
Real-Time Syst (2013) 49:339–366
DOI 10.1007/s11241-012-9168-7

Optimal and efficient adaptation in distributed
real-time systems with discrete rates

Yingming Chen · Chenyang Lu ·
Xenofon D. Koutsoukos

Published online: 22 November 2012
© Springer Science+Business Media New York 2012

Abstract Many distributed real-time systems face the challenge of dynamically
maximizing system utility and meeting stringent resource constraints in response to
fluctuations in system workload. Thus, online adaptation must be adopted in face of
workload changes in such systems. We present the MultiParametric Rate Adaptation
(MPRA) algorithm for discrete rate adaptation in distributed real-time systems with
end-to-end tasks. The key novelty and advantage of MPRA is that it can efficiently
produce optimal solutions in response to workload variations caused by dynamic task
arrivals and departures. Through offline preprocessing MPRA transforms an NP-hard
utility optimization problem to the evaluation of a piecewise linear function of the
CPU utilization. At run time MPRA produces optimal solutions by evaluating the
function based on the CPU utilization. Analysis and simulation results show that
MPRA maximizes system utility in the presence of varying workloads, while reduc-
ing the online computation complexity to polynomial time. The advantages of MPRA
have been validated through the implementation in a real-time middleware system
and experiments on a physical testbed.

Keywords Real-time systems · Middleware · Rate adaptation

Y. Chen · C. Lu (�)
Department of Computer Science and Engineering, Washington University in St. Louis, One
Brookings Drive, St. Louis, MO 63130, USA
e-mail: lu@cse.wustl.edu

Y. Chen
e-mail: yingming@cse.wustl.edu

X.D. Koutsoukos
Department of EECS, Vanderbilt University, Box 1679, Station B, Nashville, TN 37235, USA
e-mail: Xenofon.Koutsoukos@vanderbilt.edu

mailto:lu@cse.wustl.edu
mailto:yingming@cse.wustl.edu
mailto:Xenofon.Koutsoukos@vanderbilt.edu

340 Real-Time Syst (2013) 49:339–366

1 Introduction

An increasing number of distributed real-time systems operate in dynamic environ-
ments where system workload may change at run time (Abdelzaher et al. 2003). A key
challenge faced by such systems is to dynamically maximize system utility subject
to resource constraints and fluctuating workload. For instance, the Supervisory Con-
trol and Data Acquisition (SCADA) system of a power grid may experience dramatic
load increase during cascading power failures and cyber attacks. Similarly, the arrival
rate of service requests in an online trading server can fluctuate dramatically. How-
ever, such systems must meet stringent resource constraints despite their fluctuating
workload. Online adaptation must be adopted to handle workload changes in such
systems.

Online adaptation introduces several important challenges in distributed real-time
systems. First, online adaptation should maximize system utility subject to multiple
resource constraints. For example, many distributed real-time systems must enforce
certain CPU utilization bounds on multiple processors in order to prevent system
crash due to CPU saturation and meet end-to-end deadlines (Wang et al. 2005b). Sec-
ond, many common adaptation strategies only support discrete options. For example,
an admission controller must make binary decisions (admission/rejection) on a task.
While task rate adaptation can allow a system to adapt at a finer granularity (But-
tazzo et al. 2002; Cervin et al. 2002; Lu et al. 2002, 2005; Koutsoukos et al. 2005;
Steere et al. 1999), many real-time applications (e.g., avionics (Abdelzaher et al.
2000) and Multiple Bit-Rate Video) can only run at a discrete set of predefined rates.
Unfortunately, utility optimization problems with discrete options are NP-hard (Lee
et al. 1999b). Furthermore, despite the difficulty of such problems, a real-time sys-
tem must adapt to dynamic workload changes quickly, which requires optimization
algorithms to be highly efficient at run time.

Existing approaches to utility optimization in real-time systems can be divided into
two categories: optimal solutions and efficient heuristics. Approaches based on inte-
ger programming or dynamic programming have been proposed to optimize utility
(Lee et al. 1999a, 1999b). While these approaches produce optimal solutions, they are
computationally expensive and cannot be used online. On the other hand, a number of
efficient heuristics have been proposed for online adaptation (Rajkumar et al. 1998;
Lee et al. 1999b; Abdelzaher et al. 2000; Lee et al. 2004). However, these algorithms
can only produce suboptimal solutions in terms of system utility.

To overcome the limitations of existing approaches, we present the MultiPara-
metric Rate Adaptation (MPRA) algorithm for online adaptation in real-time sys-
tems. MPRA employs admission control or task rate adaptation as the online adap-
tation mechanism, which is supported by a broad range of real-time applications,
such as digital control (Cervin et al. 2002), video streaming, and avionics (Ab-
delzaher et al. 2000). While several rate adaptation algorithms (Lu et al. 2005;
Wang et al. 2005a; Koutsoukos et al. 2005; Abdelzaher et al. 2000) have been
proposed for distributed real-time systems, some of them (Koutsoukos et al. 2005;
Abdelzaher et al. 2000) are heuristics-based suboptimal solutions, while others can
only deal with continuous rates. Unfortunately, many real-time applications can only
support a finite set of discrete rates. For example, in a sensor-to-weapon shooter sys-
tem, changing the task rates implies changing the rate at which sensed imagery data

Real-Time Syst (2013) 49:339–366 341

are published. Setting the task rates to any value within a range is not practical since
the hardware that senses the data may not have a high-resolution timer needed to
precisely program the tasks. In a fully-automated flight control system, each flight
task only accept a spectrum of Quality-of-Service (QoS) levels with each level asso-
ciated to a concrete task rate (Abdelzaher et al. 2000). Some multimedia applications
(e.g., Multi Bit Rate video) also only support a few predefined rates. Due to its com-
putational complexity, optimal discrete rate adaptation is particularly challenging in
distributed real-time systems which requires fast adaptation in response to workload
changes. To meet this challenge, MPRA is designed to handle a common class of
end-to-end tasks that may only execute at a discrete set of rates on multiple proces-
sors. Online adaptation in such systems represents a particularly challenging problem
as it is NP-hard (as discussed in Sect. 3).

The key novelty and advantage of our approach is that it can efficiently produce
optimal solutions online in face of dynamic task arrivals and departures. The MPRA
algorithm is based on multiparametric mixed-integer linear programming (mp-MILP)
(Acevedo and Pistikopoulos 1999). Through offline preprocessing MPRA transforms
an NP-hard utility optimization problem to the evaluation of a piecewise linear func-
tion of the CPU utilization. At run time MPRA produces optimal solutions by eval-
uating the function based on the workload variation. Specifically, the primary contri-
butions of this paper are four-fold:

– We present MPRA, a novel algorithm for discrete rate adaptation in distributed
real-time systems with end-to-end tasks;

– We provide analysis that proves that our algorithm produces optimal system utility
in face of workload changes with the online rate adaptation running in polynomial
time;

– We present simulation results that demonstrate that MPRA maximizes system util-
ity in the presence of dynamic task arrivals, with the online execution time compa-
rable to efficient suboptimal heuristics and two orders of magnitude lower than a
representative optimal solver.

– We integrate our algorithm with the FC-ORB real-time middleware (Wang et al.
2005b) and report empirical results on an experimental testbed.

The rest of the paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 formalizes the optimization problem addressed in this paper. Section 4 presents
the design and analysis of our algorithm. Section 5 provides simulation results. Sec-
tion 6 introduces the implementation of the algorithm in a real-time middleware sys-
tem and presents empirical results. Finally, Sect. 7 concludes this paper.

