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a b s t r a c t

Multiple fault diagnosis is a difficult problem for dynamic systems, and, as a result, most multiple fault
diagnosis approaches are restricted to static systems, and most dynamic system diagnosis approaches
make the single fault assumption. Within the framework of consistency-based diagnosis, the challenge is
to generate conflicts from dynamic signals. For multiple faults, this becomes difficult due to the possi-
bility of fault masking and different relative times of fault occurrence, resulting in many different ways
that any given combination of faults can manifest in the observations. In order to address these chal-
lenges, we develop a novel multiple fault diagnosis framework for continuous dynamic systems. We
construct a qualitative event-based framework, in which discrete qualitative symbols are generated from
residual signals. Within this framework, we formulate an online diagnosis approach and establish de-
finitions of multiple fault diagnosability. Residual generators are constructed based on structural model
decomposition, which, as we demonstrate, has the effect of reducing the impact of fault masking by
decoupling faults from residuals, thus improving diagnosability and fault isolation performance. Through
simulation-based multiple fault diagnosis experiments, we demonstrate and validate the concepts de-
veloped here, using a multi-tank system as a case study.

Published by Elsevier Ltd.
1. Introduction

Safety-critical systems require quick and robust fault diagnosis
mechanisms to improve performance, safety, and reliability, and
enable timely and rapid intervention in response to adverse con-
ditions so that catastrophic situations can be avoided. However,
complex systems can fail in many different ways, and the like-
lihood of multiple faults occurring increases in harsh operating
environments. Diagnosis methodologies that do not take into ac-
count multiple faults may generate incorrect diagnoses or even fail
to find a diagnosis when multiple faults occur.

Multiple fault diagnosis in static systems has been addressed
. Daigle),
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previously (de Kleer and Williams, 1987; Struss and Dressler, 1989;
Abreu and van Gemund, 2010), where the inherent complexity of
the problem has been well demonstrated; the diagnosis space
becomes exponential in the number of faults, and this complicates
the diagnosis task. Furthermore, in dynamic systems, the problem
is even more challenging, as the effects of multiple faults may
mask one another, thus making it difficult to differentiate between
multiple fault diagnoses (Dvorak and Kuipers, 1991; Nyberg and
Krysander, 2003; Daigle et al., 2007a). Due to fault masking,
multiple faults can produce a variety of different observations, and
this adds uncertainty, which, in turn, reduces the discriminatory
ability of the diagnosis algorithms. Moreover, the more faults
considered, the more possible ways in which their effects can in-
terleave, making it less likely that the fault diagnoses can be un-
iquely isolated given a set of observations.

Due to its complexity, multiple fault diagnosis of dynamic
systems has not been sufficiently addressed in the literature. In Ng
(1990), changes are modeled by a set of qualitative simulation
states. Later, Subramanian and Mooney (1996) integrated the
model-based diagnosis approach in de Kleer and Williams (1987)
and the qualitative reasoning approach in Ng (1990), to multiple
fault diagnosis for dynamic systems using behavioral modes with a
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priori probabilities. In a related approach, semi-quantitative si-
mulation is used (Dvorak and Kuipers, 1991), changing the con-
figuration of the model every time a fault appears. However, in
these kinds of approaches, the qualitative modeling framework
quantizes the state space and specifies qualitative relations be-
tween the quantized states, which can result in a large number of
states, i.e., such approaches can suffer from the state explosion
problem.

In control theory-based diagnosis approaches (known as fault
detection and isolation, or FDI approaches), the proposal in Gertler
(1998) is based on the analysis of residual structures. In Nyberg
and Krysander (2003), the authors integrate residual-based and
consistency-based approaches that can automatically handle
multiple faults in dynamic systems. However, these approaches
use only binary signatures (effect or no effect), and so it becomes
very difficult to distinguish between different potential multiple
faults.

In contrast, our previous work in multiple fault diagnosis for
continuous systems (Daigle et al., 2007a; Daigle, 2008) is based on
a qualitative fault isolation (QFI) framework (Mosterman and
Biswas, 1999). It describes how multiple faults manifest in the
system measurements and provides algorithms for fault isolation.
By using qualitative information defined with respect to a nominal
reference, the state explosion of qualitative simulation approaches
is avoided. Unlike other FDI approaches, diagnostic information is
enhanced using qualitative symbols, instead of binary effect/no
effect information, and by including the sequence of observations.

The QFI approach was based on using residuals (the difference
between observed and expected system behavior) computed from
a global system model. Since faults affect all residuals that have a
causal path from the fault to the residual, fault masking can have a
significant, adverse impact on multiple fault diagnosability when
the number of residuals affected by a fault is large. To avoid this
problem, in Daigle et al. (2012), we explored the idea of using
structural model decomposition to improve diagnosability, by
deriving local submodels that decouple faults from residuals, so
that each fault affects only a small set of residuals (Gertler, 1998;
Roychoudhury et al., 2013). This decreases the possibility of
masking, and, as such, leads to improvements in multiple fault
diagnosability.

In this paper, we extend the previous work in event-based QFI
of single faults (Daigle et al., 2009) to develop an online multiple
fault diagnosis approach for dynamic systems that takes advantage
of structural model decomposition. In this framework, diagnostic
observations take the form of symbolic traces representing se-
quences of qualitative effects on the residuals. First, we develop a
systematic approach for predicting the possible traces that can be
produced by multiple faults, based on a specific composition of
those produced by the constituent faults. Second, we develop an
online fault isolation algorithm that maps observed traces to the
set of minimal diagnoses that could have produced that trace.
Third, we introduce definitions of diagnosability to characterize
the potential fault isolation performance for different residual sets,
and show how structural model decomposition can significantly
... KiK1 Ki-1
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Fig. 1. Tank syste
improve diagnosability in the multiple-fault case. Fourth, using a
multi-tank system as a case study, and over a comprehensive set of
simulation-based experiments, we provide offline diagnosability
results and online multiple fault isolation results to
(i) demonstrate and validate the overall approach, (ii) illustrate the
improvement in performance obtained through the use of struc-
tural model decomposition, and (iii) show the performance im-
provement over approaches that use binary fault signatures
without temporal information. The multi-tank system is also used
as a running example throughout the paper.

The paper is organized as follows. Section 2 presents our
modeling background and formulates the multiple fault diagnosis
problem. Section 3 overviews the structural model decomposition
approach, and develops the qualitative fault isolation methodology
for multiple faults, which predicts the possible traces that can be
produced by a set of faults. Section 4 presents the online multiple
fault isolation approach, which determines the set of faults that
can produce an observed trace. Section 5 formalizes our defini-
tions of distinguishability and diagnosability in order to char-
acterize the fault isolation performance of a system using our
approach. Section 6 presents the results for the case study. Section
7 describes related work in multiple fault diagnosis. Section 8
concludes the paper.
2. Problem formulation

In this work, we consider the problem of multiple fault diag-
nosis in continuous systems. We first overview our system mod-
eling approach, followed by a definition of the multiple fault di-
agnosis problem.

2.1. System modeling

In our framework, a model is defined as a set of variables and a
set of constraints among the variables (Roychoudhury et al., 2013):

Definition 1 (Constraint). A constraint c is a tuple ε( )V,c c , where εc
is an equation involving variables Vc.

Definition 2 (Model). A model is a tuple = ( )V , , where V is
a set of variables, and is a set of constraints among variables in V.
V consists of five disjoint sets, namely, the set of state variables, X;
the set of parameters, Θ; the set of inputs, U; the set of outputs, Y;
and the set of auxiliary variables, A.

The set of output variables, Y, corresponds to the (measured)
sensor signals. Parameters, Θ, include explicit model parameters
that are used in the model constraints. Auxiliary variables, A, are
additional variables that are algebraically related to the state,
parameter, and input variables, and are used to reduce the struc-
tural complexity of the equations. The set of input or exogenous
variables, U, is assumed to be known.

In this paper, we use a multi-tank system as a case study. The
system consists of n tanks connected serially, as shown in Fig. 1.
... KnKi+1
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For each tank i, where ∈ [ … ]i n1, 2, , , ui denotes the input flow, mi

denotes the liquid mass, pi denotes the tank pressure, qi denotes
the mass flow out of the drain pipe, Ki denotes the tank capaci-
tance, and Rei denotes the drain pipe resistance. For adjacent tanks
i and +i 1, +qi i, 1 denotes the mass flow from tank i to tank +i 1
through the connecting pipe, and +Rei i, 1 is the connecting pipe
resistance. The constraints for tank i are as follows:
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Here, the n superscript is used to denote a measured value of a
physical variable, e.g., pi is pressure and ⁎pi is the measured
pressure.3

As a running example to explain and illustrate the concepts
throughout the paper, we use a standard three-tank system in
which, unless otherwise specified, the pressures are measured.

Example 1. For the three-tank system, the model is re-
presented by the variable sets = { }X m m m, ,1 2 3 ,
Θ = { }K K K Re Re Re Re Re, , , , , , ,1 2 3 1 2 3 1,2 2,3 , = { }U u u u, ,1 2 3 , = { ⁎Y p1 ,

⁎p2,
}⁎p3 , and = { ̇ ̇ ̇ }A m m m p p p q q q, , , , , , , ,1 2 3 1 2 3 1 2 3 ; and the set of con-

straints = { … }c c c, , ,1 2 17 , which are given as follows:
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separation of the variables is required.
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In our context, a fault is the cause of an unexpected, persistent
deviation of the system behavior from the acceptable nominal
behavior. Specifically, in our framework, we link faults to the set of
parameters Θ in . More formally, a fault is defined as follows.

Definition 3 (Fault). A fault, denoted as f , is a persistent deviation
of exactly one parameter θ Θ⊆ of the system model from its
nominal value.

A fault is named by the associated parameter and its direction
of change, i.e., θ+ (resp., θ−) denotes a fault defined as an increase
(resp., decrease) in the value of parameter θ . In general, we use F
to denote a set of faults.

Example 2. In the three-tank system, the complete fault set is
= {

}

− + − + − + − + − + − + − +

− +

F K K K K K K Re Re Re Re Re Re Re Re

Re Re

, , , , , , , , , , , , ,

, ,

1 1 2 2 3 3 1 1 1,2 1,2 2 2 2,3 2,3

3 3

.

