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a b s t r a c t 

With the increasingly connected nature of Cyber-Physical Systems (CPS), new attack vectors are emerg- 

ing that were previously not considered in the design process. Specifically, autonomous vehicles are one 

of the most at risk CPS applications, including challenges such as a large amount of legacy software, 

non-trusted third party applications, and remote communication interfaces. With zero day vulnerabilities 

constantly being discovered, an attacker can exploit such vulnerabilities to inject malicious code or even 

leverage existing legitimate code to take over the cyber part of a CPS. Due to the tightly coupled nature 

of CPS, this can lead to altering physical behavior in an undesirable or devastating manner. Therefore, it 

is no longer effective to reactively harden systems, but a more proactive approach must be taken. Moving 

target defense (MTD) techniques such as instruction set randomization (ISR), and address space random- 

ization (ASR) have been shown to be effective against code injection and code reuse attacks. However, 

these MTD techniques can result in control system crashing which is unacceptable in CPS applications 

since such crashing may cause catastrophic consequences. Therefore, it is crucial for MTD techniques 

to be complemented by control reconfiguration to maintain system availability in the event of a cyber- 

attack. This paper addresses the problem of maintaining system and security properties of a CPS under 

attack by integrating moving target defense techniques, as well as detection, and recovery mechanisms 

to ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of de- 

tecting code injection as well as code reuse attacks, and reconfiguring fast enough to ensure the safety 

and stability of autonomous vehicle controllers are maintained. By using MTD such as ISR, and ASR, our 

approach provides the advantage of preventing attackers from obtaining the reconnaissance knowledge 

necessary to perform code injection and code reuse attacks, making sure attackers can’t find vulnerabil- 

ities in the first place. Our system implementation includes a combination of runtime MTD utilizing AES 

256 ISR and fine grained ASR, as well as control management that utilizes attack detection, and recon- 

figuration capabilities. We evaluate the developed security architecture in an autonomous vehicle case 

study, utilizing a custom developed hardware-in-the-loop testbed. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

With the increasingly connected nature of Cyber-Physical Sys-

ems (CPS), new attack vectors are emerging. Normally, an adver-

ary will use memory corruption attacks to achieve manipulation

f the cyber sub-system, leading to alteration of the physical dy-

amics. As such, the compromise of safety-critical systems, as well

s commercial Internet of Things (IoT) devices opens the gates for

ttackers to exfiltrate sensitive data, or inappropriately control ac-
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uation. It is critical to shift the CPS security focus into a more

roactive approach, aimed at creating more resilient architectures. 

Automobiles today are extremely complex systems of systems,

onsisting of several hundred electronic digital components with

ver a million lines of code. The internal automotive network con-

ists of a series of multiple communication buses such as CAN, LIN,

lexRay, and MOST [42] . Due to the traditionally standalone design

f vehicle architectures, the communication and controller designs

rioritize functionality and cost over cybersecurity. Additionally,

ith the majority of software being written in legacy code, vast

umbers of vulnerabilities are potentially included. With the in-

roduction of external interfaces such as infotainment centers and

elematics systems, adversaries now have remote avenues in place

o access the internal vehicle network [8] . 
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The two primary instances of memory corruption attacks are

code injection and code reuse attacks. Code injection attacks ex-

ploit existing input vulnerabilities for injecting a custom designed

instruction payload that can be executed by control flow redirec-

tion [27] . For code injection attacks to be successful, the adversary

has to rely on knowing the native instruction set architecture of

the target machine. Code reuse attacks on the other hand leverage

existing code by diverting control flow to legitimate code segments

allowing the adversary to achieve his/her malicious goal even in

the cases where directly injecting code is not possible [35] . One

of the most popular examples of this type of attack is return ori-

ented programming (ROP) [34] in which case existing code gadgets

are chained together to form a program that can execute malicious

behavior. One of the most common memory corruption vulnerabil-

ities in legacy code leading to code injection and code reuse at-

tacks is the buffer overflow. Buffer overflow vulnerabilities allow

attackers to input data longer than designed, overflowing into ad-

jacent areas, and if properly designed, can be leveraged to redirect

control flow. 

Moving Target Defenses (MTD) aim to prevent legacy vulnera-

bilities by dynamically changing system properties. Compared to

traditional defense mechanisms which focus on identifying mal-

ware, and suspicious communications, MTD focus on decreasing

the reconnaissance knowledge of the adversary with the goal of

minimizing the probability of successful reverse engineering, vul-

nerability discovery, and exploit deployment. Two MTD techniques

utilized in this paper are Instruction Set Randomization (ISR), and

Address Space Randomization (ASR). ISR is a technique for pro-

tecting against code injection attacks by changing the binary in-

struction set architecture to a randomized version that is not

known [28] . ASR is a technique for mainly protecting against code

reuse attacks by introducing diversity in the various segments

of a program to make external memory access unpredictable.

ASR can be implemented at various granularities including course

grained [24] , and fine grained [41] , while also having the ability to

be customized to protect the most critical memory segments [47] . 

In the CPS domain, even when successfully protecting against

cyber-attacks, it is equally as important to maintain reliable, safe,

and predictable operation of the system. With ISR and ASR de-

ployed, code injection and code reuse attacks will be thwarted, but

an invalid instruction or invalid address access exception will be

generated, leading to program termination. In this sense, it is not

acceptable for a safety-critical system to stop functioning, as any

loss of availability can lead to unsafe actuation causing physical

damage. As such, there has to be recovery mechanisms in place

to keep the system up and running at all times, even when under

a cyber-attack campaign. 

To address the difficulty of guaranteeing system availability,

while preventing code injection and code reuse attacks, we have

developed a security architecture that includes an AES 256 ISR

implementation for protecting against code injection attacks [14] ,

combined with a fine grained ASR implementation for protecting

against the relative, and direct control flow redirection necessary

for code reuse attacks [30] . Our security architecture consists of

three stages including attack protection (randomize, derandomize),

detection, and recovery. The main CPS challenge addressed in this

paper is protecting system integrity during cyber-attacks, while

maintaining system availability with safe and reliable operation.