2 Related work

Several projects investigated the problem of maximizing system utility in real-time
systems. Rajkumar et al. proposed the QoS-based Resource Allocation Model (Q-
RAM) (Rajkumar et al. 1997) for utility optimization in distributed real-time sys-
tems. Lee et al. presented several optimal algorithms for the Q-RAM model based
on integer programming and dynamic programming (Lee et al. 1999a, 1999b). These

342 Real-Time Syst (2013) 49:339–366

approaches are computationally expensive and unsuitable for online adaptation in
real-time systems. To improve the efficiency of the solutions, the authors also pro-
posed several efficient heuristic algorithms that can only produce suboptimal so-
lutions (Rajkumar et al. 1998; Lee et al. 1999a, 1999b; Lee and Siewiorek 1998;
Ghosh et al. 2003). Specifically, they presented heuristic algorithms with bounded
approximation ratio for the single-resource case (Lee et al. 1999a; Lee and Siewiorek
1998). However, the heuristic algorithms for multi-resource problems do not have
analytical bounds on the approximation ratio (Lee and Siewiorek 1998). Note that
the multi-resource case is common in distributed real-time systems in which each
processor is a separate resource.

Several middleware systems have been developed to improve system utility by
dynamically adjusting the QoS levels of applications. The authors in Tokuda and
Kitayama (1994), Brandt et al. (1998), Brandt and Nutt (2002) have developed mid-
dleware solutions that support mediating application resource usage using applica-
tion QoS levels for single processor systems. Abdelzaher et al. developed a QoS-
negotiation model and incorporated it into an example real-time middleware service,
called RTPOOL, in Abdelzaher et al. (2000). However, all the above middleware
systems employ heuristic algorithms that cannot produce optimal solutions.

Recently, Lee et al. introduced a method called service class configuration to ad-
dress the online adaptation problem with dynamic arrival and departure of tasks in
surveillance radar systems (Lee et al. 2004). This method avoids running optimiza-
tion procedures at run time by designing a set of service classes offline, which will be
used adaptively depending on the system state. While service classes can effectively
improve the efficiency of online adaptation, it cannot produce optimal solutions. In
contrast, MPRA can produce optimal solutions with efficient online execution.

Several task rate adaptation algorithms have been proposed for single-processor
(Cervin et al. 2002; Buttazzo et al. 2002; Steere et al. 1999) and distributed real-time
systems (Lu et al. 2005; Wang et al. 2005a). All the above solutions assume that task
rates can be adjusted in a continuous range. As discussed in Sect. 1, this assump-
tion does not hold in many applications that only support discrete configurations.
HySUCON (Koutsoukos et al. 2005) is a heuristic algorithm for real-time systems
that supports discrete task rates. However, it is designed for single processor systems
and cannot produce optimal solutions. There are two important differences between
our work and earlier work on rate adaptation. First, our work deals with real-time
systems with discrete task rates, while none of the aforementioned rate adaptation al-
gorithms (with the exception of Rajkumar et al. 1997) is designed to handle discrete
rates. Moreover, none of them can maximize system utility.

There are also several methods developed to handle rate adaptation for specific
applications, such as control systems, power management, security and thermal con-
trol (Wang et al. 2009; Chen et al. 2010; Fu et al. 2010a, 2010b; Lindberg and Årzén
2010). However, like those algorithms for single-processor, these methods all assume
continuously adjustable task rates, which are not supported in those applications only
with discrete task rates.

This paper is an extension to an earlier conference paper (Chen et al. 2007).
While Chen et al. (2007) only includes the theoretical design and simulations of
the algorithm, we present the implementation of the algorithm in a real distributed

Real-Time Syst (2013) 49:339–366 343

middleware system and empirical evaluation of the system on a physical testbed in
this paper. In addition, this paper presents the details of the transformation from the
end-to-end admission control problem to an mp-MILP problem as well as the cor-
responding simulation results and analysis that compare MPRA with three baseline
algorithms.

3 Problem formulation

We now formulate the discrete rate adaptation problem in distributed real-time sys-
tems.

3.1 End-to-end task model

We classify tasks in distributed real-time systems into two categories: adaptable tasks
and unadaptable tasks. Tasks that may be rejected or support multiple rates are called
adaptable tasks; tasks that must be admitted and executed at fixed rates are called
unadaptable tasks; tasks with fixed rates fall into unadaptable task category. Mission
critical tasks that must execute at fixed rates are typical unadaptable tasks.

The system is comprised of m adaptable periodic tasks {Ti |1 ≤ i ≤ m} executing
on n processors {Pi |1 ≤ i ≤ n}. Task Ti is composed of a graph of subtasks {Tij |1 ≤
j ≤ mi} that may be located on different processors. We denote the set of subtasks
of adaptable task Ti that are allocated on Pj as Sji . Due to the dependencies among
subtasks each subtask Tij of a periodic task Ti shares the same rate as Ti .1 Each task
Ti is subject to an end-to-end relative deadline related to its period τi . Each subtask
Tij has an execution time cij .

Each adaptable task only supports a set of discrete task rates for online adaptation.
A task running at a higher rate contributes a higher utility to the system at the cost
of higher utilization. We denote the set of discrete rate choices of task Ti as Ri =
{r(0)

i , . . . , r
(ki)
i } in increasing order. The set of utility options for task Ti is denoted

by Qi = {q(0)
i , . . . , q

(ki)
i } where q

(j)
i is the utility value contributed by Ti when it

is executed at rate r
(j)
i . Note that we do not make any assumption regarding the

relation between the utility of the task and the task rate. For example, a task’s utility
values do not need to be a linear or polynomial function of the task rate. MPRA can
handle arbitrary utility values assigned to discrete task rates. Task utility values for
different rates can be represented by a lookup table, which is specified by application
designers based on domain knowledge. Admission control is a special case of discrete
rate adaptation, in which each task only has two rate choices: zero when the task is
evicted and a fixed non-zero rate when task is admitted.

3.2 Discrete rate adaption problem

Before formulating the discrete rate adaptation problem, we first introduce several
notations:

1A non-greedy synchronization protocol (Sun and Liu 1996) can be used to remove release jitter of sub-
tasks.

344 Real-Time Syst (2013) 49:339–366

– R = [r1, . . . , rm] is the task rate vector where ri is the current invocation rate of
task Ti . ri ∈ Ri,1 ≤ i ≤ m.

– Qs is the system utility, i.e., the combined utility of all adaptable tasks defined
as the weighted sum of the task utilities Qs = ∑m

i=1 wiqi where qi , qi ∈ Qi , is
the current task utility of Ti and 0 ≤ wi ≤ 1, 1 ≤ i ≤ m, are weights describing
the relative importance of the tasks. Task weights are defined by the user and are
independent from other variables such as task priority. The weight represents the
importance of a task relative to the others in the system. If a task has a larger
weight, it is more beneficial to increase the utility achieved by this task. Note that
we do not consider the utility of unadaptable tasks as they must be executed at
fixed rates and hence contribute fixed utility.

– D = [d1, . . . , dn] is the workload variation vector where di is the change to the uti-
lization of the ith processor caused by dynamic arrivals or departures of unadapt-
able tasks with fixed rates. D can be calculated based on the worst case execution
times and rates of the unadaptable tasks that are assumed to be known. For exam-
ple, denote the set of unadaptable tasks that arrive as Sa and the set of unadaptable
tasks that depart as Sb. Then di = ∑

Tj ∈Sa

∑
Tjl∈Sij

cj lrj − ∑
Tj ∈Sb

∑
Tjl∈Sij

cj lrj

where Sij is the set of subtasks of Tj that run on processor Pi , cjl is the worst-case
execution time of subtask Tjl , and rj is the current rate of Tj .

– U = [u1, . . . , un] is the CPU utilization vector where ui represents the utilization
of the ith processor, i.e., the average fraction of time when the ith processor is
not idle. Note that ui includes the utilizations of both adaptable and unadaptable
tasks, i.e., ui = di + ∑

1≤j≤m

∑
Tjl∈Sij

cj lrj .
– B = [b1, . . . , bn] is the utilization bound vector where bi is the utilization bound

of the ith processor specified by user.

