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ABSTRACT

In the past couple of years, railway infrastructure has been 
growing more connected, resembling more of a traditional 
Cyber-Physical System [1] model. Due to the tightly cou-
pled nature between the cyber and physical domains, new 
attack vectors are emerging that create an avenue for remote 
hijacking of system components not designed to withstand 
such attacks. As such, best practice cybersecurity techniques 
need to be put in place to ensure the safety and resiliency of 
future railway designs, as well as infrastructure already in the 
field. However, traditional large-scale experimental evaluation 
that involves evaluating a large set of variables by running 
a design of experiments (DOE) may not always be practical 
and might not provide conclusive results [2]. In addition, to 
achieve scalable experimentation, the modeling abstractions, 
simulation configurations, and experiment scenarios must be 
designed according to the analysis goals of the evaluations. 
Thus, it is useful to target a set of key operational metrics for 
evaluation and configure and extend the traditional DOE meth-
ods using these metrics. In this work, we present a metrics- 
driven evaluation approach for evaluating the security and 
resilience of railway critical infrastructure using a distributed 
simulation framework. A case study with experiment results 
is provided that demonstrates the capabilities of our testbed.
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I. In t r o d u c t i o n

Railway is a prime example of a Cyber-Physical System 
(CPS) [1], consisting of co-engineered interacting networks of 
computational and physical components. Infrastructure such
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as switches and signals are now controlled by complex au-
tonomous algorithms, or operators located in remote monitor-
ing centers. Due to this increased connectivity, new avenues 
are emerging that allow adversaries to inflict physical damage 
remotely through cyber vulnerabilities. Additionally, it is not 
just enough to utilize traditional cybersecurity techniques to 
harden systems, but resiliency needs to be built-in to ensure 
the proper and safe operation of safety-critical systems under 
all scenarios, including when experiencing a cyber-attack.
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Fig. 1: Cyber Threats in Railway Networks

In traditional information technology applications, it can 
be difficult to determine how a cyber-attack will affect the 
running system, especially given that the same attack will most 
likely have different effects depending on which subset of the 
system is being attacked. Given how networks and commu-
nication channels interconnect the components of a system, 
determining attack propagation behavior can compound the 
difficulty of such analysis and prediction of attack severity. 
These problems are exacerbated when such networked systems 
are connected to sensors and actuators, coupling the system 
to the surrounding physical environment. In this case, the 
attack’s effects propagate not only through the cyber and 
communications portions of the system, but also through the 
embedded controllers, and into the physical world [4] [19] 
[20].
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Modern railway systems use various equipment that com-
prise standard commercial components. In addition, with the 
increase in automation and remote system controls, new vul-
nerabilities have opened in the networking infrastructure for 
cyber threats such as delays in operation signals, spoofing 
of commands, unauthorized access to system controls, inter-
ference in the protection equipment, and disruptions in the 
operations of the safety systems. These cyber threats and their 
potential harmful effects are shown in Figure 1. These cyber 
threats were originally defined in the National Institute of 
Standards and Technology’s (NIST) [22] special publication 
800-82, revision 21 [18].

Design of Experiments (DOE) is a powerful technique for 
evaluating a large number of CPS scenarios. In order to eval-
uate different parameter value combinations, DOE methods 
systematically vary multiple input variables according to a 
sampling scheme such as Full Factorial, Random Uniform, 
or Latin Hypercube. The basic idea is to identify, explore, 
and evaluate important component interactions that otherwise 
might get missed by varying one variable at a time. Scalability 
becomes a key issue here, particularly when all parameter 
variation combinations are to be evaluated. Thus, for scalable 
cybersecurity evaluations of a large-scale CPS, such as rail-
way infrastructure, goal-driven abstractions and composition 
of models are needed for focusing on specific system-level 
resilience properties and attack models and configurations.

Real-world experimental scenarios usually involve a large 
number of complex models, making evaluation highly chal-
lenging. The task of simulation-based CPS security evaluation 
requires one to build and evaluate both the cyber and physical 
models. However, both the cyber and physical models can 
be designed at many different levels of abstractions. For 
example, a road traffic simulation can be simulated at higher 
aggregate level by modeling overall city traffic patterns (i.e., 
macroscopic), or by using stochastic queuing models (i.e., 
mesoscopic), or modeling individual vehicles and their flows 
(i.e., microscopic). The level of abstraction chosen has substan-
tial affect on the performance of the simulation. In addition, 
the design of experiments (DOE) and experiment scenarios 
also are highly dependent on the modeling abstractions used. 
In order to achieve scalable simulation performance, while still 
meeting the analysis requirements, the modeling abstractions, 
simulation configurations, and experiment scenarios all must 
be designed accordingly. Therefore, it is useful to target a set 
of key operational metrics for the evaluations needed [2], and 
configure and extend the traditional DOE methods using them.

To address the difficulties of performing impact analysis 
of cyber-attacks on the critical railway infrastructure, we 
have developed a set of key operational metrics to measure 
how effectively trains operate and complete schedules. We 
also developed a distributed simulation environment with an 
integrated metrics based data analytic module for the purpose 
of streamlining and simplifying the process of evaluating 
CPS designs. We further integrated a hardware-in-the-loop 
(HIL) testbed for conducting a more thorough evaluation of 
CPS software in hardware consistent with the deployment

environment. This setup allows for maximizing system design 
safety by utilizing the computing power of the simulation 
testbed for scaling designs, while reserving the HIL testbed 
for evaluating the most critical components of the system.

The rest of the paper is organized as follows. First, in 
Section II we present a motivating example from the railway 
critical infrastructure domain. Section III describes the opera-
tional metrics we developed for railroad operations. Section IV 
provides a detailed overview of our testbed. Section V presents 
a detailed case study and experiment results. Section VI 
discusses the related work. Finally, Section VII concludes the 
paper and discusses our future work.

II. M o t i v a t i n g  Ex a m p l e : T r a i n  Le v e l  Cr o s s i n g  
Ar c h i t e c t u r e  Ev a l u a t i o n  t h r o u g h  HIL Si m u l a t i o n

NIST [22] has developed a testbed for railroad transporta-
tion systems. The purpose of the testbed is to study the 
effects of cybersecurity measures on the railroad system and 
to measure its performance impact. In our testbed, the railroad 
track system and the movement of trains were previously 
simulated in the software. However, it is more effective 
to simulate the railroad system operation in the laboratory 
environment. To better simulate the real-world environment, 
we have extended the testbed to support an HIL architecture. 
It uses real embedded hardware that is used in real-world 
deployment to sense and actuate the physical system.

A. Railway Level Crossing Network Architecture

We have identified the railroad level-crossing system to use 
in our HIL implementation. As shown in Figure 2, level-
crossing is an interaction where a railroad track crosses a 
road at the same level. There are over 130,000 railroad 
level-crossings in North America. Higher traffic level-crossing 
usually has a signal system to help manage the traffic, and the 
system typically consists of several components (Figure 3):

• Siemens S7-1500 series Programmable Logic Controller 
(PLC) system with an Ethernet interface, an analog input 
output (AIo) card, and a digital input output (DIo) card.

• Motor controller and two motors to drive the gate barriers.
• Motion sensors to detect the position and speed of a train 

approaching and departing the crossing.
• Light-Emitting Diode (LED) array to provide the func-

tionality of a road signal and warning sign.

Source: www.moxa.com

Fig. 2: Train Level Crossing
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B. Theory o f Operation

The PLC acts as the controller of the overall signal system 
for the crossing. The motion sensors are connected to the AIO 
of the PLC to provide the location and speed of the approach-
ing or departing train. The motor controller is connected to 
the DIO of the PLC to control the gate movement, and the 
LED array is connected to the DIO.

The PLC will sample the analog input periodically to 
determine if any train is in the level-crossing proximity. When 
an approaching train’s position and speed are determined, the 
PLC will calculate the time for the train to reach the level-
crossing and will command the motor controller to lower the 
gates and to flash the road and warning signals. Figure 3 shows 
the input and output signals from the level crossing system. 
The requirement is to have the gate in lowered position and 
warning signals in active mode at least 10 seconds before the 
train arrives, but no more than 30 seconds before the train 
arrives, regardless of the train speed. For example, if the train 
is 1km away from the crossing and traveling at 10km/h, the 
controller has about 6 minutes to lower the gate and to flash 
the warning signals. If the same train is traveling at 30km/h, 
the controller only has 2 minutes to respond.

Fig. 3: Rail Crossing Input and Output Signals

Figure 4 shows how Command and Control Wind Tunnel 
(C2WT) [8] (described in section IV.A) is used for this HIL 
simulation. As shown, the PLC is connected to C2WT via the 
Ethernet port, and the simulation components Train Operation 
and Dispatch Center are executed directly in C2WT.

Fig. 4: Level Crossing Network Architecture

III. Op e r a t i o n a l  Me t r i c s

As part of experimental evaluations conducted using our 
testbed, we have identified several key metrics that have

Distance (Route 
Length) (Units: 
meters)

Total distance that the train travels 
according to the actual path taken. 
This path is dependent on the railroad 
switch control algorithm for achieving 
better throughput of trains.

Duration (Travel 
Time) (Units: seconds)

Travel time of a train from origin to 
destination.

Average Duration
(Units: seconds)

Average duration of all trains in the 
network.

Train Speed (Units: 
meters/second)

Average speed of a train from origin 
to destination.

Average Train Speed
(Units: meters/second)

Average train speed of all trains in the 
network.

Individual Waiting 
Time (Units: seconds)

Amount of time since last time step in 
which a train has been idle, stopped, 
or moving slower than 1 
meters/second.

Accumulated Waiting 
Time (Units: seconds)

Total amount of time for which a train 
is idle, stopped, or moving at slower 
than 1 meters/second during a trip.

Average Waiting 
Time (Units: seconds)

Average accumulated waiting time of 
all trains in the network.

Train Length (Units: 
meters)

Length of a train. This can also be 
transformed into other metrics such as 
number of rail cars.

Fuel Cost (Units: 
milliliters)

Total fuel a train consumes between 
its origin and destination.

Average Fuel Cost
(Units: milliliters)

Average fuel cost of all trains in the 
network.

TABLE I: Operational Metrics

operational significance to the railroad operation. As shown 
in Table I, these operational metrics include: route length, 
travel time, average duration, train speed, average train speed, 
individual waiting time, average waiting time, accumulated 
waiting time, train length, and fuel cost.

Along with metrics of the communication network, control 
network, and computing resources, these metrics will form the 
basis to assess the performance impact of the railroad system 
when cybersecurity measures are implemented. We use some 
of these key operational metrics in our experimental case study 
(provided later in the paper) in order to study the resilience 
properties of the railway critical infrastructure in the presence 
of a full or partial cyber-attack.

IV. Te s t b e d  Ar c h i t e c t u r e

Railway infrastructure is an integral part of modern busi-
nesses, from shipment of goods to transportation of passen-
gers. Therefore, maintaining the safety of rail operations is 
critical. Further, owing to an immense growth of cyber-attack 
capabilities, cybersecurity of the entire railway systems must 
be evaluated to ensure resilient rail operations even in the 
presence of cyber threats. Railway operations are complex 
and involve many cooperating components including physi-
cal devices, computation and control nodes, communication 
networks, and human operators and operational workflows. 
Thus, to evaluate the cybersecurity of railway networks and 
the effect of cyber-attacks on the rail operations, we need 
to integrate a number of simulators and execute them in an
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integrated manner. Our testbed for evaluating cybersecurity of 
rail operations leverages our past research work and is built 
using C2WT [8].

In this section, we describe the core technological compo-
nents of our testbed. The majority of these components have 
been previously published. Therefore, below we only provide 
a brief summary of each of them and point the reader to 
appropriate references.

A. Command and Control Wind Tunnel

The C2WT [8] is a novel, distributed, heterogeneous simu-
lation integration framework. It has a composable and modular 
architecture. The framework provides an intuitive and extensi-
ble platform for rapidly integrating many heterogeneous sim-
ulations. Each of the integrated simulations can be executed 
using a variety of special-purpose simulation tools that span 
many application domains.

1) Overview: The C2WT framework provides a model- 
based integration approach. In this approach, models are used 
not only for the system modeling, but also for their config-
uration, parameterization, integration, and execution. Each of 
the integrated simulators are represented as abstract modeling 
elements and their interactions are also captured using model 
relationships. The framework relies on the IEEE standard 
for distributed simulations called the High-Level Architecture 
(HLA) [12]. To support HLA-based distributed simulation, 
we use an open source HLA implementation (a.k.a. Run
Time Infrastructure (RTI)) called Portico [21]. The framework 
automatically synthesizes the integration code according to the 
models. This integration code for each integrated simulation 
adapts the original simulation model to become HLA compli-
ant, which can be executed directly as a supported simulation 
over the RTI.

2) Reusable Communication Network Simulation: Railway 
operations are really an example of a complex cyber-physical 
system (CPS) [1]. The cyber aspects of CPS (i.e., communi-
cation, control, and computation) are central to their proper 
functioning. Additionally, as in CPS the physical and cyber 
components are tightly inter-connected, a small change in 
cyber component can cascade to large problems in the physical 
components. Thus cybersecurity evaluations are central to 
all CPS, such as railroad operations. However, integrating a 
communication network simulator is a challenging task as it 
requires one to properly work with the variety of devices, 
network layers, communication protocols, application models, 
etc. For this purpose, we designed a generic communication 
network simulation component that can be directly used in any 
CPS cybersecurity evaluation scenario. The only customization 
it needs is the network topology and its routing configura-
tion. [7]

3) Cyber-Attack Library: Cyber-attacks are needed for 
evaluating how the system will behave when a particular cyber-
attack is enacted on the system’s communication network. For 
example, in railroad operations, a Distributed Denial of Service 
(DDoS) attack on a key control server can easily disrupt the 
entire operations and can potentially lead to highly damaging

consequences. In order to make it reusable, we developed a 
customizable, modular cyber-attack library [7] that can be 
used in any cybersecurity evaluation scenarios by simply 
configuring the cyber-attacks. The configuration of different 
attacks in the library require different parameter values in the 
configuration. For example, a Network Filter Attack requires 
one to specify the source and destination network subnets 
and the full path of the network node on which the attack 
is enacted. The result is that all network traffic, that has the 
origin and destination address matching to that specified in 
the configuration of the attack, gets filtered out, while the rest 
of the network traffic continues to flow as normal. A large 
library of such cyber-attacks has been developed and can be 
easily used for cybersecurity evaluations.

4) COAs for Scenario-Based Experimentation: The in-
tegrated simulation, even with configured cyber-attacks for 
a particular experimental scenario, still represents a static 
evaluation. In order to evaluate the systems under a variety 
of dynamic test scenarios (such as many different what-if 
situations), we developed a language that can be used to pro-
gram such scenarios. We call it the Courses-of-Action (COA) 
modeling language [7]. Each COA model, based on this lan-
guage, represents a sequence of observations and actions that 
interact with the running distributed simulation. For example, 
based on messages sent between certain simulators, the COA 
executor can inject new information into the simulation that 
can drive the simulation into a different evaluation trajectory. 
Such COA models are highly useful for evaluating potential 
cyber threats on CPS. For example, one can use the injection 
of different cyber-attacks (from the cyber-attack library) in 
different COA models and test them against different security 
mechanisms. This is sometimes also referred to as cyber
gaming in the literature. The COA execution engine in our 
testbed can perform full factorial of all COA combinations 
that the user models and packages into different COA-Groups.

B. Train Simulators

In our testbed, we had previously integrated a train simulator 
called TrainDirector [23] and published our work on railroad 
operations [3]. In our current work, we use Simulation of 
Urban MObility (SUMO) [26] for simulating trains. We have 
developed an integration adapter for SUMO previously in 
order to make it HLA-compliant [6]. We use SUMO’s Traffic 
Control Interface (TraCI) for interacting with the SUMO 
process running in parallel and controlling its scheduler for 
synchronizing the simulation with the rest of the simulators.

C. HIL Testbed

From our past experience, we realized that many attacks and 
physical phenomena are not easily suited to simulations. For 
example, an attack that changes system behavior after a certain 
sequence of characters are pressed on the keyboard is better 
deployed directly on the hardware. Similarly, when a large 
number of zombie network nodes are to be used in a network 
simulation in order to achieve the effect of a DDoS attack, it 
can be computationally highly expensive. In fact, it can be so
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slow that it may become unusable. On the other hand, the same 
attack implemented in the hardware using a set of embedded 
boards can easily generate and send a large number of network 
packets and can effectively and quickly perform the DDoS 
attack. For this purpose, we have created a novel HIL testbed 
that is configurable for different use-cases. In our testbed [6], 
we have a set of embedded boards, a programmable network 
switch for emulating the communication network, a physics 
simulator, and a computer for developing and controlling the 
HIL-simulation.

V. Ca s e  St u d y : Im p a c t  A s s e s s m e n t  o f  
Cy b e r -Ph y s i c a l  At t a c k s  o n  Ra i l r o a d  Ne t w o r k s

This reference case study is based on a railway transporta-
tion system. In this example, there are many railway signals 
and switches that route trains throughout the rail network. Rail-
way signals have a green or red state and determine whether 
a train can travel to the next rail segment. In circumstances 
where a junction exists that connects multiple rail segments, 
rail switches are used to route trains to the appropriate adjacent 
rail segment. Each rail switch or signal is controlled by 
command messages sent through a communications network 
by a train operator located at a central facility. The commu-
nication network is comprised of network switches, routers, 
and basestations that transport communications from a central 
operating station to the respective rail segments.

Figure 5 shows the railway network used for this case study. 
Here, the trains start at node A and are pre-routed through the 
railway network to arrive at a randomly chosen destination out 
of three locations, viz. B, C, or D. Each destination location 
has three possible routes leading to it from the starting point. 
By default, trains are assigned the route that has the minimum 
travel time to reach the destination location. To simulate 
unexpected delays that occur in the real world, each train is 
assigned a respective speed constraint for every rail segment 
in the rail network based on a random distribution between 7 
and 15 meters per second. As such, the current optimal route 
the train can take to reach its destination at the current time, 
may not be the best in the future due to the changing of rail 
segment speeds, as well as congestion caused by other trains 
in the network. This behavior leads to trains being distributed 
through the complete subset of the possible routes to optimize 
the flows throughout the rail network.

For the CPS cyber-attack experiment, a critical rail segment 
is selected for attack which serves as a central hub to the rest of 
the network. Additionally, we look at the impact of physical

Metric Baseline Partial
Attack

Rail
Block

Fuel 3907 mL 4785 mL 5631 mL
Waiting Time 10.52 s 131 s 241 s
Train Length 66m 66 m 66 m
Train Travel Distance 8314 m 8356 m 8420 m
Train Travel Direction 993 s 1230 s 1448 s
Average Train Speed 8.36 m/s 6.97 m/s 6.22 m/s

TABLE II: Operational Metrics from Railway Simulation

manipulations such as construction on the efficiency of the 
trains. To analyze these cascading effects, we simulated three 
scenarios as described in the sub-sections below.

A. Scenario 1: Baseline Operation

This scenario focuses on normal operation of a rail network 
with no blockages. This case provides a baseline for measuring 
the respective effects of the attack on the train scenario. In 
experiment results, it is shown in blue color.

B. Scenario 2: Partial Cyber-Attack

This scenario focuses on the effects of cyber-attacks on the 
physical behavior of the trains. In this scenario, a DDOS attack 
campaign will be executed on the communication leading to 
the first railway switch element, preventing communication 
from the central operating system, and leading to an inoperable 
state for the rail switch. However, at approximately halfway 
through the simulation, we assume that the security personnel 
have successfully resolved the situation by rerouting communi-
cation through a parallel communication network to reach the 
rail switch element. This enables the rail switch to become 
operable and allows for trains to access all of the respective 
routes. In experiment results, it is shown in red color.

C. Scenario 3: Full Railroad Blockage (Physical Attack)

This scenario focuses on the effects of physical manipula-
tions on the train routes, and arrival times. The bottom two 
routes will be closed due to physical damage, presumably 
caused by a physical attack on the railway infrastructure. As 
such, the trains will be rerouted to the top route, forming 
increasing congestion due to waiting times at respective rail 
signals on the route. With the backups on the routes, trains will 
be delayed, possibly arriving late for deliveries. In experiment 
results, it is shown in yellow color.

D. Experiment Results

To illustrate the results, we performed all three scenarios 
in parallel, while developing a real time interactive plotting 
mechanism for comparing the various results. This plot obtains 
the real time results for the average speed of all vehicles in a 
simulation, as well as the average waiting time of all vehicles 
at the current time step. By comparing this real time plot 
results to the graphical illustrations in SUMO, the attack’s 
physical effects can be analyzed in context. Table II shows the 
key operational metrics calculated from the railway simulation 
for each of the scenarios.
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A post-simulation plotting mechanism was also imple-
mented for comparing simulation based metrics such as av-
erage speed, average waiting time, average trip consumption, 
and average trip duration where the results of all vehicle trips 
are averaged together. Figure 6 illustrates the live measurement 
results during the simulation, and Figure 7 illustrates the post-
simulation simulation results. Finally, Figure 8 illustrates the 
observable congestion within the physical simulator (SUMO) 
resulting from the cyber-attack during the simulation.

Fig. 7: Post Simulation Results

... 

Fig. 8: Sumo Railway Simulation

From analyzing the results, various scenarios can be com-
pared by metrics-driven evaluation, combined with visual 
observation within the physical simulator. The two attack 
scenarios were successful in increasing the congestion within 
the railway network, negatively affecting the efficiency of the 
railway trips. Additionally, it is observed that once the partial

attack is resolved at approximately 3,000 seconds into the 
simulation, the efficiency of the train trips increases to the 
baseline level as a result of the other two routes opening up. 
It is due to this fact that the full attack scenario has the worst 
results, with the partial attack scenario second, and the baseline 
scenario with the best results. For example, when comparing 
the train travel duration, the baseline scenario had an average 
of 993 seconds per train trip, while the partial attack and 
full rail block scenario had an average of 1230 seconds and 
1448 seconds, respectively. This corresponding difference is 
further represented as a 23% increase in trip duration for the 
partial attack scenario, and 45% increase for the full rail block 
scenario compared to the baseline scenario.

VI. Re l a t e d  W o r k

In recent years, there have been a number of successful 
attacks against CPS, illustrating the ability to inflict physical 
damage through cyber vulnerabilities. These attacks have 
provided motivation for the rise of security and resilience 
research within the CPS field. Security looks at implementing 
prevention mechanisms to deter attacks, while resilience fo-
cuses on maintaining safe operation of a compromised system. 
The key challenge is to integrate both security and resilience 
models to provide optimal protections, while ensuring safe and 
reliable operation during all scenarios [5]. To accomplish this 
task, modeling and simulation have been widely utilized to 
analyze the vulnerability of systems. The HLA is an IEEE 
standard that has been widely popular for utilization within 
distributed simulation environments relating to safety-critical 
applications [12]. Additionally, there has been extensive work 
related to domain-specific modeling toolsuites, most notably 
the WebGME meta-modeling toolsuite [9].

Cyber-attacks on railway infrastructure have been limited 
thus far. Most attacks have been of the physical nature using 
Improvised Explosive Devices (IEDs) or other explosive de-
vices [16]. However, there have been some high profile crashes 
caused by failures in railway infrastructure such as positive 
train control [17]. These examples pose the closest resem-
blance of the potential consequences of a successful cyber-
attack. Additionally, there have been concerns in the past about 
adversarial actors leveraging these types of systems, to inflict 
maximum damage with a limited amount of resources [13].

In order to protect these critical infrastructure systems, there 
has been increasing research from the CPS perspective [1], 
including securing the communication between sensors and 
actuators in the network [14], as well as implementing detec-
tion algorithms for more rapidly identifying suspicious activity 
to the train operators [15]. Hubaux, et al. provide a good 
overview of security and privacy of smart vehicles [24]. Hoh, 
et al. describe techniques of enhancing security and privacy in 
a traffic-monitoring system [25]. In addition, there are existing 
testbeds that aim to assess security of complex Industrial 
Control Systems (ICS) [10] [11].
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VII. Co n c l u s i o n  a n d  Fu t u r e  W o r k

Railway represents a critical infrastructure that we rely on 
for our transportation needs. It is crucial that the railroad 
operations continue safely and in a resilient manner in the 
presence of cyber-attacks. However, railway operations are 
highly complex as they involve not only a tight interaction 
of physical and computational components, but also human 
operators and controllers. Ensuring cybersecurity of these op-
erations thus becomes highly challenging. A large number of 
experimental analyses are needed for evaluating the designed 
security mechanisms and operational workflows. As this is a 
rather complex problem with potentially millions of variables, 
the evaluations need to be goal-driven. The key resilience 
metrics against the operational goals can be evaluated under a 
variety of cybersecurity scenarios. In this paper, we developed 
a set of core metrics for railroad operations and presented 
our distributed simulation testbed that can be used for cyber-
security evaluations of the railroad operations and measure 
its operational performance by calculating these metrics for 
each scenario. We also demonstrated the testbed capabilities 
through an extensive case-study.

In our experiments, we used a standard coordination pro-
tocol for railway scheduling and switching control. In the 
future, we plan to deploy novel security mechanisms in our 
testbed and investigate algorithms that makes the railroad 
operations resilient against cyber threats. Additionally, for the 
train level-crossing system, the PLC is currently using its AIO 
and D Io  cards to interface with the sensors and actuators 
(motor controller and LED array). In the future, we plan to use 
the Controller Area Network (CAN) protocol for the PLC to 
communicate with the sensors and actuators because a CAN 
network can support a more scalable and complex crossing 
system with more sensors and actuators.
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