2.2. Problem definition

Fault isolation proceeds as a cycle of observation and hypoth-
esis generation. In multiple fault diagnosis, a diagnostic hypoth-
esis, or diagnosis, for short, is defined as a set of faults that is
consistent with the observations.

Definition 4 (Diagnosis). For a given fault set F , a diagnosis ⊆d F is
a set of faults that is consistent with a sequence of observations λ.

Intuitively, a diagnosis represents a single potential explanation
for observed faulty behavior.

Example 3. The diagnosis { }− +K R,1 3 (in shorthand, we write − +K R1 3 )
means that −K1 and +R3 together produce symptoms that are con-
sistent with the observations.

A set of diagnoses is denoted as D. For a set of single faults F ,
there are | |2F unique diagnoses (including the empty set), i.e., | |F
single faults, ( )| |F

2
double faults, ( )| |F

3
triple faults, and so on. Clearly,

the space of diagnoses is exponential in the number of faults. It



Fig. 2. Lattice representation of the candidate space.
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can be represented using a lattice structure (de Kleer and Wil-
liams, 1987); Fig. 2 shows the lattice structure for a system where

= { }F f f f f, , ,1 2 3 4 .
In dynamic systems, fault masking can manifest when the ef-

fects of one fault dominate the effects of another fault, so that
effects of the second fault are not directly observed. As a result, the
following property holds.

Lemma 1. For ′ ⊆d d F, , if d is a diagnosis and ⊂ ′d d , then ′d is a
diagnosis.

Lemma 1 also holds in static diagnosis, e.g., as in de Kleer and
Williams (1987). As observations are made, we eliminate certain
diagnoses and form a cut across the lattice, displayed as a bold line
in the figure, such that everything below the cut has been elimi-
nated, while everything above the cut is a diagnosis.

From this property, the concept of a minimal diagnosis
manifests.4

Definition 5 (Minimal diagnosis). A diagnosis d is minimal if there
is no diagnosis ′d where ′ ⊂d d.

By Lemma 1, we can represent the complete set of diagnoses
concisely by the set of minimal diagnoses. Therefore, we need only
to generate minimal diagnoses because all diagnoses can be gen-
erated from the minimal diagnosis set. From the diagnosis space,
we can define two sets, the minimal diagnosis set, and the max-
imal diagnosis set.

Definition 6 (Minimal diagnosis set). The minimal diagnosis set −D
is the set of minimal diagnoses.

Definition 7 (Maximal diagnosis set). The maximal diagnosis set +D
is the set of all diagnoses.

In Fig. 2, the minimal diagnosis set consists of the candidates
indicated in bold. The maximal diagnosis set consists of all the
minimal diagnoses and all possible supersets of the minimal di-
agnoses, i.e., all candidates above the line. Formally, we can gen-
erate +D from −D by adding to −D all diagnoses ′d which are a strict
superset of any ∈ −d D . From a practical standpoint, maintaining
only the set of minimal diagnoses is more efficient; further, the
probability of some set of faults d occurring is always higher than
some ′ ⊃d d occurring if we assume that faults are independent, so
the minimal diagnoses are also more likely.

Further practical considerations may also warrant an assump-
tion on the size of diagnoses to consider.

Assumption 1 (Fault cardinality). At most l faults occur together
in the system.

This assumption does not limit the generality of our approach,
4 In Reiter (1987), a diagnosis is by definition minimal. Here, to be more gen-
eral, we define a diagnosis to be any consistent set of faults, and explicitly define
the notion of a minimal diagnosis.
since we can always set l to | |F . However, in practice, usually l is set
to 1 or 2, with the implication being that the probability of any set
of faults of size greater than l occurring is negligible. This can also
result in a reduction of computational complexity, because it limits
the portion of the diagnosis space that needs to be explored. The
multiple fault diagnosis problem then becomes the following.

Problem 1. (Multiple fault diagnosis). Given a system model, ,
with a set of faults, F , and a cardinality limit l, the multiple fault
diagnosis problem is to find the subset of the minimal diagnosis set

−D of candidates with cardinality ≤l for a given sequence of ob-
servations, λ.

Our proposal for solving this problem is described primarily in
Sections 3 and 4, and the computational architecture is summar-
ized in Fig. 3. Given a system model, we define a set of residuals
based on structural model decomposition (Section 3.1). The system
produces outputs ( )ty given inputs ( )tu , which get organized into
local inputs and outputs for the submodels, i.e., ( )tui and ( )tyi for
model i, which computes residuals ( )tri (Section 3.2). A symbol
generation algorithm (Daigle et al., 2010) computes from these
residuals observed qualitative effects, σi. We then develop a
method to systematically determine what the sequences of ob-
served qualitative effects of a set of faults will be on these re-
siduals (Section 3.3). Based on this, for online diagnosis, the fault
isolation algorithm matches the observed sequence to the minimal
diagnosis set that could have produced it, excluding fault sets with
cardinality above the limit (Section 4). Like classical diagnosis
approaches (de Kleer and Williams, 1987; Reiter, 1987), our ap-
proach is model-based, and so can be applied to any system
modeled as a set of ordinary differential equations.
3. Qualitative fault isolation framework

We adopt an event-based qualitative fault isolation framework,
extending the single-fault framework presented in Daigle et al.
(2009). In this section, we describe the methodology that de-
termines the possible observations that can be produced by a set
of faults that occur. In this diagnosis paradigm, we generate dis-
crete observations based on the analysis of residuals.

Definition 8 (Residual). A residual, ry, is a time-varying signal
computed as the difference between an output, ⊆y Y , and a
predicted value of the output y, denoted as ŷ.

In order to generate a residual, we require a dynamic model to
generate predicted values for each y. If the model is correct, then
when a fault occurs, it will produce significant, observable differ-
ences between y and ŷ. Our fault isolation framework is based on
an analysis of these differences, rooted in transient analysis
(Mosterman and Biswas, 1999). We apply signal processing algo-
rithms to transform these differences into sequences of qualitative
observations from which to perform diagnostic reasoning (Daigle
et al., 2010).

In the following subsections, we first describe how to compute
residuals using the concept of structural model decomposition. We
then describe the form that observations and observation se-
quences take in our approach. Following that, we describe how we
determine the observation sequences that multiple faults can
produce.

3.1. Structural model decomposition

In order to compute a residual ry for an output y, we must

compute a predicted value of the output, ŷ. To do this, we require a
notion of computational causality for a model. A causal assignment



Fig. 3. Computational architecture for multiple fault diagnosis based on structural model decomposition.

5 In theory, higher-order changes can also be used as diagnostic information. In
practice, however, it is difficult to reliably extract higher-order changes from a
signal, and so we do not typically use that information for diagnosis (Manders et al.,
2000).
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specifies the computational causality for a constraint c, by defining
which ∈v Vc is the dependent variable in equation εc.

Definition 9 (Causal assignment). A causal assignment α to a
constraint ε= ( )c V,c c is a tuple α = ( )c v, c

out , where ∈v Vc
out

c is as-
signed as the dependent variable in εc.

We write a causal assignment of a constraint using its equation
in a causal form, with ≔ to explicitly denote the causal (i.e.,
computational) direction. To compute the variables of a model, we
require each constraint to have a causal assignment, and that the
set of causal assignments is consistent, i.e., (i) input and parameter
variables cannot be the dependent variables in the causal assign-
ment, (ii) an output variable cannot be used as the independent
variable, and (iii) every variable, which is not an input or para-
meter, is computed by only one (causal) constraint. An algorithm
for finding a consistent causal assignment to a model is given in
Daigle et al. (2015a).

Example 4. For the three-tank system, the constraints given in
Example 1 are written such that the causal assignment should be
made where the = sign is replaced by ≔, i.e., the variable on the
left-hand side is the independent variable in each of the
constraints.

We can use the global model of the systemwith a consistent set
of causal assignments to compute residuals. Given the inputs, the
set of causal constraints can be used to compute predictions of the
outputs and form ŷ for each member of Y . As an alternative, we
can instead, through structural model decomposition, define a set
of local submodels, each with its own set of local outputs ⊆Y Yi .
The advantage of this approach is that each local residual responds
only to the subset of the faults included in that submodel, in
contrast to a global model residual that will potentially be sensi-
tive to all faults. The decoupling property of the local submodel
residuals translates to fewer opportunities for faults to mask each
other, and we will see later how that translates to improved di-
agnosability and fault isolation performance.

Different structural model decomposition methods have been
proposed to decompose a system model into minimal over-de-
termined submodels that are sufficient for fault diagnosis (Roy-
choudhury et al., 2013; Blanke et al., 2006; Cordier et al., 2004;
Pulido and Alonso-González, 2004). In this work, we will use the
decomposition framework proposed in Roychoudhury et al.
(2013). In Roychoudhury et al. (2013), a model decomposition al-
gorithm is provided that, given a model , a set of consistent
causal assignments, a set of potential local input variables, and a
set of desired output variables, finds a minimal submodel that
computes the desired outputs using only the provided inputs. In
this context, a submodel can be defined as follows.

Definition 10 (Submodel). A submodel i of a model = ( )V , is
a tuple = ( )V ,i i i , where ⊆V Vi and ⊆C Ci .

For the purposes of residual generation, we want to find sub-
models that compute some y, i.e., this is the submodel output. For
inputs, we can use the global model inputs U , and also measured
values from the sensors, so variables in Y (excluding the output
variable for the submodel). By using measured values of sensors as
inputs, we require only a subset of the model constraints in order
to compute any given variable. The model decomposition algo-
rithm is straightforward; it starts at the desired output variables
and propagates backwards through the causal constraints, mod-
ifying causal assignments when a potential input variable can be
used. Additional details on this approach and the structural model
decomposition algorithms can be found in Roychoudhury et al.
(2013).