The discrete rate adaptation problem can be formulated as a constrained optimiza-
tion problem. The goal is to maximize the system utility by selecting the rates of
adaptable tasks in response to workload changes when unadaptable tasks dynami-
cally arrive or depart, i.e.

max
R

m∑

i=1

wiqi (1)

subject to

ri ∈ Ri, 1 ≤ i ≤ m (2)

U ≤ B (3)

The constraint (2) indicates that each task can only be configured with predefined
rates. The utilization constraint (3) is used to enforce certain CPU utilization bounds
on multiple processors in order to meet the following two goals:

– Meeting end-to-end deadlines. Real-time tasks must meet their end-to-end dead-
lines in distributed real-time systems. In the end-to-end scheduling approach (Sun
and Liu 1996), the deadline of an end-to-end task is divided into subdeadlines

Real-Time Syst (2013) 49:339–366 345

of its subtasks, and the problem of meeting the end-to-end deadline is trans-
formed to the problem of meeting the subdeadline of each subtask. A well-
known approach for meeting the subdeadlines on a processor is by enforcing the
schedulable utilization bound (Liu and Layland 1973; Lehoczky 1990). The sub-
deadlines of all the subtasks on a processor are guaranteed if the utilization of
the processor remains below its schedulable utilization bound. To meet end-to-
end deadlines, the utilization set point of each processor is set to a value be-
low its schedulable utilization bound. We can apply various subdeadline assign-
ment algorithms (Kao and Garcia-Molina 1997; Natale and Stankovic 1994) and
schedulable utilization bounds for different task models (Liu and Layland 1973;
Lehoczky 1990) presented in the literature.

– Overload protection. Many systems must avoid saturation of CPUs, which may
cause system crash or severe service degradation (Abdelzaher et al. 2002). On
COTS operating systems that support real-time priorities, high utilization by real-
time threads may cause kernel starvation (Lu et al. 2003). The utilization constraint
(3) allows a user to enforce desired utilization bounds for the processors in a dis-
tributed system. Note that overload protection is important for both real-time and
many non-real-time distributed systems.

The discrete rate adaptation problem is NP-hard as it can be easily reduced to
the 0-1 Knapsack Problem (Martello and Toth 1990). It is therefore impractical to
apply standard optimization approaches to discrete rate adaptation in distributed real-
time systems. There exist several approximation algorithms for the 0-1 Knapsack
Problem that run in polynomial time (Ibarra and Kim 1975; Sahni 1975). However,
those algorithms can only handle problems for the single-resource case and can not
be applied for multi-resource problems.

4 Design and analysis of MPRA

In this section, we present the design and analysis of MPRA. The MPRA algorithm
is based on Multiparametric programming, which is a general framework for solving
mathematical programming problems with constraints that depend on varying param-
eters (Gal and Nedoma 1972). This technique is suitable for discrete rate adaptation
problems, where the utilization constraints are related to online workload variations.
In the rest of this section, we first give a brief overview of the general framework of
multiparametric programming. Next, we transform the discrete rate adaptation prob-
lem to multiparametric programming formulation and design MPRA for optimal and
efficient rate adaptation in distributed real-time systems. Finally, we present the com-
plexity analysis of our algorithm.

4.1 Multiparametric programming

Multiparametric programming provides a systematic way to analyze the effect of
parameter changes on the optimal solution of a mathematical programming problem.
Rather than solving the optimization problem completely online, it includes an offline
and an online step. The offline algorithm partitions the space of varying parameters

346 Real-Time Syst (2013) 49:339–366

into regions. For each region, the objective and optimization variables are expressed
as linear functions of the varying parameters. For a given value of the varying param-
eter, the online algorithm computes the optimal solution by evaluating the function
for the region which includes the parameter value.

The multiparametric approach has been extended for multiparametric mixed-
integer linear programming problems (mp-MILP) (Acevedo and Pistikopoulos 1999).
The algorithm presented in Acevedo and Pistikopoulos (1999) uses a Branch and
Bound strategy to solve multi-parametric 0-1 mixed-integer linear programming
problems of the following form:

min
x

z(θ) = cx (4)

subject to

Ax ≤ b + Fθ (5)

Gθ ≤ g (6)

θ ∈ �s (7)

where the elements of the optimization vector x can be either continuous or binary
variables, and the vector θ is a vector of parameters varying in � = {θ |Gθ ≤ g;
θ ∈ �s}. The optimal solution to the problem is a set of linear functions of param-
eters where each function is corresponding to one region of the parameter space.
By combining all linear functions together the optimal solution is a piecewise affine
(PWA) function with a polyhedral partition of the following form

x(θ) = Piθ + qi, if Hiθ ≤ ki, i = 1, . . . ,Nr (8)

where the regions �i
�= {θ ∈ � : Hiθ ≤ ki}, i = 1, . . . ,Nr form a partition of the en-

tire space of varying parameters. The optimality of the mp-MILP approach is ensured
by exhaustiveness, as in any standard Branch and Bound algorithm.

We observe the mp-MILP approach is suitable for real-time systems that must
handle workload changes by switching among discrete rates. The key advantage of
the multiparametric programming is that, while the offline step may have a high time
complexity, the online step can generate optimal solutions efficiently. As a result,
the optimal solution can be computed quickly in response to workload changes. This
characteristic makes it very suitable for the discrete rate adaptation problem in dy-
namic distributed real-time systems, which require both optimal resource allocation
and fast response to workload variations. To our knowledge MPRA is the first instan-
tiation of the general multiparametric programming approach in real-time systems.

4.2 Problem transformation

The key step in the design of MPRA is to transform the discrete rate adaptation prob-
lem presented in Sect. 3.2 to an mp-MILP problem, after which the mp-MILP ap-
proach is adopted to solve the problem. We start with the transformation of the ad-
mission control problem, which is a special case of discrete rate adaptation, followed
by the general case.

Real-Time Syst (2013) 49:339–366 347

4.2.1 End-to-end admission control

In admission control, each task Ti only has two rate choices: r
(0)
i (r(0)

i = 0, i.e., Ti is

evicted) and r
(1)
i (r(1)

i > 0, i.e., Ti is admitted). We focus on admission control first
because it allows a simpler transformation than the general rate adaptation problem.
We introduce an admission vector X with m elements to represent rate choices for all
adaptable tasks such that

xi =
{

1 if Ti is admitted

0 if Ti is evicted
(9)

We introduce an n × m matrix F , where fij = ∑
Tjl∈Sij

r
(1)
j cjl , i.e., the total uti-

lization of task Tj ’s subtasks on processor Pi if Tj is admitted, and fij = 0 if no
subtask of Tj is allocated on processor Pi . The CPU utilization vector U follows
the following relationship with the workload variation vector D and the admission
vector X:

U = FX + D (10)

If we assume the task utility contributed by Ti is zero when it is evicted, i.e.,
q

(0)
i = 0, then the task utility of Ti can be obtained by q

(1)
i xi where q

(1)
i is the task

utility contributed by Ti when it is admitted. We introduce a vector Q such that
qi = wiq

(1)
i , 1 ≤ i ≤ m. Thus, the system utility can be obtained by Qs = QX. By

denoting DN = B −D, we transform this admission control problem to the following
mp-MILP problem with DN as the varying parameter:

min
X

(−QX) (11)

subject to

FX ≤ DN (12)

xi ∈ {0,1}, 1 ≤ i ≤ m (13)

The constraint (12) enforces the CPU utilization bounds specified by the user on all
processors. The constraint (13) indicates that each task supports only a set of discrete
task rates.

Fig. 1 An example workload

348 Real-Time Syst (2013) 49:339–366

Example Suppose there are two processors and three adaptable tasks in the system.
As shown in Fig. 1, T1 has only one subtask T11 on processor P1. T2 has two subtasks
T21 and T22 on processors P1 and P2, respectively. T3 has one subtask T31 allocated
to processors P2. After the problem transformation, we have

X =
⎡

⎣
x1
x2
x3

⎤

⎦ , F =
[
r
(1)
1 c11 r

(1)
2 c21 0

0 r
(1)
2 c22 r

(1)
3 c31

]

,

Q =
[
w1q

(1)
1 w2q

(1)
2 w3q

(1)
3

]
, DN =

[
b1 − d1
b2 − d2

]

.

