = 2 r = 3 r = 4 r = 5

3 4 2 1 0 0 0
4 11 6 2 0 0 0
5 34 21 8 2 0 0
6 156 112 45 8 0 0
7 1044 853 398 65 6 0
8 12 346 11 117 6372 1140 64 0
9 274 668 261 080 182 859 44 861 1977 26

Since ε < αV

1−αV ε0 , we get εK > 0, which gives the desired
contradiction, thus proving that DM = Dm .

In the F -local model, F + 1-robustness with T is a necessary
condition.

Let G be a graph that is not F + 1-robust, then there exist
nonempty, disjoint subsets S1 ,S2 ⊂ V such that each node in
S1 and S2 has at most F neighbors outside of its respective
set, that is, S1 or S2 . At the same time, there does not exist a
node in S1 (and S2) that has a trusted neighbor outside of the
set S1 (respectively, S2). We assume state values of all nodes in
S1 and S2 to be a and b, respectively, where a > b. Moreover,
each node in V \ (S1 ∪ S2) has a value in the interval (a b).
Under this setting, each node in S1 would ignore the values of
its neighbors outside of S1 , and hence would never update its
state value. Similarly, each node in v ∈ S2 would not change
its value as v would not consider state values of the neighbors
outside of S2 . Consequently, consensus will not be achieved.

In the F -local model, 2F + 1-robustness withT is a sufficient
condition.

Using the same approach and arguments as in the sufficiency
proof of F -total model mentioned above, we can show that
2F + 1-robustness with T is a sufficient condition to achieve
consensus in the F -local model.

�

APPENDIX B
NUMBER OF r-ROBUST GRAPHS

The number of all possible r-robust graphs with n nodes is
presented in Table I.

For each value of n and r in Table I, the adjacency matri-
ces of all r-robust graphs with n nodes are available at http://
aronlaszka.com/data/r_robust_graphs.zip.
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