Example 5. Using this approach on the three-tank system for the
output set = { }⁎ ⁎ ⁎Y p p p, ,1 2 3 , we find the set of submodels (one for
each measured variable) given in Table 1. For example, the second
submodel computes ⁎p2 using the measured values of ⁎p1 ,

⁎p3, and u2.
Because ⁎p1 and ⁎p3 are provided as inputs, ⁎p2 can be computed with
m2 as the only state variable, and only the subset of constraints
involving the second tank.

3.2. Residual analysis

In this section, we describe how we analyze residual signals
and transform them into a discrete set of qualitative observations
upon which to perform diagnostic reasoning.

Ideally, in the nominal situation, residual signals are zero,
hence, any deviation from zero indicates a fault. Because reasoning
over the continuous residual signals is difficult and computation-
ally demanding, we abstract a residual into a symbolic form (see
Fig. 3). Observations are produced once a deviation in a residual is
detected. The transient in the residual signal at this time is ab-
stracted using qualitative þ , � , and 0 values in the signal mag-
nitude and slope. Consequently, the interpretation for these qua-
litative values for the signal magnitude is: a 0 means the ob-
servation is within the nominal thresholds, i.e., − < <T r Ty for
threshold T ; a þ means the observation y is above the predicted
output ŷ plus the threshold T , i.e., >r Ty ; and a � means the
observation is below the predicted output minus the threshold,
i.e., < −r Ty . For the slope, the interpretation is the same, with r
replaced by ̇r , and with a different threshold value specific to the
slope. The threshold T can be computed using robust statistical
techniques, and, in general, may change over time (Daigle et al.,
2010).5

So, in our context, an observation is defined as follows.

Definition 11 (Observation). An observation for a residual r , de-
noted σr , is a pair of symbols s s1 2 representing qualitative changes
in magnitude and slope of r , respectively.

As residuals deviate due to faults, we obtain an observation
sequence.



Table 1
Submodels for the global model, , of the three-tank system with = { }⁎ ⁎ ⁎Y p p p, ,1 2 3 .

States ( )Xi Parameters Θ( )i Inputs ( )Ui Outputs ( )Yi Causal assignments ( i)

m1 K Re Re, ,1 1 1,2
⁎p u,2 1

⁎p1 ≔⁎p p1 1

≔p m K/1 1 1

∫≔ ̇m m dt
t

t
1

0
1

̇ ≔ − − +m q q u1 1 1,2 1

≔q p Re/1 1 1

≔( − )q p p Re/1,2 1 2 1,2

≔ ⁎p p2 2

m2 K Re Re Re, , ,2 1,2 2 2,3
⁎ ⁎p p u, ,1 3 2

⁎p2 ≔⁎p p2 2

≔p m K/2 2 2

∫≔ ̇m m dt
t

t
2

0
2

̇ ≔ − − +m q q q u2 1,2 2 2,3 2

≔( − )q p p Re/1,2 1 2 1,2

≔( − )q p p Re/2,3 2 3 2,3

≔ ⁎p p1 1

≔q p Re/2 2 2

≔ ⁎p p3 3

m3 K Re Re, ,3 2,3 3
⁎p u,2 3

⁎p3 ≔⁎p p3 3

≔p m K/3 3 3

∫≔ ̇m m dt
t

t
3

0
3

̇ ≔ − +m q q u3 2,3 3 3

≔( − )q p p Re/2,3 2 3 2,3

≔q p Re/3 3 3

≔ ⁎p p2 2

Table 2
Fault signatures and relative residual orderings for the global model, , of the
three-tank system.

Fault ⁎rp1
⁎rp2

⁎rp3
Relative residual orderings

−K1 þ� 0þ 0þ ≺ ≺ ≺⁎ ⁎ ⁎ ⁎ ⁎ ⁎r r r r r r, ,p p p p p p1 3 1 2 2 3
−K2 0þ þ� 0þ ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p2 3 2 1
−K3 0þ 0þ þ� ≺ ≺ ≺⁎ ⁎ ⁎ ⁎ ⁎ ⁎r r r r r r, ,p p p p p p3 1 3 2 2 1

+Re1 0þ 0þ 0þ ≺ ≺ ≺⁎ ⁎ ⁎ ⁎ ⁎ ⁎r r r r r r, ,p p p p p p1 3 1 2 2 3
+Re1,2 0þ 0� 0� ≺⁎ ⁎r rp p2 3
+Re2 0þ 0þ 0þ ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p2 3 2 1
+Re2,3 0þ 0þ 0� ≺⁎ ⁎r rp p2 1
+Re3 0þ 0þ 0þ ≺ ≺ ≺⁎ ⁎ ⁎ ⁎ ⁎ ⁎r r r r r r, ,p p p p p p3 1 3 2 2 1
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Definition 12 (Observation sequence). For a set of residuals R, an
observation sequence, denoted λR, is a sequence of observations
σ σ σ…r r rn1 2

, where ≤ ≤ | |n R1 , and ≠ ≠ ⋯ ≠r r rn1 2 .

In this work, only the first deviation of a residual is meaningful,
hence the requirement that an observation sequence for a set of
residuals contains at most one observation for each residual.

3.3. Event-based fault modeling

The goal of qualitative fault isolation is to determine which
diagnoses can produce a given observation sequence. The basis of
this approach is the fault signature.

Definition 13 (Fault signature). A fault signature for a fault f and
residual r , denoted by σf r, , is a pair of symbols s s1 2 representing
potential qualitative changes in magnitude and slope of r caused
by f at the point of the occurrence of f . The set of fault signatures
for f and r is denoted as Σf r, .

The complete set of possible fault signatures for a residual that
we consider here is { + − − + + − + − }, , 0 , 0 , 0, 0 . A fault sig-
nature on residual ry for output y is written as ry

s s1 2, e.g., +−⁎rp1
.

For an initial observation σr , we must find all f for which
σ σ=f r r, . As more observations are obtained, the problem becomes
more complex, because we are then concerned with sequences of
fault signatures. The sequence of fault signatures produced by a
fault is constrained by the system dynamics, and these constraints
are captured using the concept of relative residual orderings (Daigle
et al., 2007b). They are based on the intuition that the effects of a
fault will manifest in some parts of the system (i.e., some re-
siduals) before others. For a given model (or submodel), the re-
lative ordering of the residual deviations can be computed based
on analysis of the transfer functions from faults to residuals, as
proven in Daigle et al. (2007b).

Definition 14 (Relative residual ordering). A relative residual or-
dering for a fault f and residuals ri and rj, is a tuple ( )r r,i j , denoted
by ≺r ri f j, representing that f always manifests in ri before rj. The
set of all residual orderings for f in R is denoted as Ωf R, .

Note that in this definition, we are referring specifically to
deviations in the residuals caused by faults. In this paper, to make
the approach as general as possible, we assume that fault sig-
natures and relative residual orderings are given as inputs. In
practice, this information can be generated by manual analysis of
the system model, by simulation, or automatically from certain
types of models, e.g., as presented in Daigle (2008) and Moster-
man and Biswas (1999).



Table 3
Fault signatures and relative residual orderings for the minimal submodels of the
three-tank system.

Fault ⁎rp1
⁎rp2

⁎rp3
Residual orderings

−K1 þ� 00 00 ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p1 3 1 2
−K2 00 þ� 00 ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p2 3 2 1
−K3 00 00 þ� ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p3 2 3 1

+Re1 0þ 00 00 ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p1 3 1 2
+Re1,2 0þ 0� 00 ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p1 3 2 3
+Re2 00 0þ 00 ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p2 3 2 1
+Re2,3 00 0þ 0� ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p3 1 2 1
+Re3 00 00 0þ ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p3 2 3 1
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Example 6. Table 2 shows the predicted fault signatures and re-
sidual orderings for the global model of a three-tank system with

= { }− − − + + + + +F K K K Re Re Re Re Re, , , , , , ,1 2 3 1 2 3 1,2 2,3 , = { }⁎ ⁎ ⁎Y p p p, ,1 2 3 , and =R
{ }⁎ ⁎ ⁎r r r, ,p p p1 2 3

. For example, consider −K1 . An abrupt decrease in K1
would cause an abrupt increase in p1 (see c7), and thus, an abrupt
increase in ⁎p1 (see c15). The increase in p1 would also cause an
increase in the flow to the second tank, through which the in-
tegration manifests as a first-order increase in p2 and ⁎p2 (resulting
in +⁎rp

0
2
). Similarly the increase in p2 causes a second-order increase

in p3 and ⁎p3 (resulting in +⁎rp
0

3
). The first-order increase in p2 also

causes a second-order decrease in p1 and ⁎p1 (resulting in +−⁎rp1
).

Because of the integrations, the abrupt change in ⁎rp1
is observed

first, followed by the change in ⁎rp2
and then ⁎rp3

, resulting in the
residual orderings ≺ ≺⁎ ⁎ ⁎ ⁎r r r r,p p p p1 2 1 3

, and ≺⁎ ⁎r rp p2 3
.

Example 7. Table 3 shows the predicted fault signatures and re-
sidual orderings for the minimal submodels of a three-tank system
with = { }− − − + + + + +F K K K Re Re Re Re Re, , , , , , ,1 2 3 1 2 3 1,2 2,3 , = { }⁎ ⁎ ⁎Y p p p, ,1 2 3 , and

= { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3
. Because some faults appear only in a subset of the

submodels (see Table 1), some residuals do not respond to some
faults. For example, −K1 will cause a deviation only in ⁎rp1

. Because
any two residuals in this residual set are computed independently
(i.e., from a different submodel), we cannot derive any residual
orderings among these two residuals. The only orderings we can
define are for those in which, for a given fault, it causes a response
in one residual but no response in another.

For a set of faults, given potential fault signatures and residual
orderings, we can describe what potential sequences of fault sig-
natures may be produced by any combination of faults. Such a
sequence is termed a fault trace.

Definition 15 (Fault trace). A fault trace for a set of faults F over
residuals R, denoted by λF R, , is a sequence of fault signatures that
can be observed given the occurrence of the faults.

We group the set of all fault traces into a fault language.

Definition 16 (Fault language). The fault language for a set of
faults F with residual set R, denoted by LF R, , is the set of all fault
traces for F over the residuals in R.

For diagnosis, we are given some observation sequence λR, and
we must find all F such that there is some λ ∈ LF R F R, , where
λ λ=F R R, . So, we must determine the fault languages for every
potential set of faults up to the fault cardinality limit l. Con-
structing the fault language for single faults is straightforward. For
fault f , given the set of possible fault signatures Σf r, for each ∈r R,
and the set of relative residual orderings Ωf R, , we can construct the
fault language as the set of all traces of length ≤| |R , that includes,
for every ∈r R that will deviate due to f , a fault signature σf r, , such
that the sequence of fault signatures satisfies Ωf R, . One way to
compute this is through synchronization of the signatures and
orderings (Daigle et al., 2009).

Example 8. Given = { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3
from the global model, for fault

−K2 , from Table 2 we see that the fault effects will appear first on ⁎rp2
,

and then it is unknown whether ⁎rp1
or ⁎rp3

will deviate next. Hence,

there are two possible fault traces: +− + +⁎ ⁎ ⁎r r rp p p
0 0

2 1 3
and +− + +⁎ ⁎ ⁎r r rp p p

0 0
2 3 1

. On the

other hand, for +Re3 , there is only one possible fault trace, + + +⁎ ⁎ ⁎r r rp p p
0 0 0

3 2 1
.

Example 9. Given = { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3
from the local submodels, for

fault −K2 , from Table 3 we see that the fault effects will appear first
on ⁎rp2

, and then, since the fault is not included in the other sub-
models (see Table 1), no other residuals will deviate. Thus, we have
the orderings ≺⁎ ⁎r rp p2 1

and ≺⁎ ⁎r rp p2 3
. So, there is only one possible fault

trace in +−
− ⁎L r,K R p,2 2

. On the other hand, for +Re2,3, there are two re-
siduals that will deviate, ⁎rp2

and ⁎rp3
, as the fault appears in both of

the corresponding submodels. There are then two possible fault
traces in + −

+ ⁎ ⁎L r r,Re R p p,
0 0

2,3 2 3
and − +⁎ ⁎r rp p

0 0
3 2

.

For multiple faults, however, an observation sequence will
consist of some fault signatures from one fault, and some fault
signatures from another fault. Each fault manifests in its own way
(i.e., its own single-fault trace). When they occur together, the
trace associated to the multiple-fault will be some merging of the
traces of the constituent faults. How the individual faults come
together to produce a single observed trace depends on the re-
lative fault magnitudes and the relative times of occurrence. At the
extreme, one fault in the fault set can either be (i) much larger
than all the other faults or (ii) occur earlier than all the other
faults, such that the observed trace may be consistent with only
that one fault occurring by itself. That is, it may completely mask
all other faults. In the other extreme, we could observe a fault
trace where each observed constituent signature is being pro-
duced by a different fault.

Example 10. For example, consider the fault + +Re K1 3 , with
= { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3

. The fault language for +Re1 consists of the single

trace + + +⁎ ⁎ ⁎r r rp p p
0 0 0
1 2 3

, and the fault language for +K3 consists of the single

trace −+ − −⁎ ⁎ ⁎r r rp p p
0 0

3 2 1
. When these two faults occur together, we must see

some kind of composition of these two traces. The actual trace
observed will depend on relative fault magnitudes and fault oc-
currence times. Fig. 4 shows one scenario, with K3 doubling at 2 s

and Re1 doubling at 2.05 s. First, we observe −+⁎rp3
from +K3 , followed

by +⁎rp
0
1
from +Re1 . We can see that ⁎rp2

begins to decrease (from +K3 )

but before crossing the threshold increases due to +Re1 , and is

observed as +⁎rp
0

2
. If +K3 is larger, as in Fig. 5, then the decrease in ⁎rp2

may be larger and get detected instead, resulting in an observation

of −⁎rp
0

2
instead. If +Re1 instead occurs first, as in Fig. 6, we may see +⁎rp

0
1

before −+⁎rp3
.

To begin to formalize this concept, we first address the question
of what the combined observed effect of two faults is on a single
residual. There are three cases to consider. Either (i) no fault affects
that residual, in which case no observation will be made for that
residual; (ii) exactly one fault affects that residual, in which case
the observed signature must be the same as for that fault occur-
ring by itself; or (iii) both faults affect that residual, in which case
the observed signature must be some combination of the pre-
dicted signatures for the two faults. The third case can manifest in
one of two ways: (i) one fault completely masks the other, either
by occurring early enough or having a large enough magnitude, in



Fig. 4. Observations for the fault + +Re K1 3 , with K3 doubling at 2 s and Re1 doubling at 2.05 s, resulting in ⁎−+ ⁎+ ⁎+r r rp p p3 1
0

2
0 .

Fig. 5. Observations for the fault + +Re K1 3 , with K3 doubling at 2 s and Re1 tripling at 2.05 s, resulting in ⁎−+ ⁎+ ⁎−r r rp p p3 1
0

2
0 .

Fig. 6. Observations for the fault + +Re K1 3 , with Re1 doubling at 2.05 s and K3 doubling at 2.05 s, resulting in ⁎+ ⁎−+ ⁎+r r rp p p1
0

3 2
0 .

6 In some practical circumstances, this assumption may not hold. It can be
easily dropped if we consider magnitude and slope effects on a residual as two
distinct observations, rather than a single observation, where we have the addi-
tional temporal constraint in observation sequences that the magnitude effect for
some residual must be observed before its slope effect. When considering these as
two separate observations then the framework we present here is still valid,
however tackling that more general case is beyond the scope of this paper.
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which case that fault's signature is observed on the residual or (ii)
one fault does not mask the other, in which case we observe some
combination of the individual signatures. Regarding this final case,
we make the following assumption.

Assumption 2 (Signature combination). For residual r , if fi pro-
duces σ f r,i

and f j produces σ f r,j
, where σ σ≠f r f r, ,i j

, then when fi and f j
both occur either σ f r,i

or σ f r,j
will be observed.

That is, we assume that we must observe a complete fault
signature (both magnitude and slope) for one of the faults; we
cannot observe some combination of their fault signatures (mag-
nitude from one and slope from the other) or some other novel
signature not predicted by either fault by itself.6 Embedded in this
assumption also is that the effects from either fault cannot per-
fectly cancel, i.e., that eventually the effect from one fault will
dominate and be observed. Also embedded in this assumption is
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that the given fault signatures are valid at all operating points of
the system, i.e., that fi will produce only signatures in Σ f r,i i

does

not change given that some f j has occurred.
Given Assumption 2, we can obtain the following lemma,

which summarizes all the cases mentioned above.

Lemma 2. Given two faults, fi and f j, and some residual r , an ob-
servation σr when the faults both occur must belong to Σ Σ∪f r f r, ,i j

.

Further, we can claim the following.

Lemma 3. Given residuals R and faults fi and f j, Ω ={ }f f R, ,i j
Ω Ω∩f R f R, ,i j

.

That is, the residual orderings for a multiple fault are given by
the intersection of the individual orderings. If two faults would
alone produce conflicting orderings, then when they occur to-
gether we cannot make any statement about which residual will
deviate first. If two faults would alone produce the same ordering,
then when occurring together we must observe the same ordering.
This is derived from the main theorem behind residual orderings
(Daigle et al., 2007b; Daigle, 2008).

Not only must the composed traces be consistent with the in-
tersection of the orderings, but the actual signatures observed
must be consistent, as stated in the following.

Lemma 4. If Ω≺ ∈r ri f j f R, , then some σ Σ∈f r f r, ,j j
cannot be observed

until some signature is observed on ri.

Algorithm 1. ←Lij ComposeTraces λ λ( ),i R j R, , .
1:
2:

3:
4:

5:

6:

7:

8:

9:
10:

11:
12:
13:

14:

15:
← {ϵ}L
← ∅Lij

while | | >L 0 do
λ← pop ( )L

λ λλ←⁎
− λi i R R,

1

λ λλ←⁎
− λj j R R,

1

if λ λ=⁎
i and λ λ=⁎

j then

λ← ∪ { }L Lij ij

end if
if λ λ≠⁎

i then

λ← ∪ { }⁎L L i

end if
if λ λ≠⁎

j then

λ← ∪ { }⁎L L j

end if
end while
1:

2:

3:

4:

5:
16:

For example, if we have ≺r rf1 21
and ≺r rf2 12

, we cannot observe

some σ f r,1 2
followed by some σ f r,2 1

. Residual orderings for f1 require

that r1 must deviate before we see the effect from f1 on r2. In other
words, what this lemma says is that if we get some trace resulting
from some f fi j and we project out any observations that were not

the result of fi, then the resulting trace λ fi
must belong to

λ
L f R,i fi

,

where for some trace λ λR, denotes the set of residuals included in
the signatures of λ.

Together, these lemmas establish how to define a composition
operation for traces, ⊕. First, though, we require the definition of a
prefix of a trace.

Definition 17 (Prefix). A trace λi is a prefix of trace λj, denoted by
λ λ⊑i j, if there is some (possibly empty) sequence of events λk that
can extend λi s.t. λ λ λ=i k j.

Definition 18 (Trace composition). A trace λ σ σ σ= …, ,f f R n, 1 2i j
is a

composition of traces λ f R,i
and λ f R,j

, i.e., λ λ λ∈ ⊕f f R f R f R, , ,i j i j
, if for

every σ λ σ λ∈ ⊑ − σ σ… −
,i f f R i f R R, ,i j i i1, , 1

or σ λ⊑ − σ σ… −i f R R,j i1, , 1
.

Essentially, this means that if we want to construct a composi-
tion of two traces, the signatures in the new trace must come from
either of the two original traces (Lemma 2), and the residual or-
derings must be respected (Lemmas 3 and 4). This follows from the
lemmas above. Note that λ λ λ⊆ ⊕f R f R f R, , ,i i j

and λ λ λ⊆ ⊕f R f R f R, , ,j i j
.

The algorithm to find all compositions of two traces λ λandi R j R, ,

is given as Algorithm 1. We have a working set of traces L and a set
of completed traces Lij. Initially, we start with the empty trace ϵ.
We then try to extend it with the first signature of λ λandi R j R, , ,

where for a trace λ λ, i refers to the ith signature. These get added
to L. We continue examining traces in L. A trace λ in L is replaced
with an extension via λ − λi R R, and/or λ − λj R R, . The extended trace is
placed back into L. If the trace was not extended, this means that
the trace is complete and goes in the set of completed traces Lij.