4.2.2 Discrete rate adaption

We first introduce a rate adaptation vector X with m̄ elements, where m̄ = ∑
1≤i≤m ki

and ki is the number of non-zero rate choices of adaptable task Ti , to represent the
rate configuration of the system such that

xl =
{

1 if Ti is configured with r
(j)
i

0 otherwise
(14)

where l = ∑
1≤s<i ks + j , 1 ≤ i ≤ m, and 1 ≤ j ≤ ki . Each 0-1 element in X corre-

sponds to one non-zero rate choice of some tasks in an appropriate order. The task
rate vector R can be obtained by R = ZX, where Z is an m × m̄ matrix such that

zil =
{

r
(j)
i if

∑
1≤s<i ks < l ≤ ∑

1≤s≤i ks

0 otherwise
(15)

where 1 ≤ i ≤ m, 1 ≤ l ≤ m̄, and j = l − ∑
1≤s<i ks . Each row in Z is associated

with one adaptable task and contains the information of the non-zero rate options for
the task.

We then introduce an n × m matrix H , where hij = ∑
Tjl∈Sij

cj l , i.e., the total
execution time of task Tj ’s subtasks on processor Pi , and hij = 0 if no subtask of Tj

is allocated on processor Pi . The model that characterizes the relationship between U

and X is given by

U = HZX + D (16)

To describe the relationship between Qs and X, we introduce a vector Q̄ such
that q̄l = wiq

(j)
i where l = ∑

1≤s<i ks + j , 1 ≤ i ≤ m, and 1 ≤ j ≤ ki . Each element
in Q̄ corresponds to one non-zero rate choice of some task. Thus, the system utility is
calculated by Qs = Q̄X. By denoting DN = B − D and G = HZ, we re-formulate
the discrete rate adaptation problem as following:

min
X

(−Q̄X) (17)

subject to

GX ≤ DN (18)

Real-Time Syst (2013) 49:339–366 349

xi ∈ {0,1}, 1 ≤ i ≤ m̄ (19)
∑

∑
1≤s<i ks<j≤∑

1≤s≤i ks

xj ≤ 1, 1 ≤ i ≤ m (20)

The constraint (18) enforces desired CPU utilization bounds on all processors. The
constraint (19) requires that each task only supports a finite set of task rate choices.
For each task only one rate choice can be selected at a time, which is ensured by the
constraint (20).

Considering DN as the varying parameter vector and X as the optimization vector,
we have transformed the discrete rate adaptation problem to an mp-MILP problem.

Example We still use the example workload shown in Fig. 1 to demonstrate how to
formulate a discrete rate adaptation problem. In this example each adaptable task has
two non-zero rate options, and hence m̄ = 6. We have

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Z =
⎡

⎢
⎣

r
(1)
1 r

(2)
1 0 0 0 0

0 0 r
(1)
2 r

(2)
2 0 0

0 0 0 0 r
(1)
3 r

(2)
3

⎤

⎥
⎦ ,

H =
[
c11 c21 0
0 c22 c31

]

, DN =
[
b1 − d1
b2 − d2

]

,

Q =
[
w1q

(1)
1 w1q

(2)
1 w2q

(1)
2 w2q

(2)
2 w3q

(1)
3 w3q

(2)
3

]
.

The constraint (20) can be described by
⎡

⎣
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎤

⎦X ≤
⎡

⎣
1
1
1

⎤

⎦ .

4.3 Design of MPRA

After transforming the discrete rate adaptation problem to an mp-MILP problem, we
present the MPRA algorithm that can dynamically select optimal rates for adaptable
tasks in response to workload changes such as dynamic arrival and departure of un-
adaptable tasks. As shown in Fig. 2, MPRA has both an offline part and an online
part. In the following, we present the functionality of each component in detail.

4.3.1 Offline components

The offline part of MPRA including an mp-MILP Solver and a Search Tree Generator
only executes once before the system starts running. It first invokes the mp-MILP
Solver to generate the piecewise affine (PWA) function and then calls the Search
Tree Generator to build a binary tree that represents the PWA function.

350 Real-Time Syst (2013) 49:339–366

Fig. 2 Overview of MPRA

mp-MILP Solver MPRA invokes the mp-MILP Solver to divide the n-dimensional
space of DN into multiple regions and generates the PWA function which expresses
X as a linear function of DN for each region. The mp-MILP Solver implements a
Branch and Bound algorithm that recursively fixes the 0-1 variables in X and builds
an enumeration tree to generate the PWA function. Each node in the tree corresponds
to an intermediate mp-MILP problem with all remaining 0-1 variables. The space of
DN to be considered for this intermediate problem is defined as the set of regions
found for the parent node. At each node, an mpLP problem is solved by relaxing
the 0-1 variables as continuous variables in [0,1]. The solution of a non-leaf node
is a lower bound of any integer solution to the intermediate mp-MILP problem. The
solution of a leaf node, where all 0-1 variables have been fixed, is an integer solution
of the final mp-MILP problem in a set of regions. At any level of the tree, the current
solution is compared with the upper bound to eliminate parts of the space of DN

defined for the remaining nodes. Note that the integer solution at each leaf node is
feasible (i.e., meets the utilization constraints), but may not be optimal for the final
mp-MILP problem in terms of system utility, because the regions for different leaf
nodes can overlap with each other. This is undesirable because, for some given value
of DN that belongs to the intersection of multiple regions, the online part would have
to compare the solutions in all those regions to find the optimal one. To facilitate
efficient online calculation, the Solver removes the overlap among the regions for all
leaf nodes by dividing them into non-overlapping subregions each corresponding to
the optimal solution.

Example Recall the example workload shown in Fig. 1 to demonstrate how the of-
fline part of MPRA works. For clarity of presentation we consider the admission con-
trol case, i.e., each adaptable task only has one nonzero rate choice. Task parameters
are given in Table 1. The parameter space is a 2-dimensional box, 0 ≤ DN(1) ≤ 2 and

Real-Time Syst (2013) 49:339–366 351

Table 1 Task parameter in the
example workload Tij cij r

(1)
i

q
(1)
i

ωi

T11 20 1/50 0.6 1

T21 20
1/80 1.0 1

T22 20

T31 45 1/100 0.8 1

Fig. 3 Partition of the
parameter space with the
example workload

0 ≤ DN(2) ≤ 2, for this concrete problem. The mp-MILP Solver divides the entire
space into 10 regions (see Fig. 3). Each region corresponds to one optimal integer
solution. For example, X = [1 1 0]T for region 2, i.e., for any given value of DN

in region 2, only T1 and T2 will be admitted in order to maximize the utility while
meeting the utilization constraints. We observe that all regions generated by the of-
fline part of MPRA are rectangles. This is because the coefficients of DN are identity
matrices in constraints (12) and (18).

Search tree generator The search tree generator generates a binary tree data struc-
ture that represents the PWA function generated by the mp-MILP Solver. Each node
in the tree corresponds to a polyhedron which consists of a set of regions generated
by the mp-MILP Solver. An intermediate node contains the inequality for one se-
lected hyperplane that is best for balancing the node’s left and right child in terms
of the number of linear functions. Each leaf node corresponds to one unique linear
function that can be evaluated to obtain the optimal solution for any given value of
DN that belongs to the polyhedron corresponding to this node. For a given DN the
online part only evaluates one linear inequality at each level and then selects the left
or right sub-tree to continue based on the sign. With the help of the binary tree, the
time of the online evaluation of the PWA function becomes logarithmic in the number
of regions.

We implemented the offline part of MPRA using the MPT toolbox (Kvasnica et al.
2004), which provides an mp-MILP solver (Acevedo and Pistikopoulos 1999) and a
binary tree generator (Tondel et al. 2003).

352 Real-Time Syst (2013) 49:339–366

Fig. 4 Binary tree generated from the example partition shown in Fig. 3

Example Figure 4 shows the binary tree generated by the Search Tree Generator
from the example space partition shown in Fig. 3. Each circle represents one inter-
mediate node. The value within the circle is the index of the node and the inequality
corresponding to this intermediate node appears above the node. If the inequality is
true, the right sub-tree is chosen to continue for online tree search; otherwise, the
search goes to left-subtree. Each leaf node (rectangle in Fig. 4) corresponds to one
linear function and a polyhedron in the space of varying parameters, which might
include parts of multiple regions. For any given value of varying parameters belong-
ing to this polyhedron, the corresponding linear function will be evaluated to obtain
the optimal rate configuration. One leaf node might correspond to multiple regions.
In such case, all those regions must have the same optimal solution. Consequently,
only one region number needs be stored in the leaf node. For instance, the left child
of node 4 is related to both region 9 and region 10, and region number 9 is used for
online search. The depth of the tree seen in Fig. 4 is equal to 4. With the help of
binary tree, we only need to evaluate at most 4 linear inequalities to locate the region
and obtain the optimal solution for online rate adaptation.

4.3.2 Online components

Online rate adaptation is triggered by dynamic arrival and departure of unadaptable
tasks, such as mission critical tasks with fixed rates. Online rate adaptation works as
following:

1. Trigger: The Trigger calculates D based on the execution times and rates of the
newly arrived tasks or departed tasks and sends the new value of D to the Search
Routine.

2. Search Routine: After receiving D from the Trigger, the Search Routine traverses
the binary tree to locate the region that the current value of DN belongs to, and
then passes the region number to the Evaluator.

3. Evaluator: The Evaluator computes the new value of X by evaluating the linear
function of the region located by the Search Routine. It then sends the new value
of X to Actuators.

4. Actuator: the Actuators change the task rates based on the new value of X. If the
new task rate of Ti is zero, Ti will be evicted.

Real-Time Syst (2013) 49:339–366 353

Example For the example workload defined in Fig. 1 and Table 1, suppose all 3
tasks are running and the current value of DN is [0.7 0.5]T . The Search Routine goes
through the binary tree shown in 4 and ends with region 2. The evaluator then obtains
the optimal integer solution X = [1 1 0]T corresponding to region 2 and passes it to
the actuators on P1 and P2. T1 and T2 will continue running, but T3 will be evicted
by the actuator on P2.

4.4 Complexity analysis

In this section we analyze the complexity of the MPRA algorithm. The complexity
of the offline part is exponential in the number of decision variables (Murty 1980),
which is equal to m̄ for discrete rate adaptation, where m̄ = ∑

1≤i≤m ki , m is the num-
ber of the adaptable tasks, and ki is the number of none-zero rates of task Ti . Note
that the exponential complexity is unavoidable in order to get optimal solutions due
to the fact that the discrete rate adaptation is an NP-hard problem. A key advantage
of MPRA is that it only incurs exponential complexity in the offline part which is not
time critical and can use significant computing resources. In the following, our anal-
ysis focuses on the online search routine and the evaluation of the explicit solution,
which dominate the online complexity of MPRA.

The complexity of the online search routine depends on Nr , the number of non-
overlapping regions generated by the mp-MILP Solver. We first analyze the mp-
MILP algorithm to calculate Nr . The mp-MILP Solver implements the Branch and
Bound algorithm presented in Acevedo and Pistikopoulos (1999). There will be 2m̄

leaf nodes in the enumeration tree. For each leaf node, all m̄ binary variables have
been fixed and the problem is relaxed to an mpLP problem. Based on the results in
Bemporad et al. (2002), the upper bound to the number of regions for one leaf node
is nr ≤ n + 1, where n is the number of processors.

The optimal PWA function of the mp-MILP problem is obtained by removing the
overlap among the regions for all leaf nodes. One such region can be divided into
at most 2m̄ non-overlapping regions because it can be associated with at most 2m̄

solutions. After eliminating the intersection among different regions, we get all Nr

non-overlapping regions, which represent a partition of the entire space of DN . Nr is
bounded by

Nr ≤ 2m̄ × nr × 2m̄ ≤ (n + 1)22m̄ (21)

The binary tree generated by the Search Tree Generator reduces the complexity of
online region search. For a given DN we only evaluate one linear inequality at each
level, which incurs n multiplications, n additions and 1 comparison. Traversing the
tree from the root to the bottom, we will end up with a leaf node that gives us the
optimal solution. Then we need 2m̄n arithmetic operations for the explicit solution
evaluation. According to the result in Tondel et al. (2003), the depth of the binary
tree, d , is given by

d =
⌈

lnNr

ln 1/α

⌉

≤
⌈

2m̄ ln 2 + ln (n + 1)

ln 1/α

⌉

(22)

where 0.5 ≤ α < 1. The constant α is related to how unbalance the binary tree is.
A conservative estimate of α is 2/3 based on the result in Tondel et al. (2003). So

354 Real-Time Syst (2013) 49:339–366

the worst-case number of arithmetic operations required for online search and eval-
uation is (2n + 1)d + 2m̄n. Let k = max{k1, . . . , km}. Then m̄ = ∑

1≤i≤m ki ≤ km.
Thus, MPRA has time complexity O(n log(n)) + O(mn), where m is the number of
adaptable tasks and n is the number of the processors.

The memory complexity of MPRA differs between the offline phase and the online
phase. In the offline phase the memory cost is exponential to the number of decision
variables, i.e., the set of discrete rates of all tasks. In the online phase, the system
needs to store all non-overlapping regions and the number of non-overlapping regions
is presented in (21). Given its high memory complexity (especially in the offline
phase), MPRA effectively trades memory footprint for run-time speed up. As a result
it is particularly suitable for systems where reconfiguration speed and quality is more
important than memory footprint.

5 Simulation

We have evaluated MPRA through both simulations and experiments on a distributed
testbed. We present the simulation results in this section. The empirical results will
be presented in the next section.

5.1 Simulation setup

In this section, we present simulation results for both admission control and discrete
rate adaptation. Our simulation environment is composed of an event-driven simula-
tor implemented in C++ and the online part of MPRA. The offline pre-processing of
MPRA is done in MATLAB.

In our simulation, the subtasks on each processor are scheduled by the Rate Mono-
tonic scheduling (RMS) algorithm (Liu and Layland 1973). Each task’s end-to-end
deadline is mi/ri , where mi is the number of subtasks of task Ti and ri is the current
rate of the task. The deadline of each task is evenly divided into subdeadlines for its
subtasks. The resulting subdeadline of each subtask Tij equals its period, 1/ri . Hence
we choose the schedulable utilization bound of RMS (Liu and Layland 1973) as the
utilization bound on each processor: bi = ni(21/ni − 1),1 ≤ i ≤ n, where ni is the
number of subtasks on Pi . MPRA can also be used with other scheduling policies
and their suitable utilization bounds.

We develop a workload generator to create end-to-end tasks and the workload for
each set of the experiments. In our simulation, each adaptable task has three rate op-
tions. We assume all adaptable tasks can be evicted, i.e., r

(0)
i = 0, 1 ≤ i ≤ m. r

(1)
i

of task Ti is the reciprocal of task period τi , which follows a uniform distribution
between 100 ms and 1100 ms. Each task has two non-zero rate options in the exper-
iments of discrete rate adaptation, where the ratio r

(2)
i /r

(1)
i is uniformly distributed

between 1.5 and 3. The task utility value q
(0)
i of Ti when the task is evicted is zero

and q
(1)
i at rate r

(1)
i is randomly generated using a uniform distribution between 0.5

and 2. The ratio of the utilities at different rates, q
(2)
i /q

(1)
i is uniformly distributed

between 1.5 and 3. All weights are set to 1 for simplicity in our simulation, i.e.,

Real-Time Syst (2013) 49:339–366 355

wi = 1,1 ≤ i ≤ m. The number of subtasks of each task ranges from 1 to 4 and all
subtasks are randomly allocated on all processors. The worst-case execution time cij

of subtask Tij is obtained by cij = uij τi , where uij , the utilization of Tij , is uniformly
distributed from 0.05 to 0.2.

5.2 Baselines

We compare MPRA against three existing algorithms: bintprog, amrmd1 (Lee et al.
1999b), and amrmd_dp (Ghosh et al. 2003). bintprog is a binary integer linear pro-
gramming solver provided by the commercial Optimization Toolbox of MATLAB 7.
bintprog is a representative optimization solver that can produce optimal solutions,
which is used to validate the optimality of MPRA. amrmd1 and amrmd_dp, where
amrmd stands for Approximate Multi-Resource Multi-Dimensional Algorithm, are
two representative efficient heuristic algorithms for utility optimization in real-time
systems. amrmd_dp can perform better than amrmd1 in terms of utility at the cost
of longer execution time than amrmd1. The authors also present another algorithm
called amrmd_cm to address the co-located point problem of amrmd1 in Ghosh
et al. (2003). It performs exactly the same as amrmd1 here because no co-located
points exist in the discrete rate adaptation problem. Note that amrmd1 and am-
rmd_dp may produce suboptimal solutions and do not have theoretical error bounds
as mentioned in Lee and Siewiorek (1998).

5.3 Performance metrics

In our experiments, online adaptation operations are triggered by arrivals of unadapt-
able tasks. The performance metric used throughout the simulation is utility improve-
ment, δ, which is defined by δ = (QMPRA −Qb)/Qb , where QMPRA and Qb are the
system utilities produced by MPRA and a baseline algorithm, respectively, after they
perform the online adaptation in response to the same new task arrivals.

In order to evaluate the efficiency of MPRA, we also investigate its online execu-
tion time and compare it with three baselines. The execution times are measured on
a 2.52 GHz Pentium 4 PC with 1 GB RAM. To achieve fine grained measurements,
we use the high resolution timer gethrtime provided by ACE (Center for Distributed
Object Computing 2012). This function uses an OS-specific high-resolution timer
that returns the number of clock cycles since the CPU is powered up or reset. The
gethrtime function has a low overhead and is based on a 64 bit clock cycle counter
on Pentium processors. To estimate the average computation overhead of an online
adaptation operation, we run each online execution for 100 times as a subroutine. The
result is then divided by 100 to get the execution time of a single execution.

5.4 End-to-end admission control

We randomly generated 20 workloads in the simulation of end-to-end admission con-
trol. Each workload comprises 8 end-to-end adaptable tasks executing on 4 proces-
sors. In the following, we present a set of experiments to evaluate the performance of
the four algorithms in the presence of arrivals of unadaptable tasks, which are mission
critical periodic tasks that must be executed at the cost of other tasks.

356 Real-Time Syst (2013) 49:339–366

We run a set of experiments by varying the CPU utilization of the new arrival task
from 0.2 to 0.5. Four identical new tasks are activated after 250000 time units on
four processors simultaneously. Consequently, online admission control is triggered
to maximize system utility while enforcing the utilization bounds. We repeated the
same set of experiments 20 times with each run for one workload. We observe that
MPRA and bintprog always produce the same optimal rates and hence achieve the
same system utility in all the experiments. These results are consistent with the opti-
mality of MPRA. We plot the average and maximum utility improvements achieved
by MPRA over amrmd1 and amrmd_dp under different utilization variations caused
by the new tasks in Fig. 5. Each data point and the corresponding confidence interval
in Fig. 5 is calculated from all 20 utility improvement results obtained in 20 runs under
a given workload variation. As shown in Figs. 5(a, b) MPRA consistently achieves
higher system utility than both amrmd1 and amrmd_dp under different degrees of
workload variations. Moreover, as seen in Fig. 5(c) MPRA can improve the system
utility by as high as 26% and 19% over amrmd1 and amrmd_dp, respectively. Our
results demonstrate that, while state-of-the-art heuristics such as amrmd1 and am-
rmd_dp may achieve good (but suboptimal) performance on average, they may result
in significantly lower system utility in certain cases. This observation is consistent
with the fact that the heuristics do not have analytical bounds on the distance from
optimal solutions. In contrast, a fundamental benefit of MPRA is that it can always
achieve optimal system utility in face of workload variations. The analytical guar-
antee on optimal system utilities can be highly desirable to dynamic mission-critical
applications.

Figure 6 plots the average online execution times of all four algorithms. MPRA,
amrmd1, and amrmd_dp are more than two orders of magnitude faster than bint-
prog. For instance, when the new task has a utilization of 30 %, MPRA incurs an
overhead of only 100 microseconds, while bintprog needs about 100 milliseconds to
generate the same optimal rate assignments. The results show that MPRA can provide
optimal admission control for end-to-end tasks with comparable online overhead as
efficient suboptimal heuristics.

5.5 Discrete rate adaptation

In the simulation of discrete rate adaptation each workload includes 6 end-to-end
adaptable tasks executing on 4 processors. The results are based on 20 randomly
generated workloads.

We use a similar set of experiments as that presented in the previous section to in-
vestigate the performance of the four algorithms when applied for discrete rate adap-
tation. Each adaptable task has three rate choices. We intentionally choose a small
set of rate choices for each adaptable task in order to stress-test MPRA’s capability
to support discrete rate options. The fewer rates per task, the more significantly does
the problem deviate from the continuous case. In our simulation, all tasks are running
at the lower rate at the beginning.

In this set of experiments, to generate workload variations, an unadaptable task
arrives at each of the four processors simultaneously at 250000 time unit. When new
tasks arrive, rate adaptation is triggered to enforce the desired utilization bound and

Real-Time Syst (2013) 49:339–366 357

Fig. 5 Admission control:
utility improvement over
heuristics

maximize system utility. Figure 7 plots the utility improvements achieved by MPRA
over amrmd1 and amrmd_dp as the utilization of the new task increases from 0.2
to 0.5 in different runs. Similar to results for admission control, MPRA consistently
achieves same utilities as bintprog and outperforms both amrmd1 and amrmd_dp

358 Real-Time Syst (2013) 49:339–366

Fig. 6 Admission control:
online overhead

in terms of system utility. MPRA achieves as high as 35 % utility improvement over
both amrmd1 and amrmd_dp.

The average execution-times of the four approaches when applied for discrete rate
adaptation are shown in Fig. 8. MPRA’s online overhead is more than two orders of
magnitude lower than that of bintprog while generating the same optimal solutions.
MPRA remains comparable to amrmd1 and amrmd_dp in terms of online overhead.
As shown in Fig. 8, the overhead introduced by MPRA is about 100 microseconds,
which is negligible when compared to both (i) the time scale of deadlines and periods
of end-to-end tasks in many distributed real-time systems and (ii) the overhead of
more than 20 milliseconds incurred by adjusting task rates on middleware systems
(Wang et al. 2007).

6 Empirical evaluation

In this section, we introduce the implementation of MPRA in a real-time middleware
system and present the empirical results.

6.1 Middleware implementation

MPRA has been integrated into the FC-ORB middleware (Wang et al. 2005b). The
middleware architecture with the extension of MPRA is shown in Fig. 9.

We first give a brief overview of FC-ORB middleware. FC-ORB implements an
end-to-end real-time Object Request Broker (ORB) service that supports end-to-end
real-time tasks. Each subtask is executed by a separate thread. The first subtask of a
task is associated with a periodic timer. The timer periodically triggers a local opera-
tion (e.g., a method of an object) which implements the functionality of this subtask.
Following the execution of this operation, a one-way remote operation request is
pushed through a TCP connection to the succeeding subtask that might be located
on another processor. FC-ORB implements the release guard protocol with a FIFO
waiting queue and one-shot ACE timers. Upon receiving a remote operation request,
a subtask compares the current time with the last invocation time of this operation.

Real-Time Syst (2013) 49:339–366 359

Fig. 7 Rate adaptation: utility
improvement over heuristics

Based on the release guard rules (Sun and Liu 1996), the subtask either immediately
invokes the requested operation or enqueues this request to the waiting queue if the
request arrives too early. When the request is enqueued, a one-shot ACE timer is
registered with the reactor to trigger the requested operation at the time that equals
the last invocation time plus the task’s period. After the one-shot timer fires and the

360 Real-Time Syst (2013) 49:339–366

Fig. 8 Rate adaptation: online
overhead

Fig. 9 Middleware architecture

enqueued request is served, a remote operation request is sent to the next subtask in
the end-to-end task chain. FC-ORB employs a priority manager on each processor
to assign priorities to local subtasks based on a real-time scheduling algorithm (e.g.,
RMS). FC-ORB also provides a rate modulator and a utilization monitor on each
processor. The rate modulator receives the new rates for the tasks with their first sub-
tasks located on the local processor, and resets the timer interval of the first subtask
of each task whose invocation rate has been changed. The utilization monitor uses
the /proc/stat file in Linux to estimate the CPU utilization during a specified time
interval.

As shown in Fig. 9, MPRA is implemented as an independent process that can
be deployed on a separate processor or on an application processor. Application pro-
cessors run FC-ORB to execute the given real-time workloads. Every application
processor in the system connects with MPRA through a TCP connection when the
system starts. We extend the rate modulator component provided by FC-ORB to sup-
port admission control. A task is effectively rejected from the system when the timer

Real-Time Syst (2013) 49:339–366 361

associated with its first subtask is stopped. The extended component is called actuator
in Fig. 9.

The MPRA algorithm is triggered by dynamic arrival and departure of unadapt-
able tasks. When such event happens, the system works as follows: (1) the actuator
on the processor hosting the first subtask of each arriving/departing task sends the
execution times and rates of the task to the trigger component of MPRA through the
TCP connections; (2) MPRA computes the new task rates and sends the new rates to
the actuators on all processors hosting adaptable tasks; (3) the actuators on processors
that host the first subtasks of adaptable tasks change the rates of the first subtasks or
cancel the periodic timers of the first subtasks if the corresponding end-to-end tasks
need to be evicted.

6.2 Empirical results

In this section, we present the results of two sets of experiments. To make the ex-
perimental results comparable with the simulations, we employed the same method
to generate the workload as one used for the simulations (see Sect. 5.1). All exper-
iments are conducted on a distributed testbed with five machines. All applications
and the ORB service run on a Linux cluster composed of four Pentium-IV machines:
Ron, Harry, Norbert, and Hermione. Ron and Hermione are 2.80 GHz, and Harry
and Norbert are 2.53 GHz. All four machines are equipped with 512 KB cache and
512 MB RAM, and run KURT Linux 2.4.22. MPRA is located on another Pentium-
IV 2.53 GHz machine with 512 KB cache and 1 G RAM. The MPRA machine runs
Windows XP Professional. The four machines in the cluster are connected via an in-
ternal switch and communicate with the MPRA machine through the departmental
100 Mbps LAN.

Since amrmd1 consistently achieved better performance and at a smaller overhead
than amrmd_dp (Figs. 5–8), we compare MPRA with only amrmd1 in experiments.
We also excluded binprog as a baseline because it always delivered the same utility
as MPRA as discussed in the simulation section.

In the first set of experiments, we compare the performance of MPRA and am-
rmd1 when applied for end-to-end admission control. An unadaptable task with uti-
lization of 0.2 is activated on each processor at 250, 500, 750, and 1000 second, re-
spectively, which triggers online admission control four times. Figure 10 plots CPU
utilizations and the system utility during a run. The CPU utilizations are collected by
the utilization monitors at a sampling period of 10 seconds. The system utility is the
sum of the utilities of all adaptable tasks only. As a result, the system utility drops
when it reduces the rates or evicts those tasks to accommodate the arrival of new un-
adaptable tasks. As seen in Figs. 10(a, b) MPRA and amrmd1 enforce the utilization
bounds on all four processors by evicting tasks in response to the workload increase.
Figure 10(c) shows that MPRA achieves higher system utility than amrmd1. For ex-
ample, after the new task arrives on Norbert at 750 second, the utility achieved by
MPRA remains 8.02 while the utility achieved by amrmd1 drops from 7.63 to 6.88.

In the second set of experiments, MPRA and amrmd1 are applied for discrete rate
adaptation. All tasks are initialized to run at their lowest rates during [0 s, 250 s]. An
unadaptable task arrives at each processor and triggers rate adaptation at 250, 500,

362 Real-Time Syst (2013) 49:339–366

Fig. 10 Admission control:
system performance under
separate task arrivals

750, and 1000 second, respectively. The CPU utilization of each unadaptable task
is 0.2. As shown in Fig. 11, both algorithms enforce the utilization bounds on all
processors in face of new task arrivals. However, MPRA generates optimal rates that
result in higher system utilities than amrmd1 in response to new task arrivals.

Real-Time Syst (2013) 49:339–366 363

Fig. 11 Rate adaptation:
system performance under
separate task arrivals

7 Conclusions

We have developed the MPRA algorithm for optimal and efficient discrete rate adap-
tation in distributed real-time systems. We first transform the discrete rate adapta-
tion problem to an mp-MILP problem. We then present the design and complexity
analysis which prove that MPRA can have polynomial online complexity through

364 Real-Time Syst (2013) 49:339–366

offline preprocessing. Simulation results demonstrate that MPRA maximizes the sys-
tem utility in face of workload variations, with the online execution time more than
two orders of magnitude lower than a representative optimization solver. Moreover, it
consistently outperforms efficient heuristics in terms of system utility at comparable
online overhead. The advantages of MPRA have also been demonstrated through its
implementation on the FC-ORB middleware and experiments on a distributed testbed.

While we focus on admission control and discrete rate adaptation in this paper,
the multiparametric approach may be applicable to a broad range of adaptive systems
with discrete configurations such as task reallocation or dynamic voltage scaling.
MPRA can potentially be integrated with feedback utilization control approaches
specifically designed to handle varying task execution times. The multi-parametric
programming framework can be employed to implement efficient online solutions to
Model Predictive Control (MPC), the control approach adopted by existing feedback
utilization algorithms such as EUCON (Lu et al. 2005).

References

Abdelzaher TF, Atkins EM, Shin KG (2000) QoS negotiation in real-time systems and its application to
automated flight control. IEEE Trans Comput 49(11):1170–1183

Abdelzaher TF, Shin KG, Bhatti N (2002) Performance guarantees for web server end-systems: a control-
theoretical approach. IEEE Trans Parallel Distrib Syst 13(1):80–96

Abdelzaher T, Stankovic J, Lu C, Zhang R, Lu Y (2003) Feedback performance control in software ser-
vices. IEEE Control Syst 23(3):74–90

Acevedo J, Pistikopoulos E (1999) An algorithm for multiparametric mixed-integer linear programming
problems. Oper Res Lett 24(10):139–148

Bemporad A, Borrelli F, Morari M (2002) Model predictive control based on linear programming—the
explicit solution. IEEE Trans Autom Control 47(12):1974–1985

Brandt SA, Nutt GJ (2002) Flexible soft real-time processing in middleware. Real-Time Syst 22(1–2):77–
118

Brandt S, Nutt G, Berk T, Mankovich J (1998) A dynamic quality of service middleware agent for medi-
ating application resource usage. In: IEEE real-time systems symposium, pp 307–316

Buttazzo GC, Lipari G, Caccamo M, Abeni L (2002) Elastic scheduling for flexible workload management.
IEEE Trans Comput 51(3):289–302

Center for Distributed Object Computing (Washington University) (2012) The ADAPTIVE Communica-
tion Environment (ACE). www.cs.wustl.edu/~schmidt/ACE.html

Cervin A, Eker J, Bernhardsson B, Årzen KE (2002) Feedback-feedforward scheduling of control tasks.
Real-Time Syst 23(1–2):25–53

Chen Y, Lu C, Koutsoukos X (2007) Optimal discrete rate adaptation for distributed real-time systems. In:
IEEE real-time systems symposium, pp 181–192

Chen J, Tan R, Xing G, Wang X, Fu X (2010) Fidelity-aware utilization control for cyber-physical surveil-
lance systems. In: IEEE real-time systems symposium, pp 117–126

Fu Y, Kottenstette N, Chen Y, Lu C, Koutsoukos XD, Wangh H (2010a) Feedback Thermal control for
real-time systems. In: RTAS, pp 111–120

Fu Y, Lu C, Wang H (2010b) Control-theoretic thermal balancing for clusters. In: IPDPS, pp 1–11
Gal T, Nedoma J (1972) Multiparametric linear programming. Manag Sci 18:406–442
Ghosh S, Rajkumar RR, Hansen J, Lehoczky J (2003) Scalable resource allocation for multi-processor

QoS optimization. In: International conference on distributed computing systems, pp 174–183
Ibarra OH, Kim CE (1975) Fast approximation algorithms for the knapsack and sum of subset problems.

J ACM 22(4):463–468
Kao B, Garcia-Molina H (1997) Deadline assignment in a distributed soft real-time system. IEEE Trans

Parallel Distrib Syst 8(12):1268–1274
Koutsoukos X, Tekumalla R, Natarajan B, Lu C (2005) Hybrid supervisory utilization control of real-time

systems. In: IEEE real-time and embedded technology and applications symposium, pp 12–21

http://www.cs.wustl.edu/~schmidt/ACE.html

Real-Time Syst (2013) 49:339–366 365

Kvasnica M, Grieder P, Baotić M (2004) Multi-Parametric Toolbox (MPT)
Lee C, Siewiorek D (1998) An Approach for Quality of Service Management. Technical Report CMU-

CS-98-165, Computer Science Department, CMU
Lee C, Lehoczky J, Rajkumar R, Siewiorek DP (1999a) On quality of service optimization with discrete

QoS options. In: IEEE real time technology and applications symposium, pp 276–286
Lee C, Lehoczky JP, Siewiorek DP, Rajkumar R, Hansen JP (1999b) A scalable solution to the multi-

resource QoS problem. In: IEEE real-time systems symposium, pp 315–326
Lee CG, Shih CS, Sha L (2004) Online QoS optimization using service classes in surveillance radar sys-

tems. Real-Time Syst 28(1):5–37
Lehoczky JP (1990) Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: IEEE

real-time systems symposium, pp 201–213
Lindberg M, Årzén KE (2010) Feedback control of cyber-physical systems with multi resource dependen-

cies and model uncertainties. In: RTSS, pp 85–94
Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.

J ACM 20(1):46–61
Lu C, Stankovic J, Tao G, Son S (2002) Feedback control real-time scheduling: framework, modeling, and

algorithms. Real-Time Syst 23(1/2):85–126
Lu C, Wang X, Gill C (2003) Feedback Control Real-Time Scheduling in ORB Middleware. In: IEEE

Real-Time and Embedded Technology and Applications Symposium, pp 37–48
Lu C, Wang X, Koutsoukos X (2005) Feedback utilization control in distributed real-time systems with

end-to-end tasks. IEEE Trans Parallel Distrib Syst 16(6):550–561
Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, New

York
Murty KG (1980) Computational complexity of parametric linear programming. Math Program 19(1):213–

219
Natale MD, Stankovic J (1994) Dynamic end-to-end guarantees in distributed real-time systems. In: IEEE

real-time systems symposium, pp 216–227
Rajkumar R, Lee C, Lehoczky J, Siewiorek D (1997) A resource allocation model for QoS management.

In: IEEE real-time systems symposium, pp 298–307
Rajkumar R, Lee C, Lehoczky JP, Siewiorek DP (1998) Practical solutions for QoS-based resource allo-

cation. In: IEEE real-time systems symposium, pp 296–306
Sahni S (1975) Approximate algorithms for the 0/1 knapsack problem. J ACM 22(1):115–124
Steere DC, Goel A, Gruenberg J, McNamee D, Pu C, Walpole J (1999) A feedback-driven proportion

allocator for real-rate scheduling. In: Operating systems design and implementation, pp 145–158
Sun J, Liu JWS (1996) Synchronization protocols in distributed real-time systems. In: International con-

ference on distributed computing systems, pp 38–45
Tokuda H, Kitayama T (1994) Dynamic QoS control based on real-time threads. In: NOSSDAV, vol 93.

Springer, London, pp 114–123
Tondel P, Johansen TA, Bemporad A (2003) Evaluation of piecewise affine control via binary search tree.

Automatica 39(5):945–950
Wang X, Jia D, Lu C, Koutsoukos X (2005a) Decentralized utilization control in distributed real-time

systems. In: IEEE real-time systems symposium, pp 133–142
Wang X, Lu C, Koutsoukos X (2005b) Enhancing the robustness of distributed real-time middleware via

end-to-end utilization control. In: IEEE real-time systems symposium, pp 189–199
Wang X, Chen Y, Lu C, Koutsoukos X (2007) FC-ORB: a robust distributed real-time embedded middle-

ware with end-to-end utilization control. J Syst Softw 80(7):938–950
Wang X, Fu X, Liu X, Gu Z (2009) Power-aware CPU utilization control for distributed real-time systems.

In: IEEE real-time and embedded technology and applications symposium, pp 233–242

Yingming Chen received the B.S. degree in computer science from Tsinghua University in 2001 and
the MS degree in computer science from Washington University in St. Louis in 2007. He is currently a
software engineer at Microsoft.

Chenyang Lu is a Professor of Computer Science and Engineering at Washington University in St.
Louis. He is Editor-in-Chief of ACM Transactions on Sensor Networks and Associate Editor of Real-
Time Systems. He also served as Program Chair of IEEE Real-Time Systems Symposium (RTSS 2012)
and ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2012). He is the author and
co-author of over 100 papers. He received the Ph.D. from University of Virginia in 2001, the M.S. degree

366 Real-Time Syst (2013) 49:339–366

from Chinese Academy of Sciences in 1997, and the B.S. degree from University of Science and Technol-
ogy of China in 1995, all in computer science. His research interests include real-time systems, wireless
sensor networks and cyber-physical systems.

Xenofon D. Koutsoukos is an Associate Professor in the Department of Electrical Engineering and Com-
puter Science at Vanderbilt University. He received the diploma in electrical and computer engineering
from the National Technical University of Athens in 1993, the M.S. degrees in electrical engineering and
applied mathematics, and the Ph.D. degree in electrical engineering from the University of Notre Dame in
1998 and 2000, respectively. He has published numerous journal and conference papers and is co-inventor
of four US patents. His research work is in the area of cyber-physical systems with emphasis on formal
methods, distributed algorithms, diagnosis and fault tolerance, and adaptive resource management.

	Optimal and efficient adaptation in distributed real-time systems with discrete rates
	Abstract
	Introduction
	Related work
	Problem formulation
	End-to-end task model
	Discrete rate adaption problem

	Design and analysis of MPRA
	Multiparametric programming
	Problem transformation
	End-to-end admission control
	Example

	Discrete rate adaption
	Example

	Design of MPRA
	Offline components
	mp-MILP Solver
	Example
	Search tree generator
	Example

	Online components
	Example

	Complexity analysis

	Simulation
	Simulation setup
	Baselines
	Performance metrics
	End-to-end admission control
	Discrete rate adaptation

	Empirical evaluation
	Middleware implementation
	Empirical results

	Conclusions
	References