Our paper makes the following contributions: 

• We develop a CPS security architecture for providing secure

protections against code injection and code reuse attacks by

utilizing AES 256 ISR, and function level fine grained ASR. 

• We incorporate control reconfiguration into our security archi-

tecture for maintaining system availability in the event of a

cyber-attack. 
• We implement a hardware in the loop testbed prototype using

a combination of off-the-shelf embedded computing hardware

and open source simulation software for analyzing the effects

of cyber-attacks and our security architecture in CPS environ-

ments consistent with deployment settings. 

• We present an autonomous vehicle case study to demonstrate

the effectiveness of our security architecture in limiting the

physical impact of code injection, and code reuse attacks on

driving safety. 

The paper is organized as follows. Section 2 introduces the sys-

em and attack model utilized throughout the paper. Section 3 de-

cribes the high level component organization of our security ar-

hitecture. Section 4 describes the implementation of our security

ramework including the MTD implementation, and process flow

uring a cyber-attack. Section 5 describes the evaluation of our

ecurity architecture including a developed hardware-in-the-loop

estbed, and autonomous vehicle case study. Section 6 describes

urrent limitations of our security framework, as well as our plans

o address them. Section 7 describes related work for our paper.

inally, Section 8 ends the paper with concluding remarks. 

. System model 

An exemplary vehicle system model is shown in Fig. 1 . This

odel includes 6 components: a sensor cluster, actuator cluster,

riving controller, telematics control unit (TCU), remote function

ctuator (RFA), and RFID sensor. The sensor cluster provides crit-

cal data representing the current state of the vehicle such as the

peed, position on the track, and heading. The actuator cluster pro-

ides the ability to manipulate vehicular behavior such as steering

nd acceleration. The driving controller is responsible for perform-

ng computation based on the provided sensor cluster input, and

utputing commands to the actuation cluster. Both the TCU, and

FA are responsible for providing the external interface for the ve-

icle. The TCU monitors the various metrics of the system, trans-

itting data to a remote operating station for maintenance and

mergency purposes. The RFA is responsible for determining the

resence of a key fob for allowing the vehicle to be turned on. 

In the system model, the sensor cluster, actuator cluster, and

riving controller are on a safety-critical CAN bus network, includ-

ng both communication authentication to prevent spoofing, and

ntegrity checking within the driving controller to ensure that uti-

ized sensor data is accurate. On the other hand, the TCU, and RFA

ommunicate with the driving controller through a low priority

AN bus interface. Since these components are the most vulnerable

o remote attacks due to being connected to external communica-

ion channels, the safety-critical and low priority communication

uses protect against the TCU and RFA directly controlling the sen-

or or actuator ECU clusters. However, to detect the presence of

he key fob, the driving controller constantly polls for status up-

ates from the RFA. This communication is authenticated to pre-

ent message spoofing, but there is a buffer overflow vulnerability

n the driving controller that provides an opportunity for memory

orruption attacks. 

.1. Attack model 

The attack model for this paper focuses on code injection and

ode reuse attacks on a vehicle network. The authors in [2] note

hat the biggest current threat to self driving vehicles is exploita-

ion through remote avenues. As such, the attack vector utilized in

his paper consists of the adversary compromising the TCU through

he remote cellular interface, and consequently pivoting to hijack

he RFA. With access to a direct communication channel with the

riving controller, the adversary can craft a message payload to
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ake advantage of the buffer overflow vulnerability and alter con-

rol. At this point two options are presented: a code injection at-

ack which inputs executable code directly on the driving con-

roller stack, and a code reuse attack which strategically diverts the

riving controller control flow to other locations in program mem-

ry. By utilizing these two attack techniques, the physical dynam-

cs of the vehicle can be significantly altered consequently compro-

ising safety. 

.2. Problem formulation 

With the possibility of a code injection or code reuse attack

n the vehicle network, data integrity is not just threatened but

afety can be compromised. In the case of a safety-critical CPS

uch as an automobile, alteration to normal controller functional-

ty can lead to physical damage. Additionally, a loss of availability,

ven in the event of successful cyber-attack mitigation can be just

s detrimental to the physical safety of the system. The problem

hat we aim to solve is how to protect against code injection and

ode reuse attacks effectively, while reconfiguring fast enough to

aintain safety and stability of the CPS. We hypothesize that by

tilizing ISR and ASR in combination with control reconfiguration

ithin a developed security architecture, we can not only protect

gainst code injection and code reuse attacks, but can maintain

afe operation throughout cyber-attack events. 

Five assumptions are made for our approach to be success-

ul. First, it is assumed that the sensor and actuator clusters are

ully secure. The driving controller ECU contains the buffer over-

ow vulnerability utilized for control hijacking, while the TCU and

FA contain vulnerabilities allowing for key fob message spoofing.

econd, the attacker has full knowledge of the system architecture

ecessary to craft an accurate payload. Third, the attacker has com-

lete knowledge of the architecture of safety-critical controllers

ike the steering controller. Fourth, the attacker has knowledge of

he beginning address of the buffer input on the driving controller

tack. Fifth, the attacker has knowledge of the relative memory lo-

ation of the current driving controller function return address on

he stack from the beginning of the input buffer. After this knowl-

dge is gained, the attacker crafts an input payload to overwrite

he current return address to divert control flow to either the in-

ected payload, or existing control function. At this point, the ad-

ersary can cause the vehicle to enter an unsafe state by altering

he physical behavior of the car. These assumptions are not im-

ractical given examples demonstrated in the literature [25] . 

In the rest of this paper we discuss a developed security archi-

ecture aimed at preventing the vulnerabilities discussed in our at-

ack model. The objectives of our security architecture include the

ollowing: 
Fig. 1. Vehicle Archite
1. Any implemented software must maintain safe and reliable per-

formance of the CPS. This includes minimizing the security ar-

chitecture overhead, and ensuring that all real time deadlines

are met. 

2. Implement reliable detection mechanisms for monitoring and

flagging attack events. 

3. Implement reliable recovery and control reconfiguration mech-

anisms to maintain safe system operation and minimize system

downtime. This is especially crucial in CPS applications where

the cyber controller crashing, even when experiencing a cyber-

attack can result in devastating consequences. 