Example 11. As an example, consider the fault + +Re K1 3 . A fault trace

for +Re1 is + + +⁎ ⁎ ⁎r r rp p p
0 0 0
1 2 3

, and a fault trace for +K3 is −+ − −⁎ ⁎ ⁎r r rp p p
0 0

3 2 1
. Obviously,

when both faults occur together, either +⁎rp
0
1
or −+⁎rp3

will have to be

observed first. In Algorithm 1, lines 5 and 6 create these initial
traces and they are added to L. Then, depending on relative

magnitudes and fault occurrence times, if +⁎rp
0
1

is observed first

(from +Re1 ) we will see either +⁎rp
0

2
(from +Re1 ) or

−+⁎rp3
(from +K3 ). If

instead −+⁎rp3
is observed first (from +K3 ), we will next see either −⁎rp

0
2

(from +K3 ) or +⁎rp
0
1

(from +Re1 ). This will be followed by an ob-

servation on the last residual (one consistent with either of the
faults). The composition of the individual fault traces is then

{

}

+ + + + + −+ + −+ − + −+ + −+ − − −+ − + −+

+ − −+ + +

⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎ ⁎

r r r r r r r r r r r r r r r r r r r

r r r r r

, , , , , ,

,

p p p p p p p p p p p p p p p p p p p

p p p p p

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
1 2 3 1 2 3 1 3 2 1 3 2 3 2 1 3 2 1 3

1 2 3 1 2

.

Using this algorithm, we can construct traces for faults of any
size. A trace λF R, for = { … }F f f f, , , n1 2 is a fault trace if
λ λ λ λ∈ ⊕ ⊕ … ⊕F R f R f R f R, , , ,n1 2

. That is, multiple-fault traces are
constructed as compositions of the traces of the constituent faults.
Note that every fault trace for every ∈f F will also be a fault trace
for F . To construct the fault language, we need simply to find all
compositions of the fault traces for the constituent faults. This can
be done in a constructive manner, where we first find the com-
positions for f1 and f2 in F , then composing those traces with the
fault traces for f3, and so on.

Algorithm 2. ←Lij R, ComposeLanguages ( )L L,i R j R, , .
← ∅Lij R,

for all λ ∈ Li R i R, , do

for all λ ∈ Lj R j R, , do

← ∪L Lij R ij R, , ComposeTraces λ λ( ),i R j R, ,

end for
end for
6:

Composing two languages can be accomplished through Algo-
rithm 2. For every pair of traces in the two languages, Compose-
Tracesis called to obtain all compositions of those two traces, and
these are added to the composed language. To obtain the fault
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language for = { … }F f f f, , , n1 2 , we first compose L f R,1
with L f R,2

to
obtain L f f R,1 2

, then compose that with L f R,3
to obtain L f f f R,1 2 3

, and so
on.

Example 12. As an example, consider the fault set + +Re K1 3 . Since
each fault contains only the single trace in its language, the set of
composed traces for this fault set, as computed in Example 11, is
also the fault language for + +Re K1 3 . The observed traces in Figs. 4 and
5 can be found within this language.

Example 13. Consider now the fault + +Re K1 3 , but with the sub-
model-based residual set. The fault language for +Re1 contains only

+⁎rp
0
1
and the fault language for +K3 contains only −+⁎rp3

. Therefore, the
fault language is simply { }−+ + + −+⁎ ⁎ ⁎ ⁎r r r r,p p p p

0 0
3 1 1 3

.

A single-fault language grows as (| |!)O R , because in the worst
case all possible interleavings of the residuals can occur. One
benefit of using structural model decomposition is that each fault,
on average, affects a smaller number of residuals. In fact, as the
number of tanks grows, the number of residuals a fault affects in
this case is at most 2, compared to n for the global model residuals.
Therefore, the fault languages are much smaller when using
structural model decomposition; they contain smaller traces and
fewer traces, compared to those based on the global model re-
siduals. So, on average, the computational complexity reduces
significantly when structural model decomposition is used.

Given all the fault languages, fault isolation is, in theory, a tri-
vial problem; we can simply search all the fault languages and a
fault set F is a diagnosis if its language contains the observation
sequence. However, it should be clear now that a fault language
can be quite large. Not only does the size of a fault language grow
exponentially with the number of residuals, but the number of
languages to consider is, in general (i.e., without the fault cardin-
ality limit l), exponential too, since there is an exponential number
of diagnoses. Therefore, the naive approach to multiple fault di-
agnosis, in which we generate all fault languages and search them
online, is not feasible in practice. An online approach, in which
diagnoses are found incrementally as observations are received, is
presented in the next section.
4. Multiple fault diagnosis

In Section 3, the problem addressed was, given a set of faults, to
find all the potential traces it can produce, i.e., find the fault lan-
guage. In this section, we consider the inverse problem, which is,
given an observed trace, determine which fault sets are consistent
with an observed trace, i.e., which are diagnoses.

In this framework, we follow the approach of consistency-
based diagnosis (de Kleer and Williams, 1987; Reiter, 1987). In this
approach, fault isolation is based on conflicts, which are related to
a set of correctness assumptions for the model that are not con-
sistent with current observations from the system. In Reiter
(1987), a conflict is defined as a set of components for which all of
them being nonfaulty is inconsistent with the model and the ob-
servations. Generalizing, we can say that a conflict is a set of
correctness assumptions (e.g., a fault has not occurred) that cannot
all be true, given the model and the observations.7 For example, a
conflict of assumptions a a a, ,1 2 3 means that ¬ ∨ ¬ ∨ ¬a a a1 2 3, i.e.,
either a1 or a2 or a3 are not true. In this work, our correctness
7 For the component-based, static diagnosis problems in de Kleer and Williams
(1987), Reiter (1987), the correctness assumptions directly take the form ¬ ( )AB c
(meaning component c is not faulty) or ( )OK c (meaning component c is nominal).
Here, since faults are not directly associated with components, but rather with
model parameters, the correctness assumptions directly take the form of ¬f , i.e.,
that a fault has not occurred.
assumptions are that the parameter values in Θ are nominal, e.g.,
a1 means that f1 has not occurred, so a conflict is equivalent to a set
of single faults that can explain an observation, i.e.,
¬ ∨ ¬ ∨ ¬a a a1 2 3 is ∨ ∨f f f1 2 3. So, a conflict is a set of faults, e.g.,
{ }f f f, ,1 2 3 , any one of which is consistent with a given observation.

In order to derive a conflict for a given observation, we must
answer the question, which faults can produce the observation? In
our framework, an observation is the deviation of some residual,
i.e., a fault signature. The single-fault languages describe which
signatures a single fault can produce, and in what sequence re-
lative to other signatures. So, if a given fault signature is observed,
we can check which fault can produce that signature, and since
orderings must still be respected, it must be produced as the first
signature in some fault trace, ignoring signatures for residuals that
have already deviated (Lemma 4). Specifically, a conflict in our
framework is defined as follows.

Definition 19 (Conflict). Given a set of potential faults F , a set of
residuals R, an observation sequence λ, and a new observation σ , a
conflict C is a set of faults ⊆C F , where for each ∈f C , there is
some λ′ ∈ − λ

Lf R R, such that σ λ⊑ ′.

That is, given an observation sequence, for a fault to be able to
explain a new observation, and be included in the conflict, it must
be able to produce that observation as the first observation in
some trace of its reduced fault language. The fault language must
be reduced to the residual set − λR R , because it could be that the
residuals for which we have observed signatures in λ were pro-
duced by other faults.

Example 14. Consider the global model residual set
= { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3

and the fault set { − − − + +K K K Re Re, , , , ,1 2 3 1 1,2

}+ + +Re Re Re, ,2 2,3 3 . Say the first observation is +−⁎rp1
. Then, the conflict is

{ }−K1 , as that is the only fault that may produce that particular

signature (see Table 2). Say the next observation is +⁎rp
0

2
. Now, the

conflict for that observation is { }− + + +K Re Re Re, , ,1 1 2 2,3 , as these are the
only faults that could produce this observation given that ⁎rp1

has

already deviated. Note that −K3 and +Re3 are not included, as they
require that ⁎rp3

would have already deviated to be included in the

conflict.

The diagnosis process proceeds incrementally, as new ob-
servations are made (de Kleer and Williams, 1987). The initial di-
agnosis set is ∅. After the first observation, we obtain a conflict,
and this simply becomes the new diagnosis set. After the next
observation, we have a new conflict, and the new minimal diag-
nosis set is computed from the previous minimal diagnosis set and
the conflict. Diagnosis proceeds in this way.

The incremental multiple fault isolation procedure is given as
Algorithm 3. The algorithm is given as inputs the previous diag-
nosis Di, the previous observation sequence λi, the new observa-
tion σ +i 1, and the candidate cardinality limit l. First, the conflict C is
generated according to Definition 19. Then, for each current di-
agnosis, we extend it once for each fault in the conflict to create an
initial new diagnosis set D. This may produce diagnoses that are
not minimal, i.e., for some ∈d D there may be some ′ ∈d D for
which ⊆ ′d d , in which case ′d can be removed from D. Also, using
the candidate cardinality limit l, we want to remove any diagnoses
that are greater than the limit. This pruning step is done to pro-
duce the new diagnosis +Di 1. This method, without the fault size
limit, produces equivalent results to the pruned hitting set tree
approach proposed in Reiter (1987).

Although we employ a fault cardinality limit of l, we are ac-
tually limited in what we can distinguish by the number of re-
siduals, | |R . When a new observation is received, each diagnosis d



M.J. Daigle et al. / Engineering Applications of Artificial Intelligence 53 (2016) 190–206200
in the diagnosis set is either consistent with that new observation,
in which case it remains in the minimal diagonosis set, or it is
inconsistent, in which case some new fault must be added to the
diagnosis. In the latter case, for each fault in ∈ ( − )f C d we create a
new diagnosis ∪ { }d f . Each new diagnosis is created by extending
with only one fault, since we want the minimal diagnoses only.
Thus, if we can only have at most | |R observations, the size of any
diagnosis that is generated cannot exceed | |R .

Example 15. Consider again the fault and residual sets in Example
14, with =l 2. Say that we observe first +−⁎rp1

, then the conflict is { }−K1
and the initial diagnosis set is also { }−K1 . Next we observe −⁎rp

0
2
, so

the conflict is { }+Re1,2 , as this is the only fault that can produce this
observation. Then, the new diagnosis set is { }− +K Re1 1,2 , i.e., we know
that both faults must have occurred. Next we observe −⁎rp

0
3
, then the

conflict is { }+ +Re Re,1,2 2,3 , and so the new diagnosis set remains
{ }− +K Re1 1,2 . Note that we generate the candidate − + +K Re Re1 1,2 2,3, however
it is not minimal and is covered by the other candidate, and so not
included in the minimal diagnosis set. That is, we are unsure as to
whether the −⁎rp

0
3
observation came from +Re1,2, which we already

know must have occurred, or +Re2,3 for which we are unsure that it
has occurred. In fact, it is less likely that the triple fault occurred
rather than the double fault.

Algorithm 3. ←+Di 1 FaultIsolation λ σ( )+D l, , ,i i i 1 .
1:
2:

3:

4:

5:
6:
7:
8:
9:
10:
11:
12:
← ∅D
← ∅+Di 1

λ σ λ← { ∈ ∃ ∈ ⊆ }− +λ
C f F L where: f R R i, 1

i

for all ∈d Di do
for all ∈f C do

← ∪ { ∪ { }}D D d f
end for

end for
for all ∈d D do

if | | ≤d l and d is minimal then
← ∪ { }+ +D D di i1 1

end if
end for
13:

Example 16. Consider the same scenario, but using the local
submodel residual set (see Table 3). First, we observe +−⁎rp1

, and as
before { }−K1 is the conflict and the initial diagnosis set. Next, we
observe −⁎rp

0
2
, and again the conflict is { }+Re1,2 , and the new diagnosis

set is { }− +K Re1 1,2 . Next, we observe −⁎rp
0

3
. Here, the conflict is only

{ }+Re2,3 , because +Re1,2 is now independent of this residual. Thus, the
new diagnosis set is { }− + +K Re Re1 1,2 2,3 , i.e., we know for certain that all
three faults have occurred. If it was in fact only − +K Re1 1,2 that had
occurred then we would not observe any deviation in rp3

and the
diagnosis would be correct as well.

These examples demonstrate the power of the structural model
decomposition-based residual set. Here, with the same fault sce-
nario, we obtain two different minimal diagnosis sets with the two
different residual sets. With the global model residuals, if

− + +K Re Re1 1,2 2,3 occurs, it can also look like only − +K Re1 1,2 has occurred.
But, with the local submodel residuals, we will be able to distin-
guish between the two cases.

The naive approach to multiple fault isolation has poor space
complexity, because it needs to compute all the languages for all
possible fault sets. However, time complexity for online isolation is
fast, i.e., using an efficient data structure like a hash table, ob-
served traces can be quickly mapped to consistent fault sets. On
the other hand, the incremental approach has good space com-
plexity, because only single fault information has to be captured;
fault languages for multiple faults do not need to be generated.
The traces themselves do not need to be directly represented, but
instead only the signatures and residual orderings for each fault
( (| |)O R signatures and (| | )O R 2 orderings). When a new observation is
obtained, we must search through all | |F single faults to produce
the conflict and update the previous diagnosis set to obtain the
new diagnosis set. The smaller the conflict, the less the work done
in creating the new diagnosis set.

Structural model decomposition provides an advantage in both
approaches. Primarily, the advantages derive from the decoupling
of faults from residuals. Due to this, each single fault responds to
less than | |R residuals, on average. On the other hand, in the global
model, typically all residuals in R are affected by a single fault. So,
fault traces and fault languages are smaller, on average, especially
for multiple faults, because there are fewer ways in which faults
can interact and the resulting fault languages are smaller. With the
naive approach then, space complexity reduces. With the online
approach, since the conflicts are, on average, smaller (since only a
subset of the faults can produce any given observation in a re-
sidual), and so the complexity of producing a new diagnosis with
each new observation is smaller.

Further, since conflicts are smaller, fewer new diagnoses will be
generated and the diagnosis results will have less ambiguity. This
result is captured formally through diagnosability analysis, de-
scribed in the next section.
5. Diagnosability

Diagnosability describes, for a given system model and diag-
nosis scheme, how well faults can be isolated. Such a metric is
useful during system design, and is the basis of sensor selection
approaches (Sampath et al., 1995; Travé-Massuyès et al., 2006;
Narasimhan et al., 1998).

Diagnosability is founded on the notion of distinguishability,
which is concerned with whether, if some fault set Fi occurs, can it
produce the same observation sequence as some other fault set Fj.
If so, then if that observation sequence occurs, the fault isolation
algorithm will not be able to determine whether it is Fi or Fj that
has occurred. In our framework, distinguishability of faults is de-
rived from the fault languages, and can be defined as follows.

Definition 20 (Distinguishability). With residuals R, a fault set Fi is
distinguishable from a fault set Fj, denoted by ≁F Fi R j, if there is no
λ ∈ Li F R,i where for some λ λ λ∈ ⊑L ,j F R i j,j

.

If a fault set Fi produces a trace that is a prefix of a trace that
may be produced by another fault set Fj, then, when that trace
occurs, both Fi and Fj will be consistent and will in the (maximal)
diagnosis set. Since Fi will produce no other observation, Fj cannot
be eliminated, so we can never confirm that Fj has not actually
occurred in this case.

Example 17. Consider the single faults −K1 and +Re3 with the global
model residual set = { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3

. Here, = { }+− + +
− ⁎ ⁎ ⁎L r r rK R p p p,

0 0
1 1 2 3

, and
= { }+ + +

+ ⁎ ⁎ ⁎L r r rRe R p p p,
0 0 0

3 3 2 1
. Clearly, these two faults are distinguishable

from each other, because the first observations will always be
different. However, the faults −K1 and − +K Re1 3 are not distinguishable
from each other. In practice, this is due to fault masking.

Since structural model decomposition decouples faults from
residuals, it can eliminate some masking possibilities and, thus,
improve diagnosability.

Example 18. Consider again the single faults −K1 and +Re3 but with
the submodel-based residual set = { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3

. Here,

= { }+−
− ⁎L rK R p,1 1

, and = { }+
+ ⁎L rRe R p,

0
3 3

. Clearly, these two faults are dis-

tinguishable. Also, − +K Re1 3 is distinguishable from both −K1 and +Re3 .



Table 4
2-Diagnosability for the three-tank system.

Pressures Flows

Diagnosability Global Local Combined Global Local Combined

Maximal (%) 72.27 90.22 91.44 76.77 88.66 90.22
Minimal (%) 74.67 90.56 91.32 79.24 89.12 90.10
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However, the converse is still not true, i.e., −K1 is not distinguish-

able from − +K Re1 3 , and
+Re3 is not distinguishable from − +K Re1 3 . If

−K1

occurs, then we see +−⁎rp1
, which so far, is consistent with both the

single and the double fault. We then have to wait infinitely long to

ensure that +⁎rp
0

3
does not occur and confirm that −K1 has occurred by

itself, and so we say they are not distinguishable.

With distinguishability defined, we can now begin to define
diagnosability. Diagnosability is defined as a metric that expresses
the number of distinguishable pairs of faults, for a given diagnosis
model and a set of possible observations. Thus, a higher diagno-
sability is better. Here, in the diagnostic context, the model takes
the form of the fault languages, and the observations are based
upon the available residuals. An ideal fault isolation algorithm
could, at best, do as well as established by diagnosability.

Definition 21 (l-Diagnosability). For set of fault sets
= { … }F F F, , , n1 2 , where for ∈ | | ≤F F li i , and with fault languages

= { … }L L L L, , ,R F R F R F R, , , ,n1 2
the l-diagnosability of is the number

of fault set pairs, ( ∈ ) ≠F F F F,i j i j where ≁F Fi R j.

Here, the set of fault sets does not have to be the full powerset
of single faults, e.g., it may include only single faults, single faults
and double faults, etc.

For | | possible fault sets, the worst (i.e., minimum) possible
diagnosability is 0 and the best (i.e., maximum) is | |(| | − )1 . Re-
call that distinguishability is not a symmetric property, so for two
Fi and Fj we count both ≁F Fi R j and ≁F Fj R i. The normalized diagno-
sability metric is expressed as the fraction of actual diagnosability
over the best possible diagnosability.

Example 19. Consider the single faults = { + − + − + −F K K K K K K, , , , , ,1 1 2 2 3 3

}+ − + − + − + − + −Re Re Re Re Re Re Re Re Re Re, , , , , , , , ,1 1 2 2 3 3 1,2 1,2 2,3 2,3 with the global
model residuals = { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3

. There are 16 single faults, so at
best the 1-diagnosability is 240. Here, we obtain 100% diagnosa-
bility, i.e., all single-fault pairs can be distinguished. Consider now
the single faults and the double faults; there are 112 double faults
(excluding those of the form θ θ+ −), for a total of | | = 128, and
diagnosability is at most 16,256. Here, we obtain 72.27%
diagnosability.

Different sets of residuals provide different diagnostic in-
formation, and, hence, different diagnosability.

Example 20. Consider the same single fault set as in the previous
example, but with the local submodel residuals = { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3

.
Here, diagnosability is 96.67%. Diagnosability is not perfect, be-
cause for some fault set pairs we have to wait infinitely long to
distinguish them. For example, If +Re1 occurs, we observe +⁎rp

0
1
. This

observation can be due also to +Re1,2 (see Table 3), therefore, the
fault isolation algorithm will include both faults in the diagnosis
set, and since no other residuals will deviate, +Re1,2 cannot be
eliminated. Consider now the single and double faults. Now, di-
agnosability is 90.22%, which is a significant improvement over
using the global model residuals. Although structural model de-
composition decreases diagnosability slightly in the single-fault
case, when considering double-faults, the advantage is quite clear.

