
1

Resilient Vector Consensus in Multi-Agent Networks Using Centerpoints
Mudassir Shabbir, Jiani Li, Waseem Abbas, and Xenofon Koutsoukos

Abstract— In this paper, we study the resilient vector con-
sensus problem in multi-agent networks and improve resilience
guarantees of existing algorithms. In resilient vector consensus,
agents update their states, which are vectors in Rd, by locally in-
teracting with other agents some of which might be adversarial.
The main objective is to ensure that normal (non-adversarial)
agents converge at a common state that lies in the convex
hull of their initial states. Currently, resilient vector consensus
algorithms, such as approximate distributed robust convergence
(ADRC) are based on the idea that to update states in each time
step, every normal node needs to compute a point that lies in
the convex hull of its normal neighbors’ states. To compute
such a point, the idea of Tverberg partition is typically used,
which is computationally hard. Approximation algorithms for
Tverberg partition negatively impact the resilience guarantees
of consensus algorithm. To deal with this issue, we propose to
use the idea of centerpoint, which is an extension of median
in higher dimensions, instead of Tverberg partition. We show
that the resilience of such algorithms to adversarial nodes is
improved if we use the notion of centerpoint. Furthermore,
using centerpoint provides a better characterization of the
necessary and sufficient conditions guaranteeing resilient vector
consensus. We analyze these conditions in two, three, and higher
dimensions separately. Finally, we numerically evaluate the
performance of our approach through various experiments.

Index Terms— Resilient consensus, computational geometry,
centerpoint, fault tolerant networks.

I. INTRODUCTION

Resilient consensus in a network of agents, some of
which might be adversarial or faulty, has several applications
in multirobot networks, distributed computing, estimation,
learning and optimization (for instance, see [1], [2], [3], [4],
[5], [6]). The main goal of resilient consensus is to ensure
that all normal agents in a network agree on a common
state despite the presence of some adversarial agents, which
aim to prevent normal nodes from consensus and whose
identities are unknown to normal agents. Resilient consensus
is achieved if appropriate state update laws are designed
for normal agents and the underlying network topology
satisfies certain connectivity and robustness conditions. For
instance, when agents’ states are scalars, [7] presents a
resilient distributed algorithm that guarantees convergence
of normal nodes to a common state x̄ ∈ [xmin(0) xmax(0)]
where xmin(0) and xmax(0) are the minimum and maximum
of the initial values of normal nodes respectively.

If agents’ states are vectors or points in Rd, d ≥ 2, then the
resilient consensus objective is to ensure that normal agents

M. Shabbir is with the Computer Science Department at the Information
Technology University, Lahore, Pakistan (Email:mudassir@rutgers.edu).

J. Li, W. Abbas, and X. Koutsoukos are with the Electrical
Engineering and Computer Science Department at Vanderbilt Uni-
versity, Nashville, TN, USA (Emails: {jiani.li, waseem.abbas, xeno-
fon.koutsoukos}@vanderbilt.edu).

converge at some point in the convex hull of their initial
states. A simple approach could be to run d instances of
scalar resilient consensus, one for each dimension. However,
as a result of this approach, normal agents might converge
at a point outside of the convex hull of their initial states,
as discussed in [8]. We also illustrate such a situation in
Figure 1. Thus, we cannot rely on resilient scalar consensus
algorithms to achieve resilient vector consensus. Various
solutions have been proposed to achieve resilient vector
consensus, which has been an active research topic, for
instance see [2], [8], [9], [10], [11].

minx (0)
maxx (0)

min
y (0)

max
y (0)

consensus
point

(x̄, ȳ)

adversary node

Fig. 1. Normal nodes (blue) run resilient scalar consensus for x and y
variables separately, and converge at (x̄, ȳ). Here, x̄ ∈ [xmin(0) xmin(0)]
and ȳ ∈ [ymin(0) ymin(0)], as guaranteed by resilient scalar consensus.
However, (x̄, ȳ) is not in the convex hull of normal nodes.