To evaluate the effectiveness of our architecture within the con-

ext of an autonomous vehicle case study, we utilize a developed

ardware-in-the-loop testbed. We further utilize physical metrics

uch as vehicle position combined with software metrics like per-

ormance overhead and recovery time to assess safety in both nor-

al operation and attack scenarios. Finally, to conclude that our

ypothesis is true two observations need to be clear from the re-

ults: 1) The performance overhead needs to be minimal enough to

nsure that execution times do not exceed designed real time con-

traints and 2) Vehicles need to follow safe driving behavior, main-

aining a safe position near the center of the road while avoiding

riving off the road or colliding with obstacles. In the event that

oth of these observations are true, we can conclude that our ar-

hitecture is successful. 

. Architecture 

In Fig. 2 , a high level overview of our security architecture is

resented. The key components are the (1) Configuration Manager

CM) that oversees, customizes, and adjusts the operation of the

arious operating components, (2) CPS Controllers which control

he physical plant, (3) Dynamic Binary Translator (DBT) which pro-

ides a sandboxed runtime environment for each CPS controller,

nd (4) Operating System Kernel which handles the task schedul-

ng and exception detection. We assume that each CPS controller

n our architecture may be vulnerable to cyber-attacks by the ad-

ersary, but the remaining components are secure. Our security ar-

hitecture is designed with the goal of keeping the CPS controller

rom becoming compromised by the attacker. These components

re described below. 

Configuration Manager (CM): This process oversees and main-

ains the operation of the security architecture, including all un-

erlying components such as DBT, CPS controllers, and network

ommunication. Additionally, the CM is responsible for detecting

yber-attacks, and executing the reconfiguration process to trans-

er execution to the backup controller in the case that the de-

ault controller is compromised. Signal handlers are implemented
cture Diagram. 
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Fig. 2. Control Architecture [30] . 
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to capture exception events caused by failed cyber-attacks. After

attack detection, reconfiguration algorithms determine the appro-

priate controller process to transfer to, and execution can be es-

tablished through the use of POSIX signals. 

CPS Controller: The CPS controller controls the physical dy-

namics of the system through receiving sensor data as input, and

outputting actuator commands through the use of computation al-

gorithms. Our architecture allows for incorporating domain specific

controllers representative of various CPS applications. The CPS con-

troller is the customized component in the architecture, potentially

containing vulnerabilities that can be exploited to achieve code in-

jection and/or code reuse attacks. 

Dynamic Binary Translator (DBT): The DBT is responsible for

establishing an unique runtime environment for each CPS con-

troller in the architecture. This component manages the cus-

tomized runtime environment for each controller by initializing a

randomization key, randomizing the instruction and address space,

and derandomizing instructions as they are fetched at runtime.

This component allows for the dynamic generation of randomiza-

tion keys at load time, ensuring security is maximized by gen-

erating different randomization keys for each controller. For our

architecture, both AES 256 ISR, and fine grained ASR are sup-

ported. This component effectively sandboxes the underlying CPS

controller, leaving a code injection or code reuse attack ineffective

due to incorrect reconnaissance knowledge. The DBT is additionally

responsible for storing the generated randomization keys, allowing

for the maintenance of key confidentiality throughout the program.

Operating System Kernel: The operating system manages the

scheduling for our architecture, utilizing a rate monotonic schedul-

ing algorithm. Additionally, our detection algorithms in the CM are

based on exceptions such as an invalid instruction execution or in-

valid address access caused by a failed attack attempt. The operat-

ing system is POSIX-compliant, enabling signals used for one way

communication between architecture components. 

4. System implementation 

For our security architecture implementation, we focus on a

two stage approach, MTD and control reconfiguration. MTD is fo-

cused on providing protection against code injection, and code

reuse attacks, while control reconfiguration is focused on main-
aining system availability in the event of a cyber-attack. These

tages are discussed below. The main contribution of our archi-

ecture is the integration between these two stages, linking MTD

ithin the DBT to the control reconfiguration defined in the Con-

guration Manager. 

.1. MTD Implementation 

.1.1. ISR 

To perform a successful code injection attack, an adversary

ust have knowledge of the system instruction set architecture to

raft a valid payload [14] . The adversary will be able to successfully

xecute code directly on the target system only if the instructions

an be validly decoded. However, if the instruction set architecture

s not known, the attack will result in the process terminating due

o executing an invalid instruction. ISR leverages this adversary re-

uirement by dynamically changing the binary representation of

nstructions, and decreasing the likelihood that the correct format

ill be utilized in a code injection attack. As such, the adversary

ill end up using an invalid instruction representation resulting

n control system termination. Our implementation supports both

OR and AES 256 encryption. AES 256 encryption presents a higher

verhead to the system, but also provides a higher level of security

or safety-critical applications. 

At load time we first dynamically generate a randomization key.

s the program is loaded into the DBT application memory, an al-

orithm will encrypt each instruction with the generated key. At

untime, as each instruction is fetched by the DBT, it will first be

ecrypted with the same key before it is passed along to the pro-

essor. In this case, since the instructions are encrypted before run-

ime, even if the attacker is able to inject malicious instructions

nto the program with the original format, once the instructions

re fetched by the DBT, they will be “decrypted,” resulting in a

ew invalid instruction representation. As such, once these attacker

nstructions reach the processor, they will result in an exception.

he exception will then be detected by the Configuration Manager

hich then triggers the reconfiguration process in the architecture.

he ISR process is described in Algorithm 1 . 
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Algorithm 1 PAG Integrity Check. 

P = Program Code Segments 

/* At Load Time */ 

key = generateAESKey() 

for Instruction I in P do 

E = AESEncrypt(I, key) 

end 

/* At Run Time */ 

N = Instructions Sent To Processor 

for E in Fetched Instructions do 

I = AESDecrypt(E, key) 

end 
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Algorithm 2 ASR Implementation. 

P = Program 

F = Function Symbols 

for Symbol S in P do 

if S=function then 

F.append(S) 

end 

for Symbol S in F do 

R = selectRandom(F) 

swapLocation(F,S) 

end 

for J in Every Jump do 

S = findAssociatedFunctionSymbol(J) 

updateJump(S new address) 

end 
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.1.2. ASR 

To perform a successful code reuse attack, an adversary must

ave knowledge of the memory layout, specifically the locations

f safety-critical functions [43] . In a normal attack, control flow

ill be redirected to these target functions to manipulate safety-

ritical operations even in the case where code cannot be injected

irectly. Since the target code already exists in the program, ISR

s not a feasible protection since that code will already be ran-

omized at load time along with the rest of the program. However,

SR leverages the requirement of knowing the target function lo-

ation by changing the memory locations of various entities within

he program. Since the location of a target function will never be

he same for two separate program executions, the adversary will

ardly be successful in redirecting control flow to the respective

unction. There are multiple levels of ASR, the most popular of

hich is randomizing the base addresses of shared libraries, the

tack, and heap sections (e.g. Linux ASLR [6] ). However, for higher

ecurity applications, our architecture includes a fine grained ASR

mplementation, randomizing memory locations at function level

ranularity. There will be a higher level of performance overhead

ompared to traditional ASR implementations, but this overhead

ill mostly be limited to load time. 

For our implementation, at load time we first iterate through

he binary ELF file to find the memory location of all function sym-

ols within the program, storing them in a table. We then iter-

te through this table, switching function memory positions as we

o along. As instructions are fetched by the DBT, branch/calls with

bsolute addresses are easily handled by patching the respective

ranch/call instruction with the updated target address. However,

ndirect branch/call instructions are more challenging to handle. In

his case, the target address needs to be accessed dynamically be-

ore branch/call patching can occur. To accomplish this, DBT con-

rol flow is altered to separate the current basic block into two

egments: one consisting of instructions up to the branch/call in-

truction, and one consisting of the specific branch/call instruction.

he first basic block segment is executed including an added in-

truction to access the register storing the respective target ad-

ress. At this point, the normal patching process can be executed

y checking the target address against the function table, and up-

ating the respective branch/call instruction with the new address.

ince the ASR process is completed dynamically for every CPS con-

roller binary at load time, running a program two times will result

n not only different memory locations of functions, but also dif-

erent function orders for protecting against relative jumping. The

SR process is described in Algorithm 2 . 

.2. Control reconfiguration 

In our security architecture, the binary is randomized at load

ime, and derandomized instruction by instruction before they

each the processor for execution. Our architecture supports mul-

iple CPS controller instances, but by default includes a default
ontroller, and backup controller configuration. Each of these con-

rollers is sandboxed in a MTD environment within a DBT, enabling

oth AES 256 ISR, and fine grained ASR with function level gran-

larity. This DBT provides the ability to dynamically customize ex-

cuting binaries, allowing for us to tap into the virtual pipeline

o change memory at load time, and derandomize instructions as

hey are fetched. The MAMBO DBM environment has been utilized

o serve as the DBT in our framework [11] . 

When the architecture is started, the first component initiated

s the Configuration Manager. The Configuration Manager spawns

he CPS controllers inside of DBTs as child processes. This allows

he Configuration Manager to monitor the underlying vulnerable

ontrollers for cyber-attacks, as well as any other unsafe behav-

or. Further, the Configuration Manager controls the execution of

he controllers, allowing for the transfer of control in the case of

n attack. By default, controllers are built to be put in a waiting

tate once loaded, and the Configuration Manager then resumes

he default controller with a SIGCONTINUE POSIX signal. In both

BT processes, a randomization key is dynamically generated, en-

uring that there will be a different randomization key for every

omponent instance. This key is stored inside of the DBT enclo-

ure and is utilized for the derandomization process. Since both

ontrollers are loaded inside of their respective DBT (MAMBO) ap-

lication memory, the DBT has the full ability to execute the de-

andomization throughout runtime. 

When looking at a snapshot of our architecture process flow,

he default CPS controller will be operating under normal circum-

tances inside of a DBT. The backup controller will exist in a wait-

ng state. As each instruction from the default controller is fetched

y the DBT, it will be derandomized utilizing an AES decrypt op-

ration with the respective randomization key. At this point, the

nstruction will be stored in a basic block data structure and sent

o the processor for execution. Once an attack is encountered, the

onfiguration Manager has attack detection algorithms that han-

le exceptions. After this point, the default controller is compro-

ised, and the Configuration Manager triggers the recovery pro-

ess by transferring execution to the backup controller with a SIG-

ONTINUE POSIX signal. Afterwards, a new default CPS controller

s spawned inside of a DBT enclosure to serve as the new backup

ontroller. By reconfiguring in this manner, a safe state can be en-

ured during unstable circumstances, while the benefits of the de-

ault high performance controller can be maintained during normal

peration. 

For architecture implementation to be successful two assump-

ions must be true. The first assumption is that the operating sys-

em, as well as the Configuration Manager process are secure. The

ulnerable component that we focus on in our threat model is the

PS controller. The second assumption is that the communication

etween the Configuration Manager and the DBT processes must
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Fig. 3. Testbed Hardware Architecture. 
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be unidirectional. As such, the Configuration Manager will be able

to communicate to DBT processes through POSIX signals. By not al-

lowing communication in the other direction the threat of the Con-

figuration Manager becoming compromised through the CPS con-

troller is eliminated. 

4.3. Recovery time analysis 

During the course of an attack, it is important to ensure that

the CPS maintains safe and reliable operation. As such, it is impor-

tant to minimize the recovery time as much as possible to maxi-

mize normal operation. The recovery process is comprised of three

stages: detection, backup controller execution transfer, and backup

controller execution. The recovery time noted in this paper is mea-

sured from the time of attack occurrence to the time an actuation

command is sent from the backup controller. 

The first phase, detection, consists of the Configuration Man-

ager determining the presence of an attack. During a code injection

or code reuse attack, the consequences will result in an exception

which will be caught by signal handler functionality within the

Configuration Manager component. This process is handled by the

operating system and can be considered negligible in comparison

to the overall recovery time. Once the attack is detected through

the Configuration Manager, the second phase consists of the pro-

cess of transferring execution to the backup controller. Since in our

implementation, the backup controller is loaded into memory with

a waiting state, the Configuration Manager only needs to send a

SIGCONTINUE POSIX signal to the backup controller to trigger the

process to resume execution. Since POSIX signals are handled by

the operating system, the time of this phase can also be considered

negligible. The final phase, which encompasses the largest portion

of the recovery process is the backup controller execution to com-

pute a new actuation value. With the assumption that the default

and backup controller both have the same defined period P , the

recovery time taken from resuming execution to actuation trans-

mission will be P . 

During runtime, an attack can occur at any point throughout

the period. At best, the attack will occur right after a deadline, al-

lowing the backup controller to produce an actuation command

at time P later, just after the next deadline instance. However,

at worse case an attack will occur just before a deadline occur-

rence. In this case, the backup controller will take over execution

and produce a new actuation command at time P later. Since the

new deadline will be defined as time P after the deadline follow-

ing attack, the actuation will be successfully computer before the

new deadline is encountered. As such, in the worst case scenario,

only the deadline immediately following the attack will be missed,

meaning that in our approach, only 1 deadline will be missed at

worst. By limiting the recovery downtime to one missed deadline,

we can resume normal operation fast enough in order to maintain

the stability of the CPS. 
. Evaluation 

.1. Experimental testbed 

For analyzing our security architecture for CPS, it is important

o analyze both the cyber and physical dynamic effects. To max-

mize the compatibility of the framework, the software must be

estbed on platforms consistent with the deployment environment.

o support this work, a hardware-in-the-loop testbed was devel-

ped for aiding in measuring, and analyzing the cyber-attack ef-

ects as well as our security architecture performance overhead.

e utilize this testbed for implementing security experiments for

valuating our MTD framework under varying scenarios. 

.1.1. Hardware architecture 

Autonomous vehicles consist of a variety of interacting dis-

ributed components. As such, the backbone of our testbed re-

olves around open source embedded hardware. We break up a

PS into various components including the simulation workstation

physical plant), sensors and actuators, and computational compo-

ents. A local network provides communication capabilities within

he distributed CPS environment. To support realistic automotive

esigns, the local network consists of both a 100 Mbps Ethernet

etwork, and a 1 Mbps CAN Bus network. For implementing high

omplexity controllers, a NVIDIA Jetson TX2 board [10] is included

s the computational platform consisting of a Quad Arm A57 CPU

ith 256 NVIDIA Pascall CUDA cores. For representing the lower

omplexity intermediary sensor and actuator software in the ECU

luster, Beaglebone Black 1 GHz ARM Cortex-A8 embedded com-

uting boards [9] are included. Finally, the simulation workstation

onsists of a single i7 desktop computer with a 7200 RPM hard

rive. This hardware setup is illustrated in Fig. 3 . 

.1.2. Software architecture 

The software architecture of the testbed provides the capability

o implement real time CPS control algorithms to interact with and

perate an autonomous vehicle within a connected simulator. 

Autonomous Vehicle Simulator: The autonomous vehicle sim-

lator utilized in our testbed is the TORCS Racing Simulator [49] .

ORCS can be run on Windows, Linux, and Mac computers, but

or our setup we have the simulator running on Ubuntu 16.04.

 socket based communication is provided to access variables in

he simulation, but we built a customized python API interface for

asing variable access from external processes in our testbed. The

imulator can be customized to output sensor values such as li-

ar, speed, brake, gear, track position, distance from start position,

ehicle heading, and position in the race. Among the outputs, the

ser can change variables such as steering, acceleration, braking,

nd gear value. 

CPS Controller: The software for both the neural network and

afe controller exists on the NVIDIA Jetson TX2 board. This board

s configured with the Linux4Tegra 28.2 operating system, GPU li-

raries such as CUDA, and machine learning libraries such has Ten-

orflow. The operating system is additionally patched with the RT-
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REEMPT patch. This patch allows for specifying real-time prior-

ties of executing processes at the application layer. Then priori-

ies are then a kernel level rate monotonic scheduler which han-

les the sharing of resources. The configuration manager has the

ighest priority, while the executing processes within the DBT are

remptible with a lower priority. Furthermore, buffer overflow vul-

erabilities are inserted to test the effect of a code injection, and

ode reuse attack on the overall system behavior. 

Communication: To support automotive applications, multiple

ommunication interfaces are included such as Ethernet and CAN

us. For Ethernet communication, the ZeroMQ (ZMQ) communica-

ion library in utilized. Additionally, for the CAN bus communica-

ion, an open source library called SOCKETCAN is utilized to sup-

ort the communication between the control code and ECU cluster.

.2. Case study 

To demonstrate the capabilities of our security architecture, an

utonomous vehicle case study is utilized. The case study is based

n a platoon scenario, with one manual vehicle driving as the

eader and an autonomous vehicle as the follower. For the purpose

f evaluation, the follower vehicle will be the center of focus. The

ollower vehicle system is composed of an ECU cluster containing

ensors such as lidar, heading, and speed sensors, as well as actu-

tors like steering, and throttle. A neural network is utilized as a

ehicle controller to take lidar, brake, gear, and speed data as input

hile outputting actuation to control the steering, and acceleration

f the vehicle. Additionally, in the event of a cyber-attack, a safe

ID controller is utilized. This controller will be less optimal from

 physical control standpoint compared to the neural network, but

ill be designed in a manner to ensure a higher degree of security,

nd safety. The goal of the case study is to keep the car in a safe

tate (center of the road), while maintaining a stable speed and

istance from the leader vehicle. To assess the effect of our secu-

ity architecture, several metrics are analyzed including controller

xecution times, recovery time (system downtime/availability), ve-

icle position (distance from center of road), and the vehicle dam-

ge. 

Neural Network Controller: The neural network controller is

uilt as a sequential model. The neural network architecture con-

ists of 5 layers with 20 nodes each. The model takes a vector of

 lidar sensor values, speed, brake value, and gear value and pro-

uces a vehicle control sequence as output consisting of a throttle

nd steering value for the car. This model is trained utilizing 10

ours of manual car driving data from the autonomous car sim-

lator. The model produces consistent behavior of the car safely

riving around the track at approximately 80 mph following the

eader car which serves as a good baseline of operation for our se-

urity architecture. It is important to note that the controller lidar

nput processing function includes non-bounded input presenting

 buffer overflow vulnerability on the controller. 

Safe Controller: The safe controller is a simple PID controller

hat computes the vehicle steering, and acceleration based on the

peed of the vehicle, as well as the Lidar data, and vehicle heading.

he controller aims to keep the vehicle in the center of the road.

he assumption is made that this controller has been proven to be

ully secure, and the adversary can not perform exploitation. 

Additional Vehicle Processes: In addition to the vehicle driving

ontroller, multiple external controllers are implemented. These

ontrollers include a remote function actuator, and telematics con-

rol unit. As such, they present an additional overhead to the sys-

em that must be taken into account when scheduling. Further-

ore, these controllers provide for an external communication

nterface that opens up an avenue for remote exploitation. The

elematics control unit is responsible for relaying vehicle informa-

ion such as speed, distance, and damage to a remote database
epresenting a central operating station for emergency and main-

enance personnel. The remote function actuator is responsible for

etermining the presence of a vehicle key fob, by sending a con-

tant message signal to the driving controller for polling purposes.

ith the absence of this signal, the vehicle has built in logic to

hut off and terminate operation. 

CAN Bus Message Synchronization: Since a CAN BUS uti-

izes a broadcast based communication method, transmitted mes-

ages must be syncrhonized to ensure that packets are reliably re-

eived. [44] notes that the worst case message transmission time

or an 8 byte CAN packet was found to be 138 microseconds. As

uch, a CAN timeslot of 200 microseconds was chosen for syn-

hronizing transmitted messages. For the case study, 5 different

essages are transmitted in this order: the sensor input, key fob

etection message, telematics sensor data message, actuation out-

ut, and telematics actuator data message. These message times-

ots will combine to form a communication period of 1 millisec-

nd. Furthermore, the 2 message gap between the received sensor

nput, and transmitted actuator output provides a 400 microsec-

nd buffer for control computation. The message transmission or-

er can be observed in Fig. 4 . 

Configuration Manager Setup: The Configuration Manager is

esponsible for initializing the underlying security architecture,

s well as providing attack detection and reconfiguration mecha-

isms. For this case study, the Configuration Manager is configured

o spawn two underlying child processes consisting of a neural net-

ork controller and safe controller. One instance of each will be

pawned inside of a DBT enclosure which provides a customized

itualized environment including ISR with AES 256 encryption, and

ne grained ASR at function level granularity. The neural network

ontroller will be assigned to execute by default, while the safe

ontroller will assigned the role of backup controller, remaining in

 waiting state. The detection algorithm is configured to be trig-

ered by an invalid instruction or invalid address exception caused

y an attack failure due to the MTD defense mechanisms. Upon

ttack detection, the reconfiguration algorithm will transfer execu-

ion to the backup safe controller and spawn a new neural network

ontroller instance with a new randomization environment. Upon

he vehicle reaching a stable state, execution will then be trans-

erred back to the neural network controller. 

.3. Attack scenarios 

For this case study we focus on exploits that rely on buffer

verflow based vulnerabilities. Two of the most common exploits

n this class are code injection and code reuse attacks. During these

wo scenarios, the adversary will leverage unsecure communica-

ions between the remote function actuator and the neural net-

ork driving controller to inject a malicious payload into a vul-

erable input buffer. This buffer was manually inserted into the

igh performance CPS controller to aid in the evaluation process.

t this point, the attacker can either execute customized code on

he stack, or can redirect control flow to other existing points in

he program to disrupt safety-critical behavior. The below scenar-

os will be run under three circumstances for comparison 1) Base-

ine - Normal operation where no attacks or defenses are in place

) Attack - An adversary executes an attack without any defenses

n place 3) Defense - An adversary executes an attack, but our se-

urity architecture is in place. 

.3.1. Scenario1: Code injection attack 

This scenario involves an autonomous vehicle starting out driv-

ng on a straight road. At the point where the vehicle starts to take

 turn at 70 seconds into the simulation, an adversary spoofs a ma-

icious RFA packet to exploit a buffer overflow vulnerability in the

perating neural network controller, and execute a code injection
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Fig. 4. CAN Bus Message Timeslots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Safe Controller Execution Times. 
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attack. The spoofed packet will contain an executable instruction

payload to start a malicious controller that transmits false steering

and throttle messages to cause the vehicle to drive straight at full

speed, failing to turn on the curve, and consequently driving into

a wall. 

5.3.2. Scenario2: Code reuse attack 

This scenario starts off the same as the first scenario with an

autonomous vehicle driving on a straight road and then turning on

a curve. The adversary leverages a buffer overflow vulnerability in

the neural network controller found through reconnaissance effort s

and spoofs a malicious packet as input to the buffer at 70 seconds

into the simulation. Instead of executing code directly on the stack

like in scenario 1, the attacker will craft the exploit specifically to

overwrite the return address of the current controller function to

redirect control flow to an existing safety-critical function in the

program that causes the vehicle to turn left. By continuously redi-

recting control flow back to this function, the vehicle will move

into a state of continuously turning left in circles. The goal of the

attacker is to put the vehicle in this state with the hope of causing

a crash into a wall, or by approaching vehicles from behind. 

5.4. Overhead results 

As the target sampling rate is 20 Hz, requiring a 50 ms dead-

line, it is critical to have a low overhead in respect to the security

architecture. To accurately measure the overhead of our architec-

ture, we measure the time taken between the CPS controller re-

ceiving sensor input, and transmitting actuation output. This time

difference represents the amount of time taken for computation

by the controller. We repeat this process for 10 0 0 iterations of

the controller with varying inputs to identify an average execu-

tion time for the controller process. By measuring the average ex-

ecution times for the CPS controller without our architecture, and

with our architecture, we can have a relative comparison of the

overhead that our architecture presents. 

When observing Figs. 5 , and 6 , the overhead created with both

ISR and ASR enabled is minimal enough to maintain execution
Fig. 5. Neural Network Controller Execution Times. 
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imes under the respective real time deadlines. For example, when

ooking at the low complexity controller (safe controller) execu-

ion times, overhead is about 10.2%, bringing the average execu-

ion time from approximately 39 nanoseconds to 43 nanoseconds.

dditionally, this overhead brings the worst case execution time

rom 42 nanoseconds to 51 nanoseconds. These results represent

he lower bound of our architecture overhead. When looking at the

omplex controller (neural network controller), we can obtain a

ore accurate representation of the upper bound of the overhead.

n this case, the average execution time will increase from approx-

mately 100 microseconds to 210 microseconds, a 110% overhead.

he worst case execution time will consequently increase from 267

icroseconds to 580 microseconds. However, even with a scaling

actor of 10, this is still well under the 50 millisecond deadline,

eaving room for scheduling other complementary tasks in the rate

onotonic scheduling algorithm. 

.5. Worst case recovery time 

It is not only important to meet the real time deadlines under

ormal circumstances, but it is equally as critical to meet deadlines

hen a cyber-attack occurs. As such, during an attack scenario,

he attack must be detected and the architecture must reconfig-

re fast enough to meet the appropriate real time deadline, and

onsequently maintain safety and stability of the controllers. Fig. 7

llustrates the respective recovery times of the complex and safe

ontroller. To measure the recovery time, we recorded the time

ifference between the last actuation transmission and when the

ackup controller sends the next actuation transmission after re-

uming execution.The average recovery time observed is approxi-

ately 1.158 ms, while the worst case observed was 1.230 ms. This

eans that in all of the experimental iterations, the architecture is

ble to recover in time to meet the respective deadline. However,

hen assessing the absolute worst case scenario, the cyber-attack

ill occur close to the end of the period. With a worst case safe

ontroller execution time of approximately 52 ns, the next actua-

ion command will be ready at the time 50 ms + 52 ns after the

ast actuation command, essentually equating to just after the next
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Fig. 7. Attack Recovery Times. 
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Fig. 9. Code Reuse Scenario Road Center Offset Time Plot. 
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eriod starts. This means that in the worst case scenario, the re-

overy process will miss at most one deadline. During these cir-

umstances, a fail safe mechanism is implemented in the Configu-

ation Manager to send the last actuation command to the physical

lant until the safe controller fully takes over execution. 

.6. Safety-Critical results 

Fig. 8 illustrates the vehicle position relative to the center of

he road with respect to the code injection attack scenario. At ap-

roximately 70 seconds into the simulation a malicious payload

s injected in an attempt to hijack control of the vehicle. In the

ase where MTD defense mechanisms were not enabled, the pay-

oad successfully spawns a malicious controller that results in the

ehicle driving off of the road and crashing into a side wall at ap-

roximately 80 seconds. At this point, the vehicle will sustain dam-

ge and skid along the wall until reaching a complete stop around

20 seconds. However, when looking at the code injection scenario

here MTD defense mechanisms are enabled, once the payload is

njected, successful recovery to the safe controller occurs, provid-
Fig. 8. Vehicle Road Center Offset Time Plot. 
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ng control stability while the vehicle is driving on the track curve.

nce the vehicle reaches a more stable state (straight road), at 95

econds, the neural network controller will resume execution, and

he vehicle behavior becomes more closely aligned with the base-

ine scenario. 

In the second scenario where a code reuse attack is executed,

ig. 9 illustrates the vehicle distance from the center of the road.

t 70 seconds into the simulation, the payload is injected into

he vulnerable input buffer. At this point, when ISR and ASR are

ot enabled, control flow is successfully redirected to the turn left

unction, causing the vehicle to constantly move left in a loop, and

xplaining the oscillating distance behavior in the plot. However,

hen ISR and ASR are enabled, the attack will fail due to an invalid

emory exception, and recovery will occur to the safe controller.

imilarly to scenario 1, once the vehicle reaches a more stable state

ast the curve in the road, reconfiguration then transfers back to

he newly spawned neural network controller for the rest of the

imulation. 

. Limitations 

Under the current implementation of our security architecture,

here are a few limitations. These limitations are described below,

s well as our plans to address them in the future. 

During the normal reconfiguration process, once an attack is

etected, an execution transferring process takes place to restore

xecution to the backup CPS controller. At this point a new default

ontroller instance is spawned to serve as the new backup con-

roller in the architecture. However, this process requires a mini-

um amount of recovery time to ensure that both controllers are

ully loaded and operational. In the case of a rapid attack cam-

aign, partial protection is provided by leveraging different CPS

ontrollers with different software structure. This means that at-

ackers can’t infiltrate both controllers with the same attack tech-

iques. However, if a new vulnerability is found in the backup con-

roller, another recovery process can ensue. If a rapid attack cam-

aign occurs, the system could be forced to remain in a constant

ecovery state, potentially leading to denial of service behavior. If

his behavior occurs, a fail safe mechanism can be implemented to

top the vehicle at a safe position on the road, and wait for further

ssistance from the operators. 

For our current implementation, a DBT is needed for customiz-

ng the runtime environment of the CPS controller. Even though

everal benefits have been demonstrated with the introduction of
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fine grained ASR compared to course grained ASR, the utilization

of a DBT provides a degree of performance overhead that could be

a limiting factor in applications with tight real time deadlines. As

such, a design time decision is needed to determine the applicabil-

ity of utilizing this type of approach with respect to safely handling

this performance overhead. 

For this work, we focus on two popular attack vectors includ-

ing code injection, and code reuse attacks. The MTD techniques

of ISR, and ASR are effective in mitigating against these types of

attacks. However, another popular attack vector is a non-control

data attack. These types of attack can overwrite adjacent safety-

critical variables for the purpose of altering the computation out-

put of controllers. To address this attack vector, we plan to im-

plement data space randomization and integrity checking mecha-

nisms to ensure the authenticity of safety-critical variables in our

program [31] . 

To ensure the integrity of our security architecture, the random-

ization keys must remain secure. In some cases, side channel at-

tacks have been shown to be effective techniques to reverse engi-

neer software to potentially defeat the randomization of CPS con-

trollers [18,21] . Currently, we randomize CPS controllers with dif-

ferent keys to provide a basic protection against a widespread side

channel attack effect. However, in the future we plan on imple-

menting dynamic reconfiguration to periodically update the ran-

domization keys of controllers to mitigate against reconnaissance

effort s through side channel means. 

7. Related work 

An overwhelming amount of security advisories from US Cert

have described memory corruption attacks as the top major risk

to systems, enabling attackers to execute remote code on critical

systems [19] . Numerous vulnerabilities have been found in cur-

rent automobile models [1,25] . Automobile security research gen-

erally focuses on hardening systems based on finding vulnerabili-

ties through penetration testing, and implementing defense solu-

tions such as securing internal network communication [20] , im-

plementing encryption, and authentication of data [17] , and se-

curing external interfaces [13] . However, these methods tend to

be vulnerable to zero day exploits which leverage vulnerabilities

not known at design time. Once an adversary can gain entry to

the internal vehicle network through vulnerabilities in external

device interfaces such as the infotainment center, they have the

ability to interact with several safety-critical ECUs throughout the

system. 

Memory corruption can be broken into four categories: code

corruption, control flow hijacking, information leakage and non-

control data attacks [43] . Exploitation often involves leveraging

programming bugs such as dangling pointers, integer, and buffer

overflows. Defense techniques for code injection attacks have been

proposed including W 

⊕ 

X protections such as DEP [48] . How-

ever, in response to these defense techniques, there has been

a rise in ROP based attacks, leveraging existing code segments

to accomplish attacker goals without the need for injecting cus-

tomized instruction payloads [34] . Memory corruption attacks to-

day have been found to still be a significant threat, despite decades

of research in defense protections, and the development of safe

programming languages [45] . In applications such as automobiles

where C/C++ legacy code still makes up the majority of software,

these types of vulnerabilites will exist for years to come. 

ISR implementations range from hardware based FPGA imple-

mentations [40] , to software implementaitons based on virtualiza-

tion in the operating system. Past implementations of ISR have

been based on utilizing emulators for customizing processor archi-

tecture representations [5,16] . However, ISR software implementa-
ions are based on DBT tools such as MAMBO [11] , STRATA [36] ,

nd PIN [22] that use dynamic instrumentation to create a vir-

ualization environment that can modify a program dynamically

t runtime, including the ability to alter instructions as they are

etched. As such, programs can be randomized dynamically at load

ime, and derandomized instruction by instruction as they are

etched by utilizing a generated randomization key [29] . One re-

ent ISR implementation has been developed for Intel X86 ma-

hines utilizing the PIN DBT [29] , while another implementation

ocuses on the combination of ISR and course grained ASR with

espect to randomizing system calls [15] . However, our framework

s the first ISR implementation on ARM based systems utilizing the

BT approach. 

ASR has been implemented on Linux [6] , Windows [19] , Mac-

ntosh [7] , and mobile platforms [7] . The Linux version of ASR,

eferred to as address space layout randomization (ASLR), is the

ost widely utilized implementation, randomizing the base ad-

resses of shared libraries, the stack, and heap by default. How-

ver, it is noted that on 32 bit Linux systems there are only 16 bits

f randomization and on 64 bit Linux systems there are 32 bits of

andomization [39] . There have been a couple of fine grained ASR

esearch prototypes including MARLIN [12] . However, our imple-

entation is the first to include both ISR, and fine grained ASR on

RM based systems. Our view is that this will allow our framework

o be applicable to the CPS, as the majority of these devices tend

o include ARM processors. [43] provides a good analysis of the

enefits of MTD techniques such as ISR, and ASR against memory

orruption attacks like code corruption, and control flow hijack-

ng. ASR was found to be the most prominent probabilistic MTD

echnique against control flow hijacking attacks. There is a trade-

ff however in the average 10% performance overhead required for

osition independent compilation needed for the implementation,

ompared to the increase in security. The importance of reducing

nformation leakage in a program was also emphasized for mini-

izing the probability that the randomization key will be reverse

ngineered. 

With regards to recovery, there has been a wealth of work in

he area of software fault tolerance. Several existing methodologies

ntegrate N-Version programming to lower the probability of suc-

essive attacks by implementing different software versions with

ifferent structures, but similar semantics [3] . Additionally, check-

ointing techniques such as recovery blocks have been utilized

or rollback recovery implementations, allowing for controllers to

aintain state through the reconfiguration process [23,32,33] . Sim-

lex, which is the primary motivator of our security architecture,

as been a widely utilized fault tolerant architecture, which con-

ists of a complex controller, safety controller, and decision mod-

le which switches execution between the two based on specific

vents [38] . Several previous simplex based implementations in-

lude Secure System Simplex [26] , Net Simplex [50] , and L1 Sim-

lex [46] . Furthermore, simplex architectures have been popular in

afety-critical applications such as flight control systems [37] , med-

cal devices [4] , and unmanned aerial vehicles [51] . 

. Conclusion 

In this work, we have successfully leveraged ISR, and ASR to

rotect against code injection, and code reuse attacks. We have ex-

ended our MTD security architecture to upgrade security by im-

lementing AES 256 encryption for ISR, and further adding fine

rained ASR support at function level granularity. These techniques

hich greatly improve security have been shown to have high but

cceptable performance overhead in the autonomous vehicle case

tudy utilized in this paper. Furthermore, attack detection, and re-

overy methodologies have been successfully integrated to main-
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ain safe system availability in the case of cyber-attacks, address-

ng the drawbacks of traditional MTD approaches in leading to sys-

em crashing. We describe our security architecture in terms of the

igh level organization, as well as the process flow of the imple-

entation. For evaluating, our security architecture we introduce a

eveloped hardware in the loop testbed that emulates CPS control

oftware on hardware consistent with a distributed CPS deploy-

ent environment, with the additional ability of assessing the net-

orked communication between the physical plant (TORCS sim-

lator), ECU cluster, and controllers. By utilizing this testbed, we

ere able to obtain live measurements and analysis of the system

n both normal operation, and under cyber-attacks. For the case

tudy, we evaluated several metrics of our security architecture in-

luding controller performance overhad, system recovery time, and

hysical safety metrics. It has been shown that the performance

verhead, and recovery time is minimal enough to support safe,

nd stable vehicle driving controller operation. In the future, we

lan on integrating data space randomization, dynamic reconfigu-

ation, and time triggered functionality. 
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