Diagnosability can be improved further by including the com-
bined residual sets from both the global model and the local
submodels.

Example 21. Consider the same fault set as the previous example,
but now with both the global model and local submodel residual
sets. Now, diagnosability is 91.44%.

Definition 21 defines diagnosability with respect to the max-
imal diagnosis set. But, note that, as described in Section 3, if
⊆ ′F F , then ⊆ ′L LF R F R, , . Therefore, F will never be distinguishable
from ′F . So, if F occurs, it will always produce some trace that could
have also been produced by ′F . However, most often we are in-
terested only in whether we have a unique diagnosis in the
minimal diagnosis set. For example, in Reiter (1987), the term di-
agnosis is explicitly defined to be the minimal explanations for
faulty behavior, via the principle of parsimony. In such a case, we
do not need to distinguish between some fault F and some other
fault ′F if ⊂ ′F F , because if F is consistent then ′F will not be in-
cluded in the minimal diagnosis set. This leads to an alternative
definition of diagnosability.

Definition 22 (Minimal l-diagnosability). For set of faults
= { … }F F F, , , n1 2 , where for ∈Fi | | ≤F li , and with fault languages

= { … }L L L L, , ,R F R F R F R, , , ,n1 2
the minimal l-diagnosability of is the

number of fault pairs, ( ∈ )F F,i j ⊈F Fi j where ≁F Fi R j.

Example 22. Consider the single faults = { + − + − + −F K K K K K K, , , , , ,1 1 2 2 3 3

}+ − + − + − + − + −Re Re Re Re Re Re Re Re Re Re, , , , , , , , ,1 1 2 2 3 3 1,2 1,2 2,3 2,3 with the global

model residuals = { }⁎ ⁎ ⁎R r r r, ,p p p1 2 3
. With minimal 2-diagnosability,

the best score reduces to 16,023, and the diagnosability is 74.67%,
which is a bit better than with the previous diagnosability defi-
nition. For the local submodel residuals, minimal 2-diagnosability
is 90.56%, again a bit better than with the standard definition.
With the combined residual sets it is 91.32%. Since the set of re-
siduals depends on the selected sensors, including more sensors or
considering a different sensor set can also impact diagnosability.
Measuring the flows, we see an increase in diagnosability for the
global model residuals, but a decrease for the local submodel re-
siduals, since the amount of decoupling provided by structural
model decomposition is reduced with this sensor set. Diagnosa-
bility results are summarized in Table 4.

It is also interesting to investigate how diagnosability changes
with the size of the system. As the system size increases, there are
more faults, and hence more ways for the faults to interact and
reduce distinguishability. For n single faults, there are ( )n

2
double

faults, and for | | fault sets, there are (| |)(| | − )1 fault set pairs for
which to check diagnosability. So, as the system size increases, the
best possible diagnosability increases very fast, and we want the
actual diagnosability to grow at least that fast. For example, if di-
agnosability is 80% and the system size is increased, we want the
number of new distinguishable pairs to be at least 80% of the new
potentially distinguishable pairs. Relative to the system size, we
want diagnosability to not decrease.

Example 23. Consider the tank system, where the number of
tanks is increased. Diagnosability is shown in Fig. 7. Each new tank
adds 6 new single faults, and the total number of single faults is

| | = + ( − )F n4 6 11 for n tanks. There are ( − | | )| | F /2F
2

11
total double

faults (the | |F /21 is to eliminate fault sets containing both θþ and θ-

for some fault parameter θ), and so | | = | | + ( )| |F /2 F1
2

1
total fault

sets. So the best possible diagnosability for 2 tanks is 2450, for
3 tanks is 16,256, and for 4 tanks is 58,322. However, considering
the local submodel residuals with minimal 2-diagnosability, only
376 fault set pairs are indistinguishable for 2 tanks, 1310 for
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3 tanks, 2798 for 4 tanks, and so on. Relative to the best possible
diagnosability, this number does not grow as fast. In fact, it grows
relatively slower, so diagnosability is increased relative to the best
possible diagnosability, as shown in Fig. 7. This occurs for both the
global model and local submodel residual sets for both diagnosa-
bility definitions.
6. Experimental results

In this section, we evaluate the multiple fault diagnosis ap-
proach online using a simulated three-tank system. The overall
diagnosis approach is described in Daigle et al. (2015b), except that
we use the multiple fault isolation approach developed in this
paper. Residuals are generated as described in Section 4. Ob-
servations (fault signatures) are generated from the residuals
using a signal processing technique involving the Z-test (Daigle
et al., 2010); for the purposes of this paper, we assume that ob-
served fault signatures are correctly generated (initial progress on
dropping this assumption for the single-fault case is described in
Daigle et al., 2014).

For all fault scenarios, we consider the fault set
{ }− − − + + + + +K K K Re Re Re Re Re, , , , , , ,1 2 3 1 1,2 2 2,3 3 , and consider residuals
{ }⁎ ⁎ ⁎r r r, ,p p p1 2 3

for both the global model and local submodels. To

demonstrate the improvements offered by using qualitative fault
signatures and residual orderings, we consider also the local
Fig. 8. Observations for the candidate −K3

Fig. 7. 2-diagnosability as a function of the number of tanks.
submodel residual set without orderings and using only binary
fault signatures (effect/no effect).

As a first scenario, we consider a double fault in which −K3 first
occurs at t¼5 s, followed by +Re1 at t¼5.05 s. Consider first diag-
nosis with the global model residual set, shown in Fig. 8. At t¼5 s

+−⁎rp3
is observed, resulting in a conflict of { }−K3 and initial diagnosis

set { }−K3 . At t¼5.05 s, +⁎rp
0

2
is observed, resulting in a conflict of

{ }− + + +K Re Re Re, , ,3 2 3 2,3 . The minimal diagnosis set remains as { }−K3 . At

t¼5.1 s, −⁎rp
0
1

is observed. The conflict is { − + +K Re Re, , ,3 3 2

}+ + + −Re Re Re K, , ,2,3 1 1,2 2 . Still, the minimal diagnosis set remains as { }−K3 .
So, even though two faults occurred, with the global residual set
the observations are consistent with only −K3 occurring by itself.

Consider now diagnosis with the local submodel residual set,
shown in Fig. 9. At t¼5 s, +−⁎rp3

is observed, resulting in a conflict and

initial minimal diagnosis set of { }−K3 . At t¼5.1 s, +⁎rp
0
1

is observed,

resulting in a conflict of { }+ +Re Re,1,2 1 . Unlike with the global model
residuals, with the local submodel residual set, −K3 has no effect on
this residual, so here we are confident that a second fault has
occurred. In this case, then, the minimal diagnosis set is
{ }− + − +K Re K Re,3 1,2 3 1 . Although it is ambiguous as to which fault oc-
curred with −K3 , at least it is known that a double fault has defi-
nitely occurred.

Consider now diagnosis with the local submodel residual set,
but without residual orderings and using binary fault signatures.
At t¼5 s, +−⁎rp3

is observed, resulting in a conflict and initial minimal

diagnosis set of { }− + +K Re Re, ,3 23 3 . At t¼5.1 s, +⁎rp
0
1
is observed, resulting

in a conflict of { }− + +K Re Re, ,1 1,2 1 . The minimal diagnosis set is then
{ }− − − + − + − + + + + + + + + +K K K Re K Re K Re Re Re Re Re Re Re Re R, , , , , , ,1 3 3 1 3 2 1 23 1 23 12 23 1 3 12 3 . Clearly,
although the actual double fault is included in the minimal diag-
nosis set, the reduction in diagnostic information, as expected,
results in a significant loss in precision. A double fault is known to
have occurred, but there are 8 consistent diagnoses.

As a second scenario, consider a triple fault, with −K1 occurring
at t¼5 s, +Re1,2 occurring at t¼5 s, and +Re3 occurring at t¼5.05 s.
Consider first diagnosis with the global model residual set, shown
in Fig. 10. At t¼5 s, +−⁎rp1

is observed, which can be due only to −K1 ,

and so the conflict is { }−K1 and the initial diagnosis set is { }−K1 . At
t¼5.05 s, +⁎rp

0
2
is observed, so the conflict is { }− + + +K Re Re Re, , ,1 2,3 1 2 , but

the minimal diagnosis set remains as { }−K1 . At t¼5.10 s, +⁎rp
0

3
is ob-

served, and so the conflict is { }− − + + +K K Re Re Re, , , ,1 2 1 2 3 . Still, the
minimal diagnosis is only { }−K1 , i.e., the observation sequence is still
consistent with only a single fault occurring and we cannot say for
sure whether a second (or third) fault has also occurred.

Now, consider diagnosis with the local submodel residual set,
+Re1 with the global model residuals.



Fig. 9. Observations for the candidate − +K Re3 1 with the local submodel residuals.

Fig. 10. Observations for the candidate − + +K Re Re1 1,2 3 with the global model residuals.

Fig. 11. Observations for the candidate − + +K Re Re1 1,2 3 with the local submodel residuals.
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shown in Fig. 11. At t¼5 s, +−⁎rp1
is observed, which can be due only to

−K1 , and so the conflict is { }−K1 and the initial diagnosis set is { }−K1 . At
t¼5.05 s, −⁎rp

0
2
is observed, so the conflict is { }+Re1,2 , so the minimal

diagnosis set is { }− +K Re1 1,2 , i.e., we know that definitely two faults have
occurred, and the two faults that must have occurred are un-
ambiguous. This is due to the decoupling from the local submodels;
now, −K1 cannot mask the effects of +Re1,2 as seen with the global

model residuals. At t¼5.10 s, +⁎rp
0

3
is observed, and so the conflict is

{ }+Re3 , and the minimal diagnosis set is { }− + +K Re R1 1,2 3 , i.e., we know that
three faults have occurred and they are known accurately. The more
the decoupling, the more accurate multiple fault diagnosis can be,
because of the decreased chances for fault masking.
Consider now diagnosis with the local submodel residual set,

but again without residual orderings and only binary fault sig-
natures. Since deviations are observed in all three residuals, all
combinations of faults that cover the three residuals are diagnoses.
This would include some double faults (e.g., − +K Re1 23), so the mini-
mal diagnosis set would not include the true triple fault, whereas
in the previous situation the exact triple fault was diagnosed.

6.1. Summary of results

In order to characterize the multiple fault diagnosis
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performance, and to compare the global model and local submodel
residual sets, we present a comprehensive set of experimental
results performed in simulation. We consider both single- and
double-fault scenarios, where the first fault is always injected at
t¼5.00 s, and the second fault also at t¼5.00 s or a little later at
t¼5.05 s. All fault combinations are considered, and l¼3 is
assumed.

We consider a set of metrics to evaluate the performance of
diagnosis. We consider both the maximal and minimal diagnosis
sets. We determine (i) whether or not the true fault is found in the
diagnosis set D, (ii) the length of the diagnosis set | |D , and (iii) the
accuracy, as measured by | |D1/ if the true fault is in D or 0 other-
wise. Since diagnosability is not perfect, we expect at least that the
true fault is in D, and we desire D to have at best only one diag-
nosis, the true fault set.

For the global model residuals, we find that for the maximal
diagnosis set, the true fault is always included. On average,
| | =D 6.39, and accuracy is 30%. Accuracy is rather low, since the size
of the diagnosis set is often large. For the minimal diagnosis set, the
true fault is only included in the diagnosis set 42% of the time. Here,
since the true fault is always in the maximal diagnosis set, it can
only not be in the minimal diagnosis set in one case, which is when
a double fault occurs with a trace that is consistent with a single
fault. On average, | | =D 1.84, and accuracy is 28%. Accuracy is likely a
bit lower since sometimes the true fault is not in the minimal di-
agnosis set, even though | |D is, on average, smaller.

For the local submodel residuals, we find that for the maximal
diagnosis set, the true fault is, like with the global model residuals,
always included. On average, | | =D 3.35, a littler more than half of
that for the global model residuals, and accuracy is 56%, nearly
double that for the global model residuals. For the minimal diag-
nosis set, the true fault is included in the diagnosis set 83% of the
time, again about twice that for the global model residuals. On
average, | | =D 1.57 and accuracy is 59%, again much better than
with the global model residuals.

For the local submodel residuals without orderings and with
binary fault signatures, we find that for the maximal diagnosis set,
the true fault is, as expected, always included. On average,
| | =D 14.33, which is significantly worse than the previous two
approaches. Accuracy is 7%, which is also a significant decrease in
performance. For the minimal diagnosis set, the true fault is in-
cluded in the diagnosis set 63% of the time. This is better than
using all diagnostic information on the global model residuals due
to the benefit of using structural model decomposition, but worse
than using all diagnostic information with the local submodel
residuals. On average, | | =D 7.58 and accuracy is 8%, which are both
worse than the previous two approaches. Overall, these results are
expected, because when using less information for diagnosis, the
diagnosis sets will be less accurate and precise.

Clearly, the use of structural model decomposition greatly im-
proves the performance of multiple fault isolation. These results
are expected, given the diagnosability analysis. With the metrics
used here, we find that using the local submodel residuals offers
about twice the performance as using the global model residuals.
This is mainly due to the fact that conflicts are, on average, smaller,
so the diagnosis sets are smaller and, as such, accuracy improves.
Using both residual sets, performance would improve further.

With the combined residual set, for the maximal diagnosis, on
average, | | =D 3.33 and accuracy is 56%, which are about the same
as using only the local submodel residuals. For the minimal diag-
nosis set, the true fault is included in the diagnosis set 86% of the
time, which is a small improvement. On average, | | =D 1.9 and
accuracy is 59%. Here, although accuracy is the same as using only
the local submodel residuals, | |D is larger because it includes more
triple faults, since there are 6 total residuals now, so there are
more chances for double faults to be expanded to triple faults.
7. Related work

Traditionally, multiple fault diagnosis solutions have con-
centrated mostly on static systems, e.g., Reiter (1987), de Kleer and
Williams (1987), Struss and Dressler (1989) and, more recently,
Abreu and van Gemund (2010). The approach in this paper is
founded in the conflict recognition and candidate generation
methodology in de Kleer and Williams (1987). Their particular
implementation, GDE, utilizes a notion of minimality equivalent to
the one we use in this paper, although it only applies to static
systems. In parallel, the consistency-based diagnosis approach of
Reiter (1987) also develops multiple fault diagnosis solutions for
static systems. A key contribution of our work in applying this
fundamental approach to dynamic systems is to generate conflicts
for dynamic systems, based on the notion of fault traces.

These early works have been extended before to diagnosis of
dynamic systems, by using qualitative simulation models (Ng,
1990; Subramanian and Mooney, 1996; Dvorak and Kuipers, 1991),
which suffer from the state explosion problem. In contrast, our
approach uses a qualitative abstraction of the residual space, i.e.,
we require a reference only to nominal behavior, and, so, for each
residual, we have a finite set of symbolic abstractions (i.e., fault
signatures). From these, a finite set of fault traces can be
constructed.

In control theory-based (FDI) diagnosis approaches, the pro-
posal in Gertler (1998) is, like our approach, based on the analysis
of residual structures. The residual structure of Gertler (1998) is
derived offline to fulfill a set of desired isolation properties.
Structural model decomposition allows us to achieve a similar
structure, however our decomposition approach is more general.
Further, FDI approaches use only binary signatures (effect or no
effect), whereas we use a richer feature set defined by the fault
signatures. Also, the use of relative residual orderings adds tem-
poral information for diagnosis that improves the discriminatory
power of the approach. Such information is also lacking from
Nyberg and Krysander (2003), which, like our approach, integrates
residual-based and consistency-based approaches. In Krysander
et al. (2010), the authors propose an efficient graph-theoretical
algorithm for computing a set of testable submodels called Test
Equation Supports (TES). Similarly to our approach, Krysander
et al. (2010) structurally decomposes the system model into
minimal submodels. The key difference with our approach is that
the TESs in a direct way characterize the complete multiple fault
isolability property of a model. However, isolability information in
the proposed solution is only binary, and no information about the
ordering in the residual deviation is used. A similar approach is
followed in Issury et al. (2013), Bartys (2014), and Koscielny et al.
(2012). Since these approaches consider only binary information
from residuals, our approach will always be more precise, as de-
monstrated in Section 6.

A more general approach based on binary tests is described in
Kodali et al. (2013), which allows also for observation delay. Our
multi-valued fault signatures can also be transformed to a binary
format (e.g., one test would be if þ� is observed in r1, another
would be if 0þ is observed on r1, etc.), but this creates the pro-
blem that complex test expressions would be required (e.g., f1
causes test ( )+−r1 1 to be true or causes test 2 to be true ( )+−r1 ), which
cannot be handled by that approach.

Some diagnosis approaches also use temporal information si-
milar in concept to relative residual orderings. In Fourlas (2009),
there is the concept of a fault influence path, which is similar to
our notion of relative residual ordering, although the focus there is
on hybrid systems. In Chatti et al. (2014), the model is decomposed
into analytical redundancy relations, which are equivalent to our
minimal submodels, and the order in the residuals deviations is
also used for multiple fault isolation. However, in both these
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approaches, qualitative information in the residual is not used. In
Koscielny and Labeda-Grudziak (2013), directional residuals are
computed for multiple fault distinguishability. However, the so-
lutions proposed there only apply to double fault situations.

To make the approach as general as possible, we assumed in
this work that qualitative fault signatures and relative residual
orderings were given as inputs. In practice, many approaches can
be found in the literature to generate this information auto-
matically from a given model, and all of them can be integrated
within the multiple fault diagnosis framework proposed in this
paper (Kościelny, 1995; Kościelny and Zakroczymski, 2000; Puig
et al., 2005; Gelso et al., 2008; Daigle, 2008). Additionally, such
information can also be generated by manual analysis of the sys-
tem model.
8. Conclusions

In this work, we have presented a qualitative, event-based
framework for multiple fault isolation. Within this framework, we
have developed a systematic approach for predicting the possible
traces, called fault traces, that multiple faults can produce. Using
diagnostic information provided by these fault traces, we have
provided methods for online fault isolation of multiple faults, and
for offline diagnosability analysis, which demonstrates how good
an ideal fault isolation algorithm would perform given a diagnosis
model in our framework. It was shown that using structural model
decomposition can greatly improve fault diagnosis in the multiple-
fault case, as it (i) reduces the possibility of fault masking due to
the decoupling of faults and residuals, and thus improves diag-
nosability and (ii) results in a reduction of the average computa-
tional complexity of the diagnosis problem, in both time and
space. Using a tank system as a case study, it was shown that
multiple fault diagnosis using structural model decomposition
yields excellent performance.

The diagnosis approach presented in this paper can be used to
quickly produce a set of diagnoses based on qualitative, event-
based diagnostic information. Diagnosability is rarely perfect
when considering multiple faults, and so ambiguity in diagnosis
results can rarely be avoided. As such, it is important to follow
qualitative fault isolation with a quantitative fault identification
step (Manders et al., 2000). For multiple faults, this becomes dif-
ficult because the dimension of the parameter estimation problem
is increased. However, structural model decomposition provides
an advantage here, because if the faults appear in different sub-
models, then instead of having one n-dimensional estimation
problem, we have in the best case n 1-dimensional estimation
problems. Future work will consider the problem of fault identi-
fication for the multiple-fault case.

A limitation of the framework is the assumption of correct
observation of fault effects. If an observation is incorrect, this may
lead to incorrect diagnoses being generated. Initial work on this
topic for this diagnosis framework has been done in the single-
fault case (Daigle et al., 2014), however it should be extended also
to the multiple-fault case. Here, the problem becomes more
complex because an incorrect observation can be taken as evi-
dence of a new fault when there is none, or mask the true pre-
sence of a new fault.

Here, we considered only continuous systems, but multiple
fault isolation must also be considered for hybrid systems (Daigle,
2008; Fourlas, 2009; Narasimhan and Brownston, 2007). This is
also a topic of future work. Initial work on extending our structural
model decomposition approach to hybrid systems is presented in
Daigle et al. (2015a).
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