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a b s t r a c t

This paper focuses on the optimal sensor placement problem for the identification of pipe failure locations
in large-scale urban water systems. The problem involves selecting the minimum number of sensors
such that every pipe failure can be uniquely localized. This problem can be viewed as a minimum test
cover (MTC) problem, which is NP-hard. We consider two approaches to obtain approximate solutions
to this problem. In the first approach, we transform the MTC problem to a minimum set cover (MSC)
problem and use the greedy algorithm that exploits the submodularity property of the MSC problem to
compute the solution to the MTC problem. In the second approach, we develop a new augmented greedy
algorithm for solving the MTC problem. This approach does not require the transformation of the MTC
to MSC. Our augmented greedy algorithm provides in a significant computational improvement while
guaranteeing the same approximation ratio as the first approach. We propose several metrics to evaluate
the performance of the sensor placement designs. Finally,wepresent detailed computational experiments
for a number of real water distribution networks.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Infrastructure deterioration, demand-supply uncertainty, and
risk of disruptions pose new challenges in maintaining modern
infrastructures. Resilient urban infrastructures including water
distribution systems, transportation networks, and electric grids
are crucial for societal well-being. Smart infrastructure operation
driven by sensing and actuation technologies have been identified
as one of the primary solutions towards resilient urban systems
(Pandharipande, Calabrese, Lim, & Rajagopal, 2014; Zheng &
Kleiner, 2014). Through a network of sensors, an individual fault
or correlated failures in a system component can be detected and
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localized, and restorative actions can be executed in response to
these faults. Whereas network observability for a given sensing
capability has beenwidely studied in the context of fault detection,
sensor placement for fault isolability, i.e. the ability to distinguish
between faults, has not been a commonly studied problem,
especially in the context of pipe bursts in water distribution
networks.

The goal of thiswork is to design a sensor placement configuration
for identification of pipe failure locations by using the minimum
number of sensors. The underlying idea behind our approach is to
ensure that the sensor placement results in a collective output that
is unique for each failure event. Specifically, ourmain contributions
are as follows, we:
– Define the localization of pipe bursts as the design objective

of a sensor network configuration, and using ideas from
combinatorial optimization, we formulate the fault location
identification problem as aminimum test cover (MTC) problem;

– Develop a computationally efficient augmented greedy algo-
rithm to solve the minimum test cover problem (resp. identi-
fication problem), which is significantly faster in comparison to
the previous approaches and therefore, scalable to large-scale
networks; and

– Test and evaluate our sensor placement approach on a batch of
real-networks of various sizes and parameters using practically
relevant performance measures.
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Nomenclature

C t
i Set of pair-wise link failures detected by the sensor i

Ci Set of link failures detected by the sensor i
C Collection of all Ci’s
Ct Collection of all C t

i ’s
fD Detection function
fI Identification function
h Hydraulic head
ID Normalized detection score
II Normalized identification score
IL Normalized localization score
IW Number of elements in the largest localization set
k Maximum number of link failures detected by any

sensor
ℓj jth (failure) event
ℓt
ij Unordered pair of (failure) events ℓi and ℓj

L Set of all (failure) events
Lt Set of all pair-wise (failure) events
L Localization set
m Total number of sensors
M Influence matrix
Mt Transformed influence matrix
n Total number of events
p Pressure
q Flow
Si The location of the ith sensor
S Set of all sensors
yS Outputs of sensors in the set S

Our paper is motivated by the need to consider localization of
pipe bursts in the deployment phase of new sensing technologies,
since this consideration can significantly reduce the response time
and overall costs of fault localization to the distribution utilities.
We base our work on the use of low-cost, high-rate online sensors
measuring water pressure for remote detection of pipe burst using
data mining techniques. Real-world examples are the PIPENET in
Boston,MA, US (Stoianov, Nachman,Madden, & Tokmouline, 2007)
and the WaterWise in Singapore (Allen et al., 2011). The sensor
placement problem is not unique to the water sector and can be
found in many engineering applications for system operation. We
discuss some of the related work in Section 7.

In Section 2, we present the network and the sensing models
and formulate the detection and identification problems as the
minimum set cover (MSC) and minimum test cover (MTC) prob-
lems, respectively. A key aspect of the MTC problem formulation
is the choice of the objective function, which is to select the min-
imum number of tests from a collection of tests such that every
event can be uniquely classified in one of the given categories based
on selected tests’ outcomes (Moret & Shapiro, 1985). In our setup,
the set of outcomes of tests comprises of the output vector from
sensors, events are pipe failures, and classification categories are
the possible locations of the failed pipes. In Section 3, we present a
solution approach as in Halldórsson, Halldórsson, and Ravi (2001)
and Svärd, Nyberg, and Frisk (2013), inwhich theMTC is first trans-
formed to the MSC and then solved using the greedy approxima-
tion (Minoux, 1978).

In Section 4we present an augmented greedy algorithm for solv-
ing the MTC that does not require the complete transformation
of the MTC to the equivalent MSC, and directly computes the ob-
jective function in a greedy fashion. This algorithm is much faster
than the standard greedy approach and considerably improves the
scalability of our approach. In Sections 5 and 6, we demonstrate
our approach using a benchmark and a batch of twelve real wa-
ter distribution networks of various sizes and specifications. We
suggest four metrics to evaluate the performance of the design in-
cluding detection, identification, and localization scores. Although
we demonstrate our results in the context of water networks, our
algorithm provides an improved solution to the generic test cover
problem. Section 8 summarizes our work and proposes future ex-
tensions.

2. Problem formulation

Consider the problem of placing online sensors measuring hy-
draulic pressures with high frequency such that the identification
of pipe failure locations is maximized. Based on the number of
pipes where link failures (i.e., pipe bursts) can happen, we con-
sider n link failures as a set of failure events, denoted by L =
{ℓ1, . . . , ℓn}. For the ease of presentation and without the loss of
generality, let ℓj denote the failure event at the jth pipe. Moreover,
we define a set of sensors that can be placed atm nodes of the net-
work as S = {S1, . . . , Sm}. Here, Si denotes the location of the ith
sensor. The outputs from sensors, which are based on the change
in pressure induced by the failure event, are denoted by yS .