In this paper, we study the resilient vector consensus
problem and a recently proposed solution referred to as
the Approximate Distributed Robust Convergence (ADRC)
algorithm in [2]. We show that the resilience of the algo-
rithm, in terms of the number of adversarial agents whose
presence does not prevent normal agents from converging to
a common state in the desired convex hull, is improved with
some simple modification. In particular, if normal agents
implement ADRC as in [2], then consensus is guaranteed
if the number of adversarial agents in the neighborhood of a
normal agent i is nfi ≤

⌈
|Ni|
2d

⌉
−1, where |Ni| is the number

of nodes in the neighborhood of i, and d is the dimension
of state vector. We show that in the case of d = 2, 3,
consensus is guaranteed if nfi ≤

⌈
|Ni|
d+1

⌉
− 1, and for d > 3

if nfi ≤
⌈
|Ni|
d

r
r−1

⌉
− 1 where r can be any integer.

ADRC is an iterative algorithm, and in each iteration, a
normal node needs to compute some point in the convex
hull of points corresponding to its normal neighbors’ states.
To compute such a point, which is referred to as the safe
point, authors in [2] utilize the idea of Tverberg partition
of points in Rd (discussed in Section III). We argue that
instead of computing Tverberg partition, it is better to use
the notion of centerpoint in Rd to compute safe points.
A centerpoint has been known to the discrete geometry
community for a long time, and it’s properties and gen-
eralizations are still an active topic of research [12], [13].

ar
X

iv
:2

00
3.

05
49

7v
1

 [
ee

ss
.S

Y
]

 1
1

M
ar

 2
02

0

2

A centerpoint essentially extends the notion of median in
higher dimensions. We show that safe points, as used in
ADRC algorithm, are essentially the interior centerpoints.
This perspective provides a complete characterization of safe
points, and hence allows us to improve the resilience bound
of the algorithm. Moreover, it is shown in [2] that if there are
at most nfi adversaries in the neighborhood of normal node
i, then |Ni| ≥ (nfi + 1)(d+ 1) is sufficient (theoretically) to
compute a safe point, and hence, achieve resilient consensus.
However, using the centerpoint characterization, we show
that |Ni| ≥ (nfi + 1)(d + 1) is in fact, also necessary
to compute a safe point. We summarize our contributions
below:
• We show that the resilience of ADRC algorithm can be

improved by using the notion of centerpoint instead of
Tverberg partition. We discuss these improvements in
two, three and higher dimensions separately.

• Using centerpoints, we show that |Ni| ≥ (nfi+1)(d+1)
is not only sufficient but also a necessary condition for
computing a safe point, which is a key step in the ADRC
algorithm. Here nfi is the number of adversaries in the
neighborhood of a normal node i. We also provide an
overview of various algorithms reported in the literature
to compute centerpoints in different dimensions.

• We compare and numerically evaluate our results with
the existing algorithm by simulating resilient vector
consensus in multirobot networks.

The rest of the paper is organized as follows: Section II
introduces notations and preliminaries. Section III provides
an overview of the ADRC algorithm. Section IV discusses
the notion of centerpoint for ADRC and presents main results
in the paper. Section V gives a numerical evaluation of our
results, and Section VI concludes the paper.

II. NOTATIONS AND PRELIMINARIES

We consider a network of agents modeled by a directed
graph G = (V, E) with self-loops allowed, where V repre-
sents agents and E represents interactions between agents.
Each agent i ∈ V has a d-dimensional state vector whose
value is updated over time. The state of each agent i at time
t is represented by a point xi(t) ∈ Rd. An edge (j, i) means
that i can observe the state value of j. The neighborhood
of i is the set of nodes Ni = {j ∈ V|(j, i) ∈ E}. For
a given set of points X ⊂ Rd, we denote its convex hull
by conv(X). A set of points in Rd is said to be in general
positions if no hyperplane of dimension d−1 or less contains
more than d points. A point x ∈ Rd is an interior point of
a set X ⊂ Rd if there exists an open ball centered at x
which is completely contained in X . We use terms agents
and nodes interchangeably, and similarly use terms points
and states interchangeably.

Normal and Adversarial Agents: There are two types of
agents in the network, normal and adversarial. Normal agents
are the ones that interact with their neighbors synchronously
and always update their states according to a pre-defined
state update rule, that is the consensus algorithm. Adversarial
agents are the ones that can change their states arbitrarily and

do not follow the pre-defined state update rule. Moreover, an
adversarial node can transmit different values to its different
neighbors, which is referred to as the Byzantine model. The
number of adversarial nodes in the neighborhood of a normal
node i is denoted by nfi . For a normal node i, all nodes in its
neighborhood are indistinguishable, that is, i cannot identify
which of its neighbors are adversarial.

Resilient Vector Consensus: The goal of the resilient
vector consensus is to ensure the following two conditions:
• Safety – Let X(0) = {x1(0), x2(0), · · · , xn(0)} ⊂ Rd

be the set of initial states of normal nodes, then at each
time step t, and for any normal node i, the state value
of i, denoted by xi(t) should be in the conv(X(0)).

• Agreement – For every ε > 0, there exists some tε, such
that for any normal node pair i, j, ||xi(t)− xj(t)|| < ε,
∀t > tε.

III. BACKGROUND AND APPROXIMATE DISTRIBUTED
ROBUST CONVERGENCE (ADRC) ALGORITHM

In this section, first we provide an overview of a re-
silient vector consensus algorithm known as the approximate
distributed robust convergence, recently proposed in [2].
Then, we discuss improvement in resilience guarantees of
the algorithm by reconsidering its computational aspects.

The ADRC is an iterative algorithm, in which a normal
node i gathers the state values of its neighbors in each
iteration t, and then computes a point that lies in the interior
of the convex hull of its normal neighbors’ states. After
computing this point, which is referred to as the safe point
si(t), node i updates its state as follows:

xi(t+ 1) = αi(t)si(t) + (1− αi(t))xi(t), (1)

where, αi(t) is a dynamically chosen parameter in the
range (0 1].1 It is shown in [2] that if all normal nodes
follow this procedure, they converge at a common point and
achieve resilient consensus (satisfying safety and agreement
conditions stated in the previous section).

Computation of safe point in each iteration is the key step
in the algorithm. For this, [2] utilizes results from discrete
geometry, in particular the idea of Tverberg partitions [14]
and related results. We first state the main result regarding the
partitioning of points in Rd, and then discuss the application
of this result, as adapted in [2], for computing safe points.

Proposition 3.1: ([15], [16], [17]) If we have a set X of
n points in general positions in Rd, where n ≥ r(d + 1)
and d ≤ 8, then it is possible to partition X into r pairwise
disjoint subsets X1, X2, · · · , Xr such that the intersection of
convex hulls of these r subsets is non-empty and is at least
d-dimensional.

Such a partition is a Tverberg partition. Now, consider
a normal node i in our network having n neighbors in its
neighborhood out of which at most nf are adversarial.2 Each

1The choice of αi(t) depends on applications, for instance, in multirobot
systems, it is selected such that the physical constraints including maximum
allowable displacement by a robot is not violated.

2For the ease of notation, we drop the subscript i from ni and nfi
denoting the total number of neighbors and the number of adversarial
neighbors of node i respectively from here onward. Note that, in general
these values can be different for different nodes.

3

node corresponds to a point in Rd. The goal for a node i is to
compute an interior point in the convex hull of n−nf normal
points. If n ≥ (nf + 1)(d+ 1), then by Proposition 3.1, we
will have a partition of n points into nf +1 subsets such that
the intersection of convex hulls of these subsets is non-empty
and is d-dimensional. We call this intersection region as
Tverberg region. Since there are at most nf adversarial nodes
and we have nf + 1 subsets in the partition, one of these
subsets consists of points corresponding to normal nodes
only. Let us denote this subset by X∗. Note that the Tverberg
region lies in the convex hull of X∗, and conv(X∗) itself lies
in the convex hull of all normal nodes points. Consequently,
every interior point in the Tverberg region is a safe point.
Thus, to compute a safe point, a normal node i computes a
Tverberg partition, which is possible if n ≥ (nf +1)(d+1).
In other words, a normal node can compute a safe point in
the presence of nf adversarial neighbors if nf ≤ n

d+1 − 1.
Figure 2 gives an illustration of these ideas.

v1
v2

v3

v4v5

v6

(a) (b) (c)

Fig. 2. (a) Five normal (blue) and a single adversarial node. Shaded area
is the convex hull of normal nodes. (b) Tverberg partition consisting of two
subsets, out of which one contains only normal nodes. Convex hulls of both
subsets have a non-empty intersection, corresponding to a Tverberg region.
(c) Intersection of Tverberg region and the convex hull of normal nodes.

However, computing a Tverberg partition in general is an
NP-hard problem. The best known algorithm that computes
it in a reasonable run time is an approximate algorithm [18],
which has a time complexity of dO(1)n. The algorithm is
approximate in a sense that to have a partition of n points
into r subsets, n ≥ 2dr (as compared to n ≥ r(d + 1) in
Proposition 3.1). Consequently, to compute a safe point in the
presence of nf adversarial neighbors, a normal node needs
to have at least n ≥ (nf + 1)2d nodes in its neighborhood.
In other words, with a total of n neighbors, a node i can
compute a safe point, and hence achieve resilient consensus
(using ADRC) if there are nf adversarial nodes in its
neighborhood, where

nf ≤
⌈ n

2d

⌉
− 1. (2)

Note that (2) indicates resilience of the ADRC algorithm
that relies on approximate Tverberg partitions to compute
safe points. For instance, the algorithm guarantees resilient
consensus in R2 if for every normal node, less than 25% of
its neighbors are adversarial.

A. How Can We Improve the Resilience of ADRC?

Here, we ask if it is possible to improve the resilience
of the ADRC algorithm? What modifications will allow us
to guarantee consensus even if the number of adversarial
nodes in the neighborhood of a normal node is greater than

d n
2d
e − 1? Next, we show that it is possible to achieve a

better resilience bound if we use a slightly different way of
computing safe points, that is by using the notion of cen-
terpoint instead of Tverberg partition. Moreover, centerpoint
provides a better characterization of necessary and sufficient
conditions for computing safe points.

IV. ADRC USING CENTERPOINTS

In this section, we explain the notion of a centerpoint and
its relation to safe point. Then, we discuss that computing a
safe point through centerpoint is more desirable as it results
in improving the resilience of the ADRC algorithm.

A. Safe point and the Interior Centerpoint

The notion of safe point is pivotal in the ADRC algorithm,
so we define nf -safe point as in [2] below.

Definition 4.1: (nf -Safe point) Given a set of n points in
d dimensions, of which at most nf correspond to adversarial
nodes, an nf -safe point is a point that lies in the relative
interior of the convex hull of (n − nf) normal points. We
refer to a (n

d+1−1)-safe point in Rd as an optimal safe point
or just safe point.

As we discussed in the last section, a point that lies in the
interior of the Tverberg region of (nf + 1) subsets is always
an nf -safe point Here, we provide a better characterization
of nf -safe point using centerpoint, which is defined below.

Definition 4.2: (Centerpoint) Given a set S of n points
in Rd in general positions, a centerpoint p is a point, not
necessarily from S, such that any closed half-space3 of Rd
that contains p also contains at least n

d+1 points from S.
Intuitively, a centerpoint lies in the “center region” of the
point cloud, in the sense that there are enough points of
S on each side of a centerpoint. A centerpoint, essentially,
extends the notion median to higher dimensions. A related
notion of centerpoint depth is defined as follows:

Definition 4.3: For a given pointset, centerpoint depth or
simply depth of a point q is the maximum number α such
that every closed halfspace containing q contains at least α
points.
Thus, a centerpoint has depth at least n

d+1 . The existence of
such a point for any given set S is guaranteed by the famous
Centerpoint Theorem (see [19], [20]).

Theorem 4.4: (Centerpoint Theorem) For any given point
set in general positions in an arbitrary dimension, a center-
point always exists.
A centerpoint doesn’t need to be unique, in fact, there can
be infinitely many centerpoints. The set of all centerpoints
constitutes the centerpoint region or simply the center region.
It is known that center region is closed and convex. We
observe that the safe point from [2] is actually an interior
centerpoint.

Theorem 4.5: For a given set of points S in Rd, an
nf -safe point is equivalent to an interior centerpoint for
nf = n

d+1 − 1.

3Recall that closed half-space in Rd is a set of the form {x ∈ Rd :
aT x ≥ b} for some a ∈ Rd \ {0}.

4

Proof: For the proof of this statement, we use the
following observation:

Fact 4.6: [20] Every centerpoint of S lies in the intersec-
tion of all convex sets that contain more than nd

d+1 points
from S.
To see why the fact is true, imagine a convex set C that does
not contain a centerpoint p. Since C is convex and p is an
outside point, there exists a hyperplane H that separates C
from p. The hyperplane H defines two halfspaces of Rd:
one halfspace contains p and the other contains C. The
halfspace that contains C contains more than nd

d+1 points
of S. Therefore, the halfspace that contains p must contain
less than n

d+1 of the points from S which is a contradiction
because p is a centerpoint. It implies that every convex set
that contains more than nd

d+1 must contain every centerpoint.
Thus all centerpoints lie in the intersection of such convex
sets.

Now an
(

n
d+1 − 1

)
-safe point lies in the interior of convex

hull of normal nodes when there are at most n
d+1 − 1

adversarial nodes. As there are more than nd
d+1 normal nodes,

an interior centerpoint lies in the relative interior of convex
hull of normal nodes by Fact 4.6. Therefore, every interior
centerpoint is a safe point.

On the other hand, when there are n
d+1 − 1 adversarial

nodes whose identity is unknown, a safe point must lie in
the interior of an arbitrary convex set X that contains more
than nd

d+1 nodes. Because otherwise an adversary can choose
all points in X to be normal and all remaining nodes to be
adversarial to leave a chosen point unsafe. It follows that
every safe point must lie in the interior of intersection of
convex sets that contain more than nd

d+1 nodes. Thus every
safe point must be an interior centerpoint.

Theorem 4.5 provides a complete characterization of a
safe point in the presence of nf adversarial nodes. Here,
we would also like to note that nf = 1

d+1 − 1 is the best
possible fraction, that is, there exist general node positions
where allowing more adversary nodes would mean that there
is no safe point at all.

Proposition 4.7: For a set of n nodes in general positions,
if nf ≥ n

d+1 , then there exist general examples in which an
nf -safe point does not exist.

Proof: Imagine d+1 copies of n
d+1 points at the vertices

of a non-degenerate d-simplex. If there are n
d+1 adversarial

nodes whose identities are unknown, then there is no point
that lies in the convex hull of remaining points. Note that
points in this examples can be arbitrarily perturbed to ensure
that general positions condition is not violated.

Figure 3 demonstrates Proposition 4.7 for the planar case.
Further, we note that every point in the intersection of an
appropriate Tverberg partition is a centerpoint and thus, also
a safe point. However, the converse is not true; a centerpoint
or a safe point need not be a Tverberg point in general.

In [2], normal nodes compute safe points using ap-
proximate Tverberg partitions [18], which deteriorate the
resilience of ADRC algorithm from nf ≤ n

d+1 − 1 to
nf ≤ n

2d
− 1. However, with this new characterization, we

can use centerpoints to compute safe points. Thus, if we
are able to compute centerpoint exactly (in a reasonable run

X

Y Z

Fig. 3. S is partitioned into X,Y, Z each of which contains n/3 points. If
there are n/3 adversarial nodes then points in either of these three sets can
all be adversarial. We require that an nf -safe point must lie in the convex
hull of normal nodes for all three possibilities. This is not possible because
intersection of three possible sets of normal nodes X ∪ Y , Y ∪Z, Z ∪X
is empty. Therefore, there is no nf -safe point in this case.

time), then we are able to improve the resilience of ADRC
algorithm, that is,

nf ≤
n

d+ 1
− 1 (3)

as compared to (2).
Next, we discuss the existence and computation of interior

centerpoints in two, three and higher dimensions separately.

B. Centerpoint-based Resilient Consensus in 2-D

In [2], authors show that an nf -safe point can be found
in R2 when the number of adversarial nodes nf is at most
min

(
dn4 e, b

n
3 c
)
− 1 where n is total number of nodes in

the neighborhood of a normal node. As is evident, this is a
loose bound on the resilience of such a consensus algorithm.
Unfortunately, that is the best that can be hoped for if
one is to seek a safe-point using an approximate Tverberg
partition. Tverberg partitions are, in general, thought to be
computationally expensive. However, we have showed in
Theorem 4.5 that safe points and the interior centerpoints
always coincide, and in the following subsection, we summa-
rize a well-known linear time algorithm to find a centerpoint
in the plane. It should be pointed out that complexity of
finding a centerpoint in general dimension is unknown,
although computing centerpoint depth of a given point is
coNP-Complete. In this section, we propose the following
result to compute a safe point in the plane:

Theorem 4.8: Given a set of n points in two dimensions
in general positions, an nf -safe point exists whenever the
number of adversarial nodes is nf ≤ n

3 − 1. Moreover, such
a safe point can be computed in linear time.

Proof: We have already demonstrated the equivalence
between an nf -safe-point and an interior centerpoint where
nf = n

d+1 − 1. We now need to show that an interior
centerpoint always exists and can be computed efficiently.
The proof is based on an argument similar to the one
proposed in [21]. Let S be an arbitrary set of n points in
general positions in the plane. For the following, we will
assume that n = 3 × j + k for some non-negative integers
j, k and k = 0 or k = 2. We ignore the third possibility when
k = 1 because we can remove one point from the S in that
case and the centerpoint of the remaining pointset is also the
centerpoint of S. Given a pointset S, let F be the family of all

5

convex sets that containing more than 2n
3 points of S. Note

that all members of F must pairwise intersect since all of
them contain more than half of S. By fixing a direction, one
can define the lowest point of such an intersection between
a pair in F as a point lying in both sets with the smallest y
coordinate. As one can always rotate the pointset without any
consequence to the intersection of such sets, it is assumed
that such a lowest intersection point is unique for a given
pair.

Let A and B be two sets in F such that their lowest inter-
section point, say p, is highest among all such pairs, breaking
ties arbitrarily, and let `p,H(p) be the horizontal line passing
through p, and halfplane below `p respectively. Clearly, the
intersection of A,B must contain at least bn/3c + 2 points
from S. Let C be an arbitrary convex set in F other than A
and B. We observe the following:

• The set C must contain at least two points from A∩B
as C ∩ S ≥ 2n

3 + 1.
• The intersection C ∩A ∩H(p) must be nonempty i.e.,

the set C must meet A below p. This is true because
otherwise it contradicts the fact that A∩B has a highest
lowest-point among all pairs.

• Similarly, C must meet B below p.

Let α be a point in A∩B∩C, β be a point in C∩A∩H(p),
and let γ be a point in C∩B∩H(p). The triangle on vertices
α, β, γ contains the point p, and by convexity any arbitrary
C also contains p.

Since the set C contains at least one point in A ∩ B
other than p, we may assume that α 6= p. Consider the line
segments with one endpoint in A∩B∩S and other endpoint
in A ∩ H(p) ∩ S. All of these line segments intersect the
boundary of A ∩B. Let X be the set of points where these
line segments meet the boundary of A∩B, and let p′ ∈ X be
a point closest to p. We know that the set C ∈ F contains the
line segment on α and β by convexity. Also it contains the
point p and thus contains the triangle on these three points.
The triangle on α, β, and p contains p′ by convexity and
by the fact that the line segment α, β intersect boundary
of A ∩ B on or above p′ as illustrated in Figure 4(a). It
follows that p′ ∈ C. Similarly, a point p′′ closest to p on the
boundary of A∩B and on a line segment between a point in
A∩B∩S and a point in B∩S∩H(p) also exists. The points
p, p′, p′′ are distinct and thus a triangle on these three points
has an interior as illustrated in Figure 4(b). As all three of
them are centerpoint points, their interior is also interior of
the centerpoint region. The claim follows. The algorithm in
[22] provides a way to compute a centerpoint in O(n). To
compute an interior centerpoint, we run this algorithm three
times on slightly perturbed set of nodes to get three different
centerpoints. An interior centerpoint lies on the centroid of
these three points, and hence, the theorem follows.

Remark 4.9: The set of Tverberg points is a subset of
the centerpoint region. Thus, the existence of an interior
centerpoint in the plane, as shown above, is also implied
by the existence of an interior Tverberg point in dimensions
two to eight. We hope that the alternative proof above may
help extend this result to dimensions greater than 8 for which

B A

p

p′

β

α

`p

AB

p

p′p′′
`p

(a) (b)

Fig. 4. (a) The point p′ lies in all large convex sets. (b) The points p, p′, p′′
make a triangle that has an interior and is contained in all large convex sets.

the existence of an interior centerpoint and interior Tverberg
point are unknown.

C. Computing Centerpoint in 2-D

Here we address the computational aspects of the center-
point in two dimensions. Due to a seminal result in [22], it is
possible to find a centerpoint for a non-degenerate pointset
in the optimal O(n) time. We remark that this result is
also significant because it makes finding a centerpoint in
linear time possible even when checking whether a point is
a centerpoint can not be done in better than Ω(n log n) time.
Here, we briefly outline this method to compute a centerpoint
of a set of points; the details can be found in [22].

The algorithm is based on the idea that by pruning or
replacing some of the “marginal points”, a centerpoint of the
remaining points is still a centerpoint of the original pointset.
In each iteration one can compute the points that are to be
discarded or replaced, which will reduce the size of the set by
a fraction. We continue the pruning procedure until the size
of the set becomes smaller than a fixed constant, one can then
compute a centerpoint by any straightforward brute-force
method. Pruning of points is a pivotal step in the algorithm.
Given a set of n points P , we start by defining four half-
planes, named L, U , R, and D (representing Left, Up, Right,
and Down, respectively), such that each of them contains less
than dn3 e−1 points (this ensures that they don’t contain any
centerpoint) and their closures contain at least dn3 e points.
And the closure of each of the sets L∩U , L∩D, R∩U , and
R∩D contains at least

(
dn3 e − d

n
4 e
)

points. It is, then, argued
that either one can discard the points of a triangle on three
points from three of the four intersections or substitute four
points from the four intersection sets by their Radon point4.
This reduces the size of P by a significant fraction and a
centerpoint of the remaining point set is also a centerpoint
of the original point set. The pruning process, as illustrated in
Figure 5, is repeated until the number of points is less than a
small constant, and then one can compute the centerpoint by
a brute-force method. The construction of halfplanes with the
prescribed number of points in their intersection is achieved
by the famous ham-sandwich cut algorithm [23].

4Any set of 4 points in R2 can be partitioned into two disjoint sets whose
convex hulls intersect. A point in the intersection of these convex hulls is
called a Radon point of the set.

6

(a) (b) (c)

Fig. 5. One iteration illustration of replacing points in L ∩ U , L ∩ D,
R ∩ U , and R ∩D by their Radon points: (a) point set of 100 points, (b)
intersections of the four half-planes, and (c) replacement of points in the
intersections by their Radon point.

D. Centerpoint-based Resilient Consensus in 3-D

The resilience bound that we get from the results in [2]
guarantee an nf -safe point in three dimensions whenever
nf ≤ n

8 -1 adversarial nodes. From the centerpoint theorem,
we know that a safe point exists in the interior of centerpoint
region in 3-D even in the presence of (n/4)− 1 adversarial
nodes. In context of Theorem 4.5, this property can be
leveraged to present a better resilience guarantee.

Theorem 4.10: An
(
n
4 − 1

)
-safe point exists for every

pointset in general positions in R3. Such a point can be
computed in O(n2) expected time.

Proof: We know that an
(
n
4 − 1

)
-safe point is an

interior centerpoint from Theorem 4.5, and [16] implies that
an interior centerpoint must exist in three dimensions. A
randomized algorithm by Chan can be used to compute a
centerpoint in three dimensions in O(n2) expected time [24].
We proceed by running Chan’s algorