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Abstract— In this work we analyze how an adversary (who
participates in the electricity market) can manipulate the bids
of other agents to change the market’s equilibrium. Here the
adversary attempts to profit without damaging the system. We
formulate the adversary’s goal as the solution of a biased
efficiency metric and identify the precise attack that maximize
the adversary’s objective function. We propose a defense
scheme that modifies the bids to mitigate the impact of the
attack. We validate the results simulating a detailed electric
distribution system equipped with a transactive energy market
using GridLAB-D.
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I. INTRODUCTION

In recent years, cyber attacks targeting critical infrastruc-
tures became a real threat, rather than a remote possibility.
Although other cyber attacks targeting information assets had
a large history, e.g., theft of information, such actions didn’t
transcend the cyber-space. However, cyber attacks can affect
the physical space by exploiting the vulnerabilities of automa-
tion systems. For example, Stuxnet, the first known computer
malware designed to harm physical processes, targeted PLC’s
to sabotage the uranium enrichment process in Iran [1]. The
efficacy of Stuxnet demonstrated the vulnerabilities of critical
infrastructures against cyber attacks, which started a race
to both develop cyber weapons and improve the security of
critical infrastructures [2].

Cyber attacks on the power grid of Ukraine in 2015 and
2016 offered a glimpse of the devastating consequences cyber
attacks on critical infrastructures [3]. This work is part of the
efforts to improve the protection of critical infrastructures, in
particular, the power grid. Here we analyze how an adversary
that participates in the electricity market can exploit the
vulnerabilities of markets to profit without damaging to the
system.

In particular, we consider a scenario in which an adverse
generator manipulates the bids of customers to profit without
damaging the system. This can occur if the adversary
compromises appliances that participate directly in electricity
markets [4], [5], [6], [7]. Here we show the precise attacks
that balances both the profit of the adversary and the damage
to the system.

The system administrator can filter the bids to mitigate the
impact of attacks. Concretely, we leverage knowledge of the
attack strategy to estimate it’s impact and modify the bids to
compensate the attacker’s actions. In this case, the defender
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manages to reduce the attack losses modifying some of the
bids.

We validate the attack and defense strategies through a
detailed simulation of an electric distribution system using
GridLAB-D and the prototypical distribution feeder models
provided by the Pacific Northwest National Laboratory
(PNNL) [8]. GridLAB-D excels in modeling the distribution
side of the power system, because it includes detailed end-use
load models that incorporate weather and market behaviors.
Thus, we validate our findings with a realistic electricity
markets.

The paper is structured as follows. Section II makes an
introduction of electricity markets. We presents some formal
markets models in Section III. Section IV shows both the
adversary’s goal and the attack strategy. In Section V we
propose a defense scheme to mitigate the impact of attacks
and validate the proposed defense through simulations in
Section VI. We conclude the paper in Section VII.

II. BACKGROUND ON POWER SYSTEMS

The power system has three main components, namely
generation, transmission, and distribution. The generation
includes sources of electricity, such as hydro or thermal
generators, often scattered in large geographical areas. The
transmission and distribution infrastructures connect genera-
tors with customers, but differ in few aspects: the transmission
system carries energy across large distances using high voltage
transmission lines, while the distribution system reduces the
voltage and delivers energy directly to customers.

The operation of the power system has both physical and
economic constraints. On one hand, the system’s components
have limits in the power that they can generate or carry.
Moreover, generators and transformers are designed to operate
at specific frequencies (e.g., 50 Hz or 60 Hz). Hence,
the power grid works at a fixed frequency and needs to
maintaining a balance between generation and demand.
However, this is a non-trivial task due to the uncertainties in
the demand1 and the restrictions of generators.2

Power systems try to allocate resources in an efficient way,
that is, creating the highest social satisfaction. In this case,
an allocation refers to the transaction of energy and capital
among the generators and customers. The power system uses
market mechanisms to guarantee an efficient operation. In
particular, electricity markets use auctions to elicit private

1The demand changes in time and depends on many factors, such as the
temperature, the time of the day, the day of the week, and the season, among
others.

2In general, the main generators cannot make instantaneous changes in
their state, except some fast, but expensive, generators.
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information from agents (e.g., cost or utility functions) and
determine the most efficient allocations [9], [10].

Unlike other markets, electricity markets need a central
authority that monitors the system and enforces reliable
allocations, i.e., allocations that comply with the physical
constraints of the system. In general, an independent system
operator (ISO) plans the operation to the system in advance
guaranteeing its efficiency and reliability. The process of
finding the most economical way to supply the demand,
avoiding violations of physical constraints, is called economic
dispatch.

Electricity systems often use two markets, namely the day
ahead market (DAM) and the real time market (RTM). The
DAM plays a crucial role planning the future operation of the
power system. In particular, the DAM accept bids of supply
or demand for a future period (e.g., the following day) and
produces commitments that Hence, buyers and sellers must
fulfill. In this way, the system reduces future uncertainties
and allows the generators to prepare in advance for their
operation.3

The RTM complements the DAM correcting imbalances
between demand and generation during the actual operation.
For example, if a seller cannot provide the contracted energy,
the system operator must purchase energy from other sellers
that participate in the RTM. Likewise, if a buyer uses more (or
less) energy, then the system operator buys (or sells) energy
in the RTM. In general, the RTM accepts bids of supply or
demand for the next hour and finds an efficient way to correct
deviations in the commitments from the DAM.

Fig. 1 illustrates the operation of the RTM. First, the system
operator collects the bids from the agents (e.g., demand and
cost functions). Then, every few minutes the ISO measures
the system’s state and computes the market equilibrium (the
best allocation of resources and the price) based on the bids.
Once the one hour period finishes, the ISO calculates the
payments for each agent that participated in the market.

A. Demand Management Systems

The power grid is going through a modernization process to
improve its efficiency, resiliency, and reliability. In particular,
some innovations focus on enhancing the participation of
users. In general, the mechanisms to coordinate users, also
called demand management systems, use economic incentives
to shape the demand of users. For example, direct load control
programs compensate users who turn off their loads when the
system is under stress [11]. Other schemes, such as real time
pricing, time of use, and critical peak pricing, design prices
to induce the desired response of the users, e.g., reduction
of demand peaks [11].

Transactive energy (TE) is a distributed management
approach that implements a two way communication between
suppliers and customers. Thus, users can participate in the
market trading energy and other ancillary services [6], [7]. TE
relies on transactive controls, which control appliances and

3The ISO decides in the DAM the schedule of each generator, considering
their physical constraints, e.g., the time that they need to turn on/off or how
fast they raise or reduce their supply.

Bids (vi(·), Cj(·))

System’s state

Economic
dispatch
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Settlement

Agents ISO

loop

[5 min]

Fig. 1: Operation of a real time market.

make bids considering both the market’s price and the owner’s
preferences. In particular, loads that convert electricity into
thermal energy, such as water heaters and air conditioning
systems, may have some flexibility to participate in a market.
For example, transactive controllers can anticipate future
market prices and decide whether to store energy in thermal
form. In particular, the transactive controllers can prepare for
periods with high demand (and high prices) turning on the
air conditioning systems when the prices are low. In this way,
users can reduce costs at the expenses of some degree of
discomfort e.g., some deviation from the desired temperature.

III. SYSTEM MODEL

In this section we introduce the objective of the market’s
participants, the system’s efficiency metric (the social welfare),
and the market’s equilibrium. We use this market model to
analyze how an adversary can attack the system to profit.

A. Ideal Market Model

Let us consider a market with n consumers and m
generators, which conform the sets C and G, respectively.
Thus, the set of agents that participate in the market is
P = C ∪ G . We denote with qi ≥ 0 the demand of the
ith customer and with qj ≥ 0 the production of the jth

generator. Furthermore, we represent the demand of both
costumers and generators with the vector q. For simplicity
we ignore both the transmission and congestion losses; hence,
the system’s balance condition is∑

i∈C
qi =

∑
j∈G

qj . (1)

Let us denote the surplus of the ith customer as

ui(qi, p) = vi(qi)− qip,

where vi(qi) represent the comfort of the ith customer when
it consumes qi units of energy and p ∈ R represents the
unitary price of energy. Roughly speaking, ui quantifies the
net benefit of consuming qi units of energy. Moreover, we
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define the surplus of the jth generator (income minus the
production costs) as

uj(qj , p) = qjp− Cj(qj), (2)

where Cj(qj) represents the cost of producing qj units of
energy.

Assumption 1.
• The valuation function vi is continuous, derivable, and

concave increasing.
• The cost function Cj is continuous, derivable, and convex

increasing.
• The aggregated generation cost function is quadratic.

We define the social welfare as the sum of the customer
surplus and the aggregate seller surplus, that is,

f(q, p) =
∑

i∈C
ui(qi, p) +

∑
j∈G

uj(qj , p) =∑
i∈C

vi(qi)−
∑

j∈G
Cj(qj). (3)

The pair (q, p) conforms a market equilibrium, which
determines the efficiency of the system. The market operator
ignores the costs of necessities of the participants; hence,
it cannot find directly the tuple (qop, pop) that maximizes
the social welfare f in Eq. (3). Nonetheless, it can elicit the
private information through an auction.

An auction has the following steps:

1) The market operator commits to an auction, which
describes the type of bids allowed and the procedure
to calculate the equilibrium (q, p).

2) The participants choose their bids according to their
interests, e.g., their surplus function and potential
competition with other agents.

3) The market operator computes the equilibrium, that
is, the unitary energy price p and the total amount of
energy bought or sold.

In this case, the market operator requests directly the
private information of each agent (but they can report false
information). Thus, customers report a function v̂i(·) and
generators report a function Ĉj(·). In turn, the market operator
finds the allocation q∗ that solves the following optimization
problem

maximize
q

f̂(q, p) =
∑

i∈C
v̂i(qi)−

∑
j∈G

Ĉj(qj)

subject to
∑

i∈C
qi =

∑
j∈G

qj .
(4)

Moreover, the clearing price p∗ is equal to the marginal cost,
that is, p∗ = d

dx Ĉj(x)
∣∣∣
x=qj

, which hold for every generator

j ∈ G.
Some celebrated results from mechanism design [9] show

that the auction mechanisms creates incentives to report
truthfully private information. Hence, v̂i = vi and Ĉj = Cj

for all i ∈ C and j ∈ G. Therefore, the solution to Eq. (4)
maximizes Eq. (3), i.e., (q∗, p∗) = (qop, pop).
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Fig. 2: Piecewise linear valuation associated to a bid with
Qi = 4 and σi = 2.

B. Simplified Market Model

In an ideal market the participants bid their supply or
demand function, which describes the trades that they would
accept. Although some electricity markets use these type of
auctions, they often restrict the form of the functions. For
example, some markets assume that the cost functions are
quadratic and allow the bidders to choose some coefficients
[12].

We use a simplified market model that accepts bids of the
form (Qk, σk), where Qk represents the maximum capacity
to either consume of produce energy and σk represents the
price accepted (or charged) for Qk or less units of energy.
In this case, the bids represent piecewise linear functions
that satisfy [13] (Fig. 2 shows the example of a valuation
function)

v̇i(x) =

{
σi if 0 ≤ x ≤ Qi

0 if x > Qi

(5)

for each customer i ∈ C and

Ċj(x) =

{
σj if 0 ≤ x ≤ Qj

0 if x > Qj

for each generator j ∈ G.
The auctioneer accepts bids periodically (e.g, 5 min

intervals) and creates demand and offer curves ordering the
bids in descending and ascending price, respectively. Thus, we
can approximate the demand and offer curves with a piecewise
linear function. In particular, consider the ordered bids of
customers σc1 ≥ σc2 ≥ . . . ≥ σcn , with {c1, . . . , cn} ≡ C.
Then, the demand curve is the piecewise linear function
(Fig. 3 shows an example of demand curve formed with four
bids)

v̇(q) =

{
σck if

∑k
i=1Qci ≤ q <

∑k+1
i=1 Qci

0 otherwise.
(6)

Likewise, consider the ordered bids of sellers σs1 ≤ σs2 ≤
. . . ≤ σsn , with {s1, . . . , sn} ≡ G, which leads to the

707

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 08,2020 at 20:07:18 UTC from IEEE Xplore.  Restrictions apply. 



following offer curve

Ċ(q) =

{
σsk if

∑k
i=1Qsi ≤ q <

∑k+1
i=1 Qsi

0 otherwise.

The market equilibrium corresponds to the intersection
between the demand and the offer curves, which guarantee
that the total demand equals the total production.

IV. ATTACK MODEL

In this section we formulate the goal of an adverse generator
and show how it can modify the bids of consumers to achieve
its objective. We formulate the attack using the model in
Section III-A, assuming a single buyer and seller. Later we
extend the attack to the simplified market model of Section III-
B considering multiple bidders.

A. Adversary’s goal

Here we assume that an adversary participates in the market
and manipulates the bids of other agents to profit. In particular,
we leverage the attack model introduced in [14] to describe
the objective of an adversary that attempts to profit without
damaging the system.

Let A ⊆ P be the set of adversaries and V = P − A
the set of victims (agents who suffer the consequences of
the attack). In this case, the adversaries design the attack so
that the market maximizes an alternative objective function
fA, rather than the social welfare f . We define the attacker’s
objective function as

fA(q, p) = λ
∑

a∈A
ua(qa, p) +

∑
v∈V

uv(qv, p) =

f(q, p) + (λ− 1)
∑

a∈A
ua(qa, p), (7)

where λ ≥ 1 represents the intensity of the attack.
If λ = 1, then fA is equal to the social welfare f ; however,

if λ > 1, then the allocation that maximizes fA will benefit
the agents of the set A at the expenses of these belonging to
V .

The next result shows that the adversary benefits with
higher market prices.

Proposition 1. Let us consider two market prices p1, p2 such
that p1 ≥ p2. Then, each generator has larger profits with
larger market prices. that is,

uj(q1, p1) ≥ uj(q2, p2).

Proof: With each price the jth generator will produce
the amount that maximizes its profit (see Eq. (2)). Hence, the
generator will produce q1 and q2 units of energy, such that
p1 = Ċj(q1) and p2 = Ċj(q2). Since the generation cost is
concave and increasing we have q1 ≤ q2. Furthermore, the
cost function satisfies

Cj(q2)− Cj(q1) ≥ Ċj(q2)(q2 − q1) (8)

Now, let us consider the impact of the prices in the
generator’s profit

uj(q1, p1)− uj(q2, p2) = q1p1 − q2p2 + Cj(q2)− Cj(q1).

Since p1 > p2, we an rewrite the previous expression as

uj(q1, p1)−uj(q2, p2) ≥ (q1−q2)p2+Cj(q2)−Cj(q1). (9)

Now, we can use Eq. (8) to rewrite Eq. (9) as

uj(q1, p1)− uj(q2, p2) ≥ 0.

B. Attack strategy

Here we consider a market with only one seller and one
buyer, which will be useful to design attack on the simplified
market in Section III-B. Let us approximate the aggregate
valuation function of customers as v(d) = δ log(1+d) and the
aggregate generation cost function as C(g) = σg2/2, where d
and g represent the total demand and generation, respectively.
From the balance condition in Eq. (1) the generation equals
to the demand; here for simplicity we denote q = d = g.

The social welfare based on the reported functions (v̂ and
Ĉ) is (see Eq. (4))

f̂(q, p) = v̂(q)− Ĉ(q).

Moreover, the goal of an adverse generator is (see Eq. (7))

fA(q, p) = v(q)− C(q) + (λ− 1)(qp− C(q)). (10)

Although Eq. (12) depends on the market’s price p, which
is unknown at the moment of the attack, it is possible to
leverage the equilibrium conditions to express the fake bids
as a function of known information. In particular, since C(q)
is quadratic and p = Ċ(q) we have

qp− C(q) = σq2 − σ

2
q2 =

σ

2
q2 = C(q).

Hence, we can rewrite Eq. (10) as

fA(q, p) = v(q)− C(q) + (λ− 1)C(q).

The generator can transform f̂ into fA manipulating the
bid of the customer as

v̂a(q) = v(q) + (λ− 1)C(q). (11)

Alternatively, the if the market requests the customer’s
marginal valuation, the adversary can submit

∂v̂a

∂q
(q) = v̇(q) + (λ− 1)Ċ(q), (12)

which follows from Eq. (11).
From Eq. (6) we can express the fake bid Eq. (12) on the

individual bids as
∂v̂ai
∂qi

(qi) = v̇i(qi) + (λ− 1)Ċ(q)

However, the marginal cost depends on the total demand q,
but we define the valuation with respect to the individual
demand qi. For this reason, we approximate the marginal cost
with an estimation of the future price p̃ ≈ Ċ(q), resulting

∂v̂ai
∂qi

(qi) = v̇i(qi) + (λ− 1)p̃.

If the market clears within short periods, then we can
approximate the future price p̃ using the clearing price from
previous periods.
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(b) Attack that modifies the 2nd bid.
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(c) Attack that modifies the 4th bid.

Fig. 3: An attack that injects a bias ε in the bids may change the equilibrium (intersection of the offer and demand curves) if
it affects bids with prices below the equilibrium price.

Unlike other attacks that target sensors [15], the adversary
does not need detailed information about the physical structure
of the power system (e.g., grid’s topology), because the
economic dispatch has that information into account to find
the optimal operation.

V. DEFENSE

Here we analyze how to modify the bids to mitigate the
impact of attacks. In particular, we leverage knowledge of
the attack strategy to estimate and mitigate it’s impact.

We denote with (qop, pop) and (qa, pa) the optimal equi-
librium and the equilibrium with an attack, respectively. Let
us assume that the adversary compromises na = nγ bids of
buyers, where γ ∈ [0, 1] represents the degree of the attack.
Let us denote with Ca the set of meters compromised, where
na = |Ca|. Thus, we denote an attack with the tuple (λ, γ).

The adversary can change the equilibria if it manages
to show that the buyers have a higher willingness to pay
for energy. In particular, the adversary needs to change the
bids that don’t accept the equilibrium price. According to
Eq. (5), the adversary must target bids belonging to the
set CL ≡ {k|σk ≤ pop, k ∈ C}, which has total demand
QL =

∑
i∈CL Qi. Conversely, modifying bids that accept the

market price won’t change the equilibrium. Fig. 3 shows an
example of attacks on bids and their impact in the market’s
equilibria.

We assume that the adversary does not compromise the
quantity requested in each bid Qi, because the utility company
measures the actual demand for billing purposes. Moreover,
let us assume that the bids of buyers have roughly the same
quantity, that is, Qi ≈ Q̄, for i ∈ C. Hence, the attack changes
the equilibrium quantity in proportion to the compromised
bids with price below pop, that is, bids from the set CL. Thus,
we can approximate the impact of an attack (change in the
equilibrium quantity) as

qa − qop ≈ Q̄|CL ∩ Ca| (13)

If the adversary selects the bids randomly, then the expected
number of compromised bids belonging to CL is

E[|CL ∩ Ca|] = η = |CL| na/n .

We estimate the number of bids in CL as

|CL| ≈
∑n

i=1Qi − qop

Q̄
.

With the above expressions we rewrite Eq. (13) as

E[qa − qop] ≈ Q̄η.

Thus, we can estimate the equilibria quantity without attacks
qop using the observed equilibria qa and an estimation of na

qop ≈
nqa − na

∑n
i=1Qi

n− na
(14)

Moreover, we can use Eq. (14) to estimate the number of
bids compromised

nc ≈ (qa − qop)
/
Q̄

The defender can mitigate the attack’s impact moving the
equilibria quantity close to qop. In particular, the defender
can reduce the price of nc of the bids with largest prices,
which has the effect of moving the attacked demand curve
to the left (closer to pop).

VI. EXPERIMENTAL RESULTS

A. Power Grid Model

We make a detailed simulation of an electric distribution
system using GridLAB-D and the prototypical distribution
feeder models provided by the Pacific Northwest National
Laboratory (PNNL) [8]. GridLAB-D excels the modeling the
distribution side of the power system, because it includes
detailed end-use load models that incorporate weather and
market behaviors. In particular, GridLAB-D models retail
markets through auctions, in which both sellers and appliances
participate [4]. In this case, we use the prototypical feeder
R1-12.47-3, which represents a moderately populated area.
We added representative residential loads to the distribution
model using the script in [16]. Thus, our distribution model
has 118 commercial and residential loads, which in turn
incorporate appliances such as heating, ventilation, and air
conditioning (HVAC) systems, water heaters, pool pumps,
among others.
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(b) GridLAB-D’s model.

Fig. 4: Market equilibrium with an attack of intensity λ = 1.5.
The attack increases both the price and the production at the
equilibrium.

GridLAB-D models the response of the loads to weather
and market’s prices, giving realism to the simulations.
In particular, we simulate weather from summer time in
Nashville, TN, and use auctions that collect bids and decide
the equilibrium each 5 minutes. The details of the market’s
structure are available in [17].

The transactive controllers report in their bids their current
state. In particular, the controllers choose as the bid’s
quantity the current demand of their appliances, which
approximates the future demand. Furthermore, the bid’s price
is an estimation of the price necessary to maintain the current
demand. GridLAB-D assumes that the non-responsive loads
bids the maximum price allowed in the market (set as 0.63
in the simulations). In this way, each bid will determine a
segment of the aggregate curve and the intersection of the
curves determines the equilibrium, that is, the total demand
q and price p.

B. Impact of Attacks

Fig. 4 shows an example of the market’s curves with an
attack with λ = 1.5. The offer curve corresponds to the
marginal cost, while the demand curve corresponds to the
marginal valuation. The curves of the GridLAB-D’s model are

1.0 1.1 1.2 1.3 1.4 1.5
Intensity of the attack λ

0

2

4

6

8

10

S
ur

pl
us

Economic Impact of Attacks

Buyers’ losses
Sellers’ gains

(a) Ideal model.

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
Intensity of the attack (λ)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

M
on

et
ar

y
un

its

Economic Impact of Attacks

Buyer’s loss
Seller’s gain

(b) GridLAB-D’ model.

Fig. 5: Economic impact of the attack for both customers
and sellers as a function of the attack intensity λ. The losses
of the customer exceed the benefit of the seller.

truncated because some loads are inelastic (the flat segment
with maximum price represent inelastic loads). In this case
the attack changes all the bids submitted by controllers and
manages to rise the prices; however, the equilibrium cannot
surpass the total demand requested by the customers.

Fig. 5 shows the economic impact of the attack as a function
of the attack’s intensity λ. Concretely, we define the benefit
of the adversary as∑

i∈G
ui(q

a
i , p

a)− ui(qopi , p
op)

and the losses of the customers as∑
i∈C

ui(q
op
i , p

op)− ui(qai , pa).

Observe that the seller has positive gains with λ > 1;
however, the damage on the customers exceeds the profit
of the adversary. As expected, the attack harms the social
welfare, because the adversary can benefit only by causing
losses to other agents.

C. Efficacy of the Defense

Fig. 6 shows an example of the market equilibrium with
the proposed defense scheme. Here we use λ = 1.5 and
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Fig. 6: Example of the market equilibrium with and without
an attack. The attack has intensity λ = 1.5 and increases
both the price and the generation at the equilibrium.
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Fig. 7: Efficacy of the defense scheme as a function of the
estimated proportion of compromised meters ω. The efficacy
improves with the accuracy of the estimations, i.e., as ω
approaches γ = 0.4.

ω = γ = 0.8. This example illustrates that the defense moves
the demand curve to the left to compensate the actions of
the adversary.

The proposed defense scheme requires an estimation of
γ = na/n, the proportion of meters compromised. Fig. 7
shows the efficacy of the proposed defense when the defender
uses ω = nc/n as an estimation of γ (the proportion of meters
compromised). Here we measure the efficacy of the defense
as

f(qop, pop)− f(qd, pd),

where (qd, pd) represents the equilibrium with the proposed
defense. The efficacy improves as ω approaches γ; however,
the defense cannot prevent completely the damage of the
attack. In this case, the defense is more efficient when ω falls
below γ, hence, errors estimating the attack parameters may
harm the system’s efficiency.

VII. CONCLUSIONS AND FUTURE WORK

This work shows how an adversary can manipulate bids
to profit regulating the damage on the system. The attacker
leverages the market infrastructure; hence, the attack’s design
does not need information about the system’s state or its
topology. Moreover, the adversary can succeed despite of the
restrictions imposed by the auctioneer regarding the type of
bids accepted. We propose a defense strategy that compensates
the impact of the attack by modifying some bids; however,
inaccurate estimations of the attack’s parameters can harm
both buyers and sellers.

This work analyzes only one type of adversary (a generator
or seller); however, we plan to analyze how other agents (or
group of agents) may attack the system to profit. We also plan
to design defense mechanisms anticipating possible responses
of the adversary.
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