2.1. Network dynamics and sensing model

A water distribution network can be represented by a graph
comprising nodes (supply and demand) connected by links (pipes,
valves, and pumps). Physical failures of the infrastructure, such
as pipe bursts, cause a disturbance in the flow, which moves
through the system as a pressure wave known as water hammer,
or surge with very high velocity, varying typically in the range of
600–1500 (m

s ) (Misiunas, 2005). This implies that the steady state
analysis employed by traditional methods such as supervisory
control and data acquisition (SCADA) systems are inadequate and
that the transient system dynamics between the initial and the
final steady state conditions need to be considered.

The transient system state can be typically described by mass
and momentum partial differential equations (Wylie, Streeter, &
Suo, 1993). The method of characteristics (MOC) is a numerical
technique typically used to approximate the solution of the
hydraulic transients. The MOC transforms the partial differential
equations into ordinary differential equations that evolve along
specific characteristic lines of the numerical grid, which are solved
explicitly to compute the head and flow, hi,t+1, qi,t+1, at new point
in time and space. Here, t and i indicate the discrete points of the
numerical grid. For a given pipe, the two characteristic equations
describing the hydraulic transients are formulated as Misiunas
(2005):

hi,t+1 =
1
2


hi−1,t + hi+1,t + b


qi−1,t − qi+1,t


+ r


qi+1,t |qi+1,t | − qi−1,t |qi−1,t |


(1)

qi,t+1 =
1
b


hi,t+1 − hi+1,t + qi+1,t − r|qi+1,t |


, (2)

where r is the resistance coefficient associated with the steady
state, and b is the impedance coefficient associated with the
transient state. For b = 0 the set of Eqs. (1), (2) is reduced to
the steady state, where the head loss along a pipe occurs only
due to friction (Todini & Rossman, 2013). Additional information
describing transient dynamics can be found in the supporting
information (SI) (Sela Perelman, Abbas, Koutsoukos, &Amin, 2015).

The effect of a pipe burst at location i can be translated into
boundary conditions using the orifice head-flow relation (Wylie
et al., 1993). Before the burst occurs, the cross-section area of the
orifice is equal to zero and it increases during a burst, hence we
can expect a sudden change in the hydraulic head. The relationship
between the head and the pressure, measured by the sensors at
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location i, is related to the elevation of the sensor location. If zi is the
elevation, and pi,t is the pressure at location i at any given time t ,
then pi,t =


hi,t − zi


ρg, where g is the gravitational acceleration

[
m
s2
] and ρ is water density [ kg

m3 ]. Hence, the disturbance caused
by a pipe burst that reaches the sensor location can be detected
by sensing the hydraulic pressure. Similar approaches have been
suggested in Zan, Lim, Wong, Whittle, and Lee (2014).

The disturbance caused by the pipe burst quickly dissipates
with the distance between the burst event ℓj and the location of the
sensor Si. For the purpose of sensor placement, we are interested
in obtaining the sensor’s output as a result of some event ℓj. Let
ySi(t, ℓj) ∈ {0, 1} be a discrete state (output) of the sensor Si at time
t , where 1 represents a possible detected event and 0 represents
otherwise. Let ξ be a function characterizing the distance between
the expectedpressure (i.e.,when there is nopipe burst), denotedby
p̂i,t , and the measured pressure, denoted by pi,t . The sensor output
can then be formulated as:

ySi(t, ℓj) =


1 if ξ


pi,t − p̂i,t


≥ ε

0 otherwise (3)

where ε is a threshold value. A simple detection model would be
where the sensor Si indicates an event if the change in the pressure
is above some threshold value ε. We note here that when the
failure event ℓj occurs during a given time period, then the output
of Si will be 1 (or 0) independent of the time of the event ℓj. Hence,
we can neglect the time dependency of the sensor output to detect
the event and can restate the output of the sensor as:

ySi(ℓj) =


1 if ySi(t, ℓj) = 1, for any t > 0
0 otherwise. (4)

Let yS(ℓj) =

yS1(ℓj), . . . , ySm(ℓj)


be the fault signature (Cordier

et al., 2004) of the failure event ℓj represented by a Boolean vector
of the outputs of sensors in the set S.

Consequently, for a sensor set S and the set of events L, we
can instantiate a Booleanmatrix of dimensions |L|× |S| called the
influence matrix and denoted by M. The jth row of M consists of
sensors’ outputs in response to the event ℓj, i.e., yS(ℓj). Similarly,
Mij = 1 indicates that a sensor Si detected the failure at link ℓj, and
Mij = 0 means otherwise. Each row of the influence matrix M is
analogous to the notion of fault signature in the model-based fault
diagnosis systems literature (Cordier et al., 2004).

M (L, S) =


yS(ℓ1)
yS(ℓ2)

...
yS(ℓn)

 . (5)

Furthermore, for the set of link failuresL, and the set of all possible
sensor locations S, let Ci ⊆ L be the set of link failure events
detected by the sensor Si, i.e., Ci = {ℓj ∈ L| ySi(ℓj) = 1}. If C
is a collection of all such Ci’s, i.e., C = {Ci : ∀i}, then for a given
subset of sensors S ⊆ S, we define CS ⊆ C as a set of subsets
of failure events, where a subset corresponds to a sensor in S that
detects the failure events in that subset, i.e., CS = {Ci : Si ∈ S}.

Example 1 (Sensing Model). To illustrate the network dynamics,
consider a small network having 8 nodes connected by 10 links
as shown in Fig. 1. A pipe burst event is simulated in the middle
of pipe ℓ1 and system response at network nodes is recorded. For
the ease of notations, we designate the failure events as pipes’ ids,
ℓj. The transient simulations were computed using the HAMMER
software (Bentley, 2015). Fig. 2 shows simulated pressure heads
and Boolean outputs yS , for sensors located at nodes 2 and 4.
Thus for S = {S2, S4} the sensors’ state is yS(ℓ1) = [1, 0]. If
sensors are placed at all nodes of the network, then the sensors’
Fig. 1. Illustrative example layout.

Fig. 2. Failure event generated in pipe ℓ1 in the small example—pressure head [m]
and outputs of sensors S2, S4 .

state in the case of failure at ℓ1 is yS(ℓ1) = [1, 1, 1, 0, 1, 0, 0, 0],
yS(ℓ2) = [1, 1, 1, 1, 0, 1, 0, 0], and so on. The corresponding
influence matrix is

M(L, S) =



S1 S2 S3 S4 S5 S6 S7 S8

ℓ1 1 1 1 0 1 0 0 0
ℓ2 1 1 1 1 0 1 0 0
ℓ3 1 1 0 1 1 0 0 1
ℓ4 1 0 1 1 1 1 1 0
ℓ5 1 0 1 1 0 1 1 0
ℓ6 0 1 1 1 1 0 1 1
ℓ7 0 0 1 1 1 1 1 1
ℓ8 0 1 0 1 1 0 1 1
ℓ9 0 0 1 1 0 1 1 1
ℓ10 0 0 0 1 1 1 1 1


.

Next, we formulate the detection and identification problems as
the minimum set and test cover problems, respectively.

2.2. Detection as MSC

For the set of events L and the set of sensors S, we define a
detectable event as the one forwhich there exists at least one sensor
in S that detects the event. The detection problem is to select the
minimum number of sensors S ⊆ S, such that when a detectable
event occurs, at least one sensor in S detects the event. For a given
subset of sensors S, we define the detection function, denoted by fD,
as follows:

fD(CS) =

 
Ci∈CS

Ci

 . (6)

The detection function in (6) gives the number of link failures in L
that can be detected by the sensors in S. The detection problem is
to select a subset of sensors S ⊆ S with the minimum cardinality
such that all detectable events are detected, i.e. fD(CS) = fD(CS).
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The detection performance of a subset of sensors S is defined as the
normalized detection score, ID(S) and is computed as fD(CS)/|L|. The
detection problem is equivalent to theminimum set cover problem,
which could be defined as:

Definition 2.1 (Minimum Set Cover (MSC)). Let L be a finite set of
elements, andC = {Ci : Ci ⊆ L} be the collection of given subsets
of L. The minimum set cover is to find Cs ⊆ C with the minimum
cardinality such that


Ci∈C

Ci =


Cj∈Cs
Cj.

In the above definition, ifL is the set of link failures andC is the
collection of Ci’s corresponding to all the available sensors, then
a set cover of minimum size Cs, gives the minimum number and
locations of sensors that solve the detection problem. Thus, we get
the following:

Proposition 2.1. The problem of detection of link failures in a
network is equivalent to the minimum set cover problem, and a
solution to MSC is therefore, a solution to the detection problem.

The MSC problem is closely related to the maximum coverage
problem (Vazirani, 2003), which emerges when the number of
sensors that could be used is limited, i.e., |S| ≤ B. The objective
of the maximum coverage problem is to select the sensors such
that the number of detectable events is maximized and the
constraint |S| ≤ B is satisfied. In Section 3.1 we discuss the greedy
solution approach, which is very much similar for the MSC and the
maximum coverage problems.

2.3. Identification as MTC

For the identification of link failures, the goal is to uniquely
detect the events in L, i.e. to distinguish between events using the
outputs of sensors. We note that event ℓi ∈ L can be distinguished
from event ℓj ∈ L, if there exists a sensor in S that gives different
outputs for ℓi and ℓj. In such a case, we say that the pair-wise event
ℓi, ℓj is detectable if ∃Sp ∈ S : ySp(ℓi) ≠ ySp(ℓj). In terms of
the influence matrix of the network, if a pair-wise event ℓi, ℓj is
detectable, then there exists a column with different i and j row
entries. It follows that an event ℓi can be uniquely detected if all
pair-wise events ℓi, ℓj, ∀j ≠ i are detectable.

The identification problem is now defined as follows: for a given
L and S, the identification problem is to select a subset of sensors
S ⊆ S with the minimum cardinality, such that every detectable pair-
wise event can be detected by at least one sensor in S. The identifica-
tion function of S, fI(CS), is the number of pair-wise events that are
detected by a subset of sensors S ⊆ S, and will be further dis-
cussed in Section 3.2.1. The identification problem is equivalent
to the minimum test cover problem, which is defined as follows
(De Bontridder et al., 2004):

Definition 2.2 (Minimum Test Cover (MTC)). Consider a finite set
L and a collection of subsets C = {Ci : Ci ⊆ L}. The minimum
test cover is to find Ct ⊆ C with the minimum cardinality such
that if for a pair of elements {ℓu, ℓv} ∈ L, there exists Ci ∈ C that
contains either ℓu or ℓv but not both, then there exists some Cj ∈ Ct
that also contains either ℓu or ℓv , but not both.

The identification problem is to find a subset Ct ⊆ C of
minimum cardinality, or equivalently the corresponding subset of
sensors S ⊆ S, such that if yS(ℓj) is unique with respect to the set
of all sensors S, then yS(ℓj) is also unique with respect to a subset
of sensors S, which is the MTC problem defined above. Thus, we
can state:

Proposition 2.2. The problem of identification of link failures in
networks is equivalent to the minimum test cover problem, and
therefore, a solution to MTC is also a solution to the identification
problem.
Example 2 (Detection vs. Identification). Following Example 1,
consider two sensors placed at nodes 2 and 4, S = {S2, S4}. For the
detection problem,we note that C2∪C4 = L. That is, at least one of
the sensors in S has an output 1whenever a link fails. Thus, sensors
S2 and S4 cover (detect) all link failures and solve the detection
problem. For the identification problem, sensors 2 and 4 are not
sufficient as they generate only three unique states associatedwith
the 10 events, which makes it impossible to distinguish between
all link failures. For example, the state {1, 0} is uniquely associated
with a failure in link ℓ1, whereas, the state {1, 1} can be associated
with a failure in any of the links ℓ2, ℓ3, ℓ6, or ℓ8. However, for the
set of sensors S∗ = {S1, S2, S3, S5}, which solves the MTC problem
for Example 1, the output is unique for each link failure, i.e. ten
distinct indicator vectors, each corresponding to a unique failure
event, are obtained.

3. Greedy MTC solution

It is well known that both MSC and MTC are NP-hard problems
(Garey & Johnson, 1979; Vazirani, 2003). In this section, we first
introduce an approximate solution to the MSC, which will be
utilized in Section 4 for constructing a computationally efficient
solution of the MTC problem.

3.1. Detection solution

MSC has been studied extensively owing to its wide variety of
applications in theoretical as well as practical domains. A straight-
forwardway to solve theMSC is by the greedy approach. The greedy
approach is to select, in each iteration, a sensor that detects the
maximumnumber of undetected link failures, until all link failures
are detected, or no further link failure can be detected by any
sensor. In the maximum coverage problem, iterations continue
until a given number of sensors are selected. If n is the total number
of link failures, m is the total number of sensors, then greedy
algorithm is the (ln n + 1) approximation of the MSC. Since MSC
cannot be approximated to (1− o(1)) ln n unless P= NP (Dinur &
Steurer, 2014), greedy algorithm gives the optimal approximation
ratio. Moreover, if k is the maximum number of link failures that
can be detected by any sensor, then the greedy algorithm has the
approximation ratio of (ln k + 1) (Vazirani, 2003). In our context,
k depends on the network topology and the sensing model as
in (5). Similarly, for the maximum coverage problem, the greedy
algorithmgives the approximation ratio of (1−1/e), which is again
the best possible.

Although the greedy approach gives the best known approxi-
mation ratio, its straightforward implementation requires a large
number of function (as in (6)) evaluations. The running time of
greedy approach is a function of the number of sensors and events,
O(mn). For large scale systems, inwhichn andm are very large, this
simple greedy approach becomes computationally intractable ow-
ing to a large number of function evaluations, even if computing a
function is not expensive. However, greedy algorithm can bemade
faster by reducing the number of function evaluations if the sub-
modularity property is satisfied (Minoux, 1978). Submodular func-
tions can be defined as follows:

Definition 3.1 (Submodularity). Let C be a finite set and f be a set
function, f : 2C

−→ R. Moreover, Cs ⊆ Cr ⊆ C, and Ci ∈ C \ Cr ,
then f is submodular whenever

f (Cs ∪ {Ci})− f (Cs) ≥ f (Cr ∪ {Ci})− f (Cr). (7)

For the detection problem, thismeans that as the number of link
failures detected by the selected sensors increases, the marginal
value of adding a sensor to the cover decreases. It can be shown that
the function in (6) is submodular (see Sela Perelman et al., 2015),
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and the submodularity of fD can be exploited to obtain the lazy
greedy algorithm as in Minoux (1978). The basic idea behind the
lazy greedy approach is to eliminate the redundant computations
in each iteration. This can be further explained as follows: For the
κth iteration, let Fκ(Ci) denote the utility of adding a sensor i to
the cover, i.e. fD(Cs ∪ {Ci}) − fD(Cs), then by the submodularity
of fD, we know that Fκ+1(Ci) ≤ Fκ(Ci). Moreover, without the
loss of generality, we assume that Fκ(C1) ≥ Fκ(C2) ≥ . . ., then
C1 is the greedy choice in the κth iteration. However, in the next
iteration, if Fκ+1(C2) ≥ Fκ(C3), then Fκ+1(C2) ≥ Fκ+1(Cj), ∀j ≥ 3,
which means that there is no need to compute Fκ+1(Cj), ∀j ≥ 3.
This saves a large number of potential computations and improves
scalability of the solution approach to large scale systems.

3.2. Identification solution

One approach to solve theMTCproblem is to first transform it to
an equivalent MSC problem (De Bontridder et al., 2004), and then
to solve theMSCproblemusing lazy greedy algorithm, as explained
earlier. The greedy approach to solve the MTC yields a (2 ln n+ 1)
approximation ratio algorithm, which is the best possible (Moret
& Shapiro, 1985). A solution of the equivalent MSC is a solution to
the original MTC problem. Thus, a straight-forward way to solve
the identification problem for link failures is to first obtain an
equivalent detection problem, in which each event represents a
pair-wise link failure, and then utilize the greedy approach to solve
the corresponding detection problem. We call this the transformed
lazy greedy (TLG) and will use it in Section 6.2 to demonstrate the
simulation results. Next, we summarize the transformation of the
MTC to theMSC problem as outlined in De Bontridder et al. (2004).

3.2.1. Transformation of MTC to MSC
Given an instance of the MTC, i.e., L and C = {Ci}, where

Ci ⊆ L, we transform the MTC to the MSC by taking the following
two steps:
• Create a new set of events: Lt

= {ℓt
12, . . . , ℓ

t
(n−1)n}. For each

unordered pair {ℓi, ℓj}, define a new element ℓt
ij; Lt consists of

all such ℓt
ij’s.

• Create a new sets of sensors’ outputs: Ct
= {C t

1, . . . , C
t
m}, where

C t
v = {ℓ

t
ij : |{ℓi, ℓj}∩Cv| = 1}, ∀k ∈ {1, . . . ,m}. In otherwords,

ℓt
ij ∈ C t

v if and only if exactly one of ℓi or ℓj is in Cv . Moreover,
for a subset of sensors S ⊆ S, we define Ct

S = {C
t
v : Sv ∈ S}.

Hence, we obtain a new identification matrix Mt(Lt , S) of
dimensions

n
2


× m, in which each row corresponds to a pair-

wise link failure and each column represents sensor’s output. If a
specific row in Mt represents a pair ℓi, ℓj, then the vth column
entry of the corresponding row in Mt is an exclusive OR of the
(i, v)th and (j, v)th entries of the influence matrix M. The above
point illustrates the fact that to localize an event ℓi, there always
exists a sensor that distinguishes ℓi from ℓj by producing different
outputs for ℓi and ℓj respectively, i.e., if a sensor output is 1 (resp.
0) in case of ℓi, then its output for ℓj is 0 (resp. 1), for all j ≠ i.

Note that for a given subset of sensors S, the identification
function, which is the number of pair-wise link failures detected
by S, is essentially same as the detection function of S in the
corresponding MSC instance i.e.,

fI(CS) = fD(Ct
S), (8)

where fD is defined as in (6). The normalized identification score,
denoted by II(S), is computed by dividing fI by the total number
of pair-wise events, |Lt

|.

3.2.2. Greedy approach based solution
Once the MTC problem has been transformed to the MSC

problem, a straightforward way to obtain a solution is to employ
the greedy algorithm, as outlined in Algorithm 1.
Algorithm 1 Minimum Test Cover – Greedy Algorithm
1: Input: C = {C1, · · · , Cm}, Ci ⊆ L
2: Output:MTC: C∗ ⊆ C
3: Initialize: C∗ ← ∅
4: Transform: the test cover instance to the set cover instance, i.e., from

a given L and C, obtain a corresponding Lt and Ct (Section 3.2.1).
5: Solve: using greedy algorithm

(a) Select C t
i∗ ∈ Ct (i.e., the sensor i∗) covering the most uncovered

elements in Lt .
(b) Add to current set C∗ ← C∗ ∪ {Ci∗ }.
(c) Repeat until all elements in Lt are covered, or no new element in

Lt can be covered by any C t
i ∈ Ct .

As in the case of the MSC problem, the lazy greedy approach,
which exploits the submodularity property of the set cover prob-
lem, can be utilized. However, if there are n link failures that need
to be localized, then the corresponding set cover instance containsn
2


events, and the time complexity of the greedy approach in Al-

gorithm 1 is O

m

n
2


, where m is the total number of sensors.

Even for small-sized networks with a limited number of possible
link failures, this approach becomes quite inefficient owing to a
large number of computations required. Moreover, employing lazy
greedy also achieves desired computational efficiency for realistic
size of failure event set. In the next section, we focus on improving
the computational time of the solution of the MTC problem.

4. Augmented greedy MTC solution

The main idea behind the augmented greedy approach is to
achieve a computationally efficient approximation algorithm. We
do so by avoiding the complete transformation of the MTC to the
MSC and directly evaluating the function (8), thus eliminating the
need to pre-compute the identification matrix Mt(Lt , S).

In each iteration of the greedy algorithm for the MTC solution,
a sensor that covers (detects) the most pair-wise link failures
from a total of

n
2


pair-wise failures, is selected. Thus O

n
2


comparisons are made in a single iteration for each potential
sensor. In the augmented greedy approach, we avoid this by
significantly reducing the number of comparisons made in each
step. In fact, for each sensor, the number of comparisons made in
a single iteration is always bounded by O


K
k
2


, where k is the

maximum number of link failures that are detected by any sensor,
and K is the number of sensors that are included in the test cover
until that iteration. Since k is typically much smaller than n, a large
number of computations are thus avoided in each iteration.

To explain our approach, we first observe that a sensor i that
detects k events (i.e., |Ci| = k) can distinguish between k detected
events and (n− k) undetected events. Thus, such a sensor detects
k(n−k) pair-wise events (i.e., |C t

i | = k(n−k)). Unlike the detection
problem, in which a sensor with a large k is desirable for the
detection purposes, a sensor that detects a large number of failures
is not always useful for the identification. Fig. 3 shows the number
of pair-wise events detected by a (single) sensor as a function of
the number of detected events. The maximum number of pair-
wise events, which are link failures in our case, are detected when
k = n/2.

Moreover, if a sensor i included in a test cover and ℓu, ℓv ∈

Ci, then a distinction between the occurrence of ℓu and ℓv is
not possible through the sensor i. Thus, a set of sensors that can
distinguish between events ℓu, ℓv ∈ Ci, or equivalently that can
detect pair-wise events corresponding to the events in Ci, also need
to be included in the test cover. Based on this observation, we
suggest an augmented greedy approach to compute the test cover
without computing the

n
2


events priori.
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Fig. 3. The number of pair-wise link detections as a function of the number of
detected events.

Let C∗ ⊆ C be the test cover until the current iteration, andCcov
be the set of link failures detected by the sensors that are included
in the test cover, i.e., Ccov =


Cu∈C∗ Cu. Thus, the utility of adding

Ci to C∗ (i.e., adding sensor Si to the test cover) in each iteration is
based on the following two factors:

(i) How many pair-wise link failures corresponding to the links
which are not included in Ccov can be detected by Ci? We
define this value as xi.

(ii) How many pair-wise link failures corresponding to the links
already included in Ccov can be detected by Ci? We define this
value as yi.

The overall utility of adding sensor Si to the test cover, denoted
bywi, is the sumof xi and yi. A sensor Si∗ thatmaximizes this overall
utility, letwi∗ denote themaximumutility, will then be included in
the test cover, and Ccov will be updated to Ccov ← Ccov ∪ Ci∗ . Now,
we state how to compute xi and yi in the jth iteration.

(i) Computing xi—If nj is the number of link failures that are not
yet included in Ccov, (i.e., nj = n−|Ccov|), and Ci contains ki,j of
such link failures, then xi = ki,j(nj − ki,j). Note that computing
xi is very straight forward anddoes not require computing pair-
wise link failures from a given set of link failures.

(ii) Computing yi—If a sensor u is already included in the test cover,
then the pair-wise link failures corresponding to the links in Cu
remain undetected. Thus, yi computes howmany of such pair-
wise link failures can be detected by the inclusion of sensor i in
the test cover. To make it precise, we proceed as follows:

If X and Y are two sets, then we define:

β(X) = set of all 2-element subsets of X,

and

α(Y , β(X)) = {a ∈ β(X) : |Y ∩ a| = 1}.

Here, α(Y , β(X)) is a set consisting of such 2-element subsets of
X that have exactly one common element with Y . For instance, if
X = {1, 2, 3} and Y = {1, 3}, then β(X) = {{1, 2}, {1, 3}, {2, 3}},
and α(Y , β(X)) = {{1, 2}, {2, 3}}.

To compute yi, first we compute the set of link failures common
to Ci andCcov and call it as Yi = Ci∩Ccov. Now, if sensor u is already
included in the test cover, and Gu ⊆ β(Xu) is the set of undetected
pair-wise link failures corresponding to the links in Xu ⊆ Cu, then

yi =

Cu∈C∗
|α(Yi,Gu)| .

The complete algorithm is stated in Algorithm 2.
Algorithm 2Minimum Test Cover – Augmented Greedy Algorithm
1: Input: C = {C1, · · · , Cm}, Ci ⊆ L
2: Output:MTC: C∗ ⊆ C
3: Initialization:Ccov = ∅; C∗ = ∅; G0 = ∅; j = 1; n = |L|; wi∗ = 1;
4: while wi∗ > 0 do
5: nj ← n− |Ccov |

6: for all i do
7: Xi ← (Ci \ Ccov) ; ki,j ← |Xi|

8: xi ← ki,j(nj − ki,j)
9: Yi ← Ci ∩ Ccov

10: yi ←
j−1
t=0
|α(Yi,Gt)|

11: wi = xi + yi
end for

12: wi∗ ← maxwi

13: if wi∗ > 0 then
14: C∗ ← C∗ ∪ {Ci∗ }

15: Ccov ← Ccov ∪ Ci∗

16: Gj ← β(Xi∗ )
17: for t = 0 to j− 1 do
18: Gt ← Gt \ α(Yi∗ ,Gt)

end for
19: j← j+ 1

end if
end while

Example 3 (Augmented Greedy). Consider the network shown in
Fig. 1. Let ki be the number of failure events detected by the sensor
i, i.e., |Ci| = ki, where Ci ⊆ S. In the first iteration (j = 1) of the
while loop, size of the event space is n = 10, and ki,j = ki, ∀i.
Then, the number of new pair-wise link failures detected by the
sensor i is given by xi = ki,j(n − ki,j). Since there are no sensors
in the test cover in the first iteration, yi = 0 for all the sensors.
The maximum value of wi is attained for the sensors 1 and 2 with
w1 = w2 = x1 = x2 = 5(10 − 5) = 25. We include sensor
1 in the test cover, thus C∗ = C1 after the first iteration of the
while loop. The set of all undetected pair-wise events for sensor
1, G1 = {{1, 2}, {1, 3}, . . . , {4, 5}}, is then updated. Finally, we
update the number of covered events as Ccov = {1, 2, 3, 4, 5}.
For the second iteration, i.e., j = 2, size of the event space is
updated as n2 = 5. A complete account of the states of variables of
the algorithm for the example is provided in (Sela Perelman et al.,
2015). The algorithm returns the test cover consisting of sensors
{1, 2, 3, 5} that uniquely identify all link failures.

The augmented greedy approach in Algorithm 2 produces
the same solution as the greedy approach in Algorithm 1. Thus,
Algorithm 2 has the same approximation ratio as the standard
greedy algorithm, which has been proven to be the best possible.

Since a large number of computations are avoided in the
execution of Algorithm 2, it is more efficient than the simple
greedy. In contrast to the O

n
2


comparisons performed in each

iteration for a sensor in Algorithm 1, O
mj

i

ki
2


comparisons

are done in each iteration of the Algorithm 2. Here, n is the total
number of link failures, ki is the number of link failures detected
by the sensor i (i.e., ki = |Ci|), and mj is the number of sensors
included in the test cover until that iteration. Thus, if k = max(ki),
then Algorithm 2 is at least n/k times faster than the simple greedy
approach as shown below. Moreover, typically k ≪ n in the case
of link failure detection in water distribution networks, thus, n/k
factor turns out to be a significant improvement.

Proposition 4.1. Let


i ki = n, and k = max(ki), then
i


ki
2


≤

k
n


n
2


. (9)
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Fig. 4. Layout of Net1 and propagation of failure in LINK-126. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Proof. –
i


ki
2


=

1
2


i
k2i −


i
ki


≤

1
2


k

i
ki − n


=

1
2 (kn− n) ≤ 1

2 (kn− k) = k
n

n
2


. �

We note that Algorithm 2 is somewhat similar to the two-
step greedy algorithm presented in De Bontridder et al. (2004).
However, in our approach, both xi and yi are computed in the same
iteration resulting in a more efficient implementation.

5. Application to a benchmark network

We first test our approach on a medium-size water network.
Net1 is a benchmark system that has been extensively studied in
the context of sensor placement for water quality (Ostfeld et al.,
2008). The system consists of 126 nodes, 168 pipes, one reservoir,
one pump, and two storage tanks and its layout is shown in Fig. 4.
The system supplies a daily demand of 5.15 × 103 (m3/day) and
has a total pipe length of 37.5× 103 (m).

For all our simulations, we consider a single failure event
occurring at the center of each pipe and enumerate all possible
failure events. For the detection problem, when fully calibrated
transient model of the network is not available, we approximate
the disturbance propagation using a simple distance based model
emulating the dissipation of the pressure wave with the distance
from the origin. As in Deshpande, Sarma, Youcef-Toumi, andMekid
(2013), our influence model is based on the shortest distance
threshold model, assuming that the disturbance in pressure can be
sensed within a specified distance from the location of the burst,
i.e., ySi(ℓj) = {1|d(Si, ℓj) ≤ ε}, where d is the length of the shortest
path between two locations Si and ℓj, and ε is some threshold. Fig. 4
shows an example of the influence range (in red) of a burst in LINK-
126 of the network for a threshold distance of ε = 1000 (m), i.e., a
sensor located in the red region can detect the pipe failure.

Assuming that a sensor can be placed at any of the 126 net-
work nodes and any of the 168 network pipes can fail, we solve
theMTCproblem, as described previously in Sections 2.3, 3.2 and 4.
Fig. 5 shows the normalized identification score, II , defined in Sec-
tion 3.2.1, as a function of the number of sensors using the greedy
approach. As noted in Section 3.1, we observe that the identifi-
cation score function exhibits a diminishing return property. The
maximum identification score of 0.99 is attained with 48 sensors.

Observing that the identification score of the network is not
sufficient to evaluate the quality of the design, since it does not
indicate about the number of events that are uniquely identified
and, respectively, the number of events that are not uniquely
identified. For this reason, we suggest two complementarymetrics
for evaluating the performance of the sensor network design:

Localization score—Let L ⊆ L be a subset of all such link failures
for which the outputs of sensors in S are same, i.e., yS(ℓi) =
yS(ℓj), ∀ℓi = ℓj ∈ L. We call such a subset of link failures L as a
Fig. 5. Identification score for Net1.

localization set. A localization can be associated with every unique
vector of sensors’ outputs. Localization score is the total umber
of localization sets obtained under the sensor configuration S. We
note that it is not possible to distinguish between the failure events
in a localization set by merely observing the outputs of sensors.
We define the normalized localization score, IL(S), as the ratio
of the total number of localization sets formed under the sensor
configuration S to the total number of event failures. Ideally, the
normalized localization score should be equal to 1, indicating that
each fault can be uniquely identified.

Localization size—is the number of faults associated with a
unique output of sensors, or the number of elements in a
localization set L. A localization size of higher value means that
it would be difficult to identify the location of the fault, and
additional local inspection methods might be needed. We define
theworst set size, IW (S) as the largest localization set. For complete
localization it is required that, IW (S) = 1, indicating that all faults
could be distinguished from each other, and therefore could be
uniquely detected.

Example 4 (Localization Score). Continuing Example 2 for the two-
sensor design S = {S2, S4}, three localization sets are formed, i.e.
L1 = {ℓ1}, L2 = {ℓ4, ℓ5, ℓ7, ℓ9, ℓ10}, L3 = {ℓ2, ℓ3, ℓ6, ℓ8}. The
corresponding localization sizes are |L1| = 1, |L2| = 5, |L3| = 4.
The normalized localization score is thus IL = 3/10 and the worst
localization size is IW = 5. It means that if an event is detected, its
distinction between three distinct groups is possible, but further
distinction within the groups is not possible, with the largest
indistinctive group of 5 links. With the four-sensor design, S∗ =
{S1, S2, S3, S5}, the optimal normalized localization score and the
maximum localization size of 1 are achieved, and we observe ten
unique outputs of sensors, each associated with a unique failure
event.

Fig. 6(a) shows the normalized localization score as a function
of the number of sensors. The highest localization score of 0.65
is achieved when 48 sensors are installed. This result indicates
that 110 unique vectors of sensors output are associated with
the 168 failure events. Fig. 6(b) shows the worst, median, and
minimum localization set sizes as a function of the number of
sensors for Net1. We observe that initially sizes of localization
sets decrease rapidly with the number of sensors, until the worst
localization-set-size reaches a plateau at 20 sensors, and does
not improve further. This implies that deploying more sensors
might improve local performance, but will not improve the overall
network localization performance, making further deployment of
sensor unattractive for the water utility from the cost viewpoint.
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(a) Localization score. (b) Localization-set-size.
Fig. 6. Localization performance for Net1.
Table 1
Network data.

Network Length (km) Demand 103 (m3/day) No. of pipes No. of nodes

Net1 37.56 5.15 168 126
Net2 91.29 7.59 366 269
Net3 96.58 8.58 496 420
Net4 137.05 5.78 603 481
Net5 123.20 6.20 644 543
Net6 166.60 5.66 907 791
Net7 153.30 8.93 940 778
Net8 152.25 7.91 1124 811
Net9 260.24 5.67 1156 959
Net10 247.34 9.33 1614 1325
Net11 760.89 71.88 3032 1891
Net12 1844.04 108.80 14822 12523
6. Application to real networks

We tested our approach on a batch of real water networks.
Principal information is listed in Table 1 and the complete data
can be obtained from Jolly, Lothes, Bryson, and Ormsbee (2014) for
Nets 2–10 and from Centre ofWater Systems University of EXETER
(2015) for Nets 1, 11, 12. In all our simulations we again assume,
that a single failure can occur at each of the network links and that
sensors can be placed at each of the network nodes, and set the
distance threshold to ε = 1000 (m).

6.1. MSC vs. MTC

First, we compare the sensor placement design for the
identification problemobtained fromour approachwith the design
for the detection problem, i.e. MTC vs. MSC (Sections 2.2 and 2.3).
We demonstrate our results usingNet9, from the Kentucky dataset.
Although the system supplies similar daily demand as Net1, it is
spatially more distributed with approximately 260 (km) of pipes.
Network layout and main features are shown in Fig. 7 and Table 1.

Fig. 7 schematically illustrates the difference between the MTC
and MSC problem formulations in the context of Net9. Consider
three sensors installed in the network, Fig. 7 demonstrates the
seven localization sets corresponding to seven unique sensor
states, [0, 0, 1], . . . , [1, 1, 1], i.e. we can distinguish between
events in different sets but not between events in the same set, and
the detection set, being the union of the localization sets. Whereas
the detection problem tries to maximize the detection set, the
identification problem aims to identify distinct subsets.

Fig. 8 provides a comparison between the detection and
localization scores for theMTC (blue circles) andMSC (red squares)
designs. For the detection problem, 25 sensors are sufficient to
cover the entire system, hence, we also select the first 25 sensors
for the identification problem and compare their performance.
Fig. 7. Layout of Net9 and example of the detection and localization sets for three
sensors.

From Fig. 8(a) it can be seen that the two designs overlap for the
first 7 sensors and the MSC design only slightly outperforms the
MTC design when comparing the detection scores for a higher
number of sensors. At the same time, the MTC design significantly
outperforms the MSC design when comparing the localization
scores as shown in Fig. 8(b). Similar results were attained for the
other networks.

6.2. Augmented greedy vs. transformed lazy greedy

Next, we compare the solution approach based on the aug-
mented greedy (AG) (Section 4) and the transformed lazy greedy
(TLG) (Section 3.2). Table 2 lists the running times (Intel Core i7,
2.9 GHz, 16 GB of RAM) for the augmented greedy and the trans-
formed lazy greedy approaches. For Nets 1–10, the new algorithm
is 3–8 times faster than the transformed lazy greedy approach,
depending on the maximum number of events detected by any
sensor (see Proposition 4.1). The solutions obtained using the two
approacheswere identical. For Nets 11–12, wewere not able to ap-
ply the TLG due to the memory requirements and applied only the
AG, which further emphasizes the advantage of the AG approach.
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(a) Detection. (b) Localization.

Fig. 8. MTC vs. MSC performance for Net9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Simulation results.

Network No. of sensors ID II IL IW TLG (min) AG (min)

Net1 48 0.99 0.99 0.65 12 0.23 0.08
Net2 98 0.99 1.00 0.86 12 2.39 0.58
Net3 134 0.99 1.00 0.86 7 6.93 1.65
Net4 138 0.99 1.00 0.91 8 11.98 4.93
Net5 164 0.99 1.00 0.86 6 15.58 3.85
Net6 258 1.00 1.00 0.86 8 45.46 6.31
Net7 139 1.00 1.00 0.83 8 49.12 9.31
Net8 195 1.00 1.00 0.70 8 80.55 28.07
Net9 359 1.00 1.00 0.87 6 91.57 11.06
Net10 408 1.00 1.00 0.89 14 257.41 39.48
Net11 717 1.00 1.00 0.69 9 – 50.53
Net12 1000a 1.00 1.00 0.38 17 – 1800

TLG—transformed lazy greedy; AG—augmented greedy;.
a Terminated after 1000 iterations.
Finally, Table 2 lists the maximum number of sensors and the
corresponding four performance scores: normalized detection ID,
identification II , and localization IL scores, and worst localization
set size IW . For all networks, the layouts and the simulation plots
illustrating thesemetrics as a function of the number of sensors are
available in Sela Perelman et al. (2015). These results demonstrate
that: (1) The number of sensors required solely for detection
purpose is significantly lower than the number of sensors required
for localization. (2) Between the two localization measures, IL and
IW , the localization score is more conservative than the worst set
size, requiring a larger number of sensors. For example, consider
the design for Net9, then to detect 95% of the events, i.e., ID = 0.95,
18 sensors are sufficient,whereas to achieve IL = 0.5we require 79
sensors, and 38 to achieve IW = 20. This is observed for all tested
networks.

7. Related work

Event detection in water networks. In the urban water sector,
majority of previous works focused on the sensor placement for
detecting hypothetical contamination events assuming perfect
sensors capable of detecting all types of contaminants (Berry, Hart,
Phillips, Uber, & Watson, 2006; Eliades & Polycarpou, 2010). In a
related work (Krause, Leskovec, Guestrin, Vanbriesen, & Faloutsos,
2008), to detect the presence of contaminants in large water
distribution systems, the notion of penalty reduction function
was introduced to realize various objective functions such as
reduction of detection time and the expected population affected.
Submodularity of the penalty reduction function was then used
to solve sensor placement problems efficiently and with provable
guarantees. Moreover, various data and model-driven techniques
also exist that are applied for system’s state estimation and
event detection and isolation (Eliades, Lambrou, Panayiotou, &
Polycarpou, 2014; Rosich, Frisk, Aslund, Sarrate, & Nejjari, 2012).
The basic premise in these methods is that once the sensors
are in place, data is collected and transmitted in real-time. The
difference between measurements, such as pressure (Perez et al.,
2014) and flow (Ragot &Maquin, 2006), and their estimated values
obtained using the network hydraulic model, is then computed.
Model based leakage detection techniques are employed primarily
on the operational side with the objective to efficiently utilize
available measurements along with the available system model to
determine the system faults.

Our approach is somewhat related to Deshpande et al. (2013)
and Sarrate, Nejjari, and Rosich (2012), which consider pipe bursts
as failure events. In Deshpande et al. (2013), detection of events
in networks is studied using distance decaying sensing function.
The problem is formulated as a continuous p-median facility
location problem and solved using a gradient descent algorithm.
However, in contrast to Deshpande et al. (2013), in which only
the detection problem is considered, we consider detection as well
as location identification of link failures. In Sarrate et al. (2012)
both the detection and location identification of failure events are
considered in the problem formulation. Their solution approach is
based on the depth-first branch and bound search and is tested on
a single small network.

In this work, we consider the placement of online high-
rate pressure sensors. Additional surface and inline detection
techniques include acoustic, umbilical, and autonomous robots.
These tools are principally used to verify and pinpoint the location
of the burst, their operation is typically time consuming and
expensive, and they are not suitable for continuous operation (Zan
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et al., 2014). Ideally, flow meters can also be used for detecting
and localizing leaks in water networks. However, these are more
expensive and can be typically installed on main pipelines only
at the inlets of sub-networks (Narayanan, Vasan, Sarangan, &
Sivasubramaniam, 2014). Furthermore most flow meters do not
react instantaneously to changes in flow, hence are more suitable
for persistent leaks (Puust, Kapelan, Savic, & Koppel, 2010).
Approximation algorithms. The sensor placement problem is not
unique to the water sector and can be found in many engineering
applications. Sensor placement is in essence a combinatorial
optimization problem, in which aminimum number of sensors are
deployed to minimize the uncertainty about the events of interest.
The dominant approach is to cast the sensor placement problem
as the classical minimum set cover (MSC) problem, in which given
a set of n elements and a collection of m subsets, the goal is to
select as few subsets as possible such that their union covers all
elements. The MSC problem is known to be NP-hard (Moret &
Shapiro, 1985). The greedy algorithm guarantees the best possible
approximation ratio of (ln n+ 1). A key feature in the efficient and
practically feasible greedy algorithm is exploiting the submodular
property, i.e. decreasing marginal utility of the objective function.
Extensive literature exists on the greedy approximation for
submodular functions. In Krause, Singh, and Guestrin (2008), a
mutual information criterion was proposed to select the most
informative sensors to monitor a spatial phenomenon modeled by
a Gaussian process. The submodularity property of the criterion,
as shown in Nemhauser, Wolsey, and Fisher (1978), was then
exploited to obtain a polynomial time algorithm guaranteeing a
constant factor approximation of the optimal sensor set.
Model-based diagnosis. Fault detection and identification (FDI) and
consistency based diagnosis (DX) are two distinct approaches
which rely on computing sets of events in a faulty system
based on the discrepancies between the observed and predicted
system behavior (Cordier et al., 2004). In the FDI community fault
diagnosis is captured by localizing faults based on residuals that
capture these faults. The problem is then to select a set of residual
generators that are sensitive to the set of faults (Krysander & Frisk,
2008; Raghuraj, Bhushan, & Rengaswamy, 1999; Svärd et al., 2013).
In the DX community, the diagnosis is derived by computing a set
of conflicts that capture the faulty components that explain the
observed failures (Abreu & van Gemund, 2009; De Kleer, 2011;
Feldman, Provan, & van Gemund, 2008). To compute theminimum
set of residual generators or the minimum set of conflicts, the
problem often relies on theMSC or theminimumhitting set (MHS)
formulation. The MSC problem is equivalent to the MHS, in which
given the same input as in the MSC, the goal is to find the smallest
subset of elements that hits (i.e. has a non empty intersection)
every subset (Cordier et al., 2004).

In previous works (Krysander & Frisk, 2008; Raghuraj et al.,
1999; Svärd et al., 2013) the isolation solution is obtained by
first computing the set of all pair-wise faults from a given set
of faults, and then using greedy heuristics to solve the MSC
or the MHS problems. This is similar to the TLG approach
described in Section 3.2. Computing all pair-wise events is themain
computational bottleneck, especially when applied to large scale
networks. The AGpresented in Section 4 is a faster implementation
of the greedy approach for the solution of the MTC. Its main
feature is avoiding the transformation of theMTC to theMSC/MHS,
which makes it more suitable for large-scale distributed systems,
as demonstrated for Nets 11–12 in Table 2.

8. Conclusions and future work

In this work, we focused on the sensor placement for fault
location identification in water networks. We cast the problem as
the minimum test cover problem and suggested a fast solution
approach. Additionally, we tested and analyzed the solutions using
multiple performance criteria for a suite of real water networks.
The outcomes of our approach could provide a better diagnosis
of failure events in terms of improved localization and response
to failure events in operational mode, and could significantly
reduce potential physical losses and service disruptions in water
networks. In this work we assumed perfect sensing information,
future extensionwill include sensor placement robust to erroneous
and corrupt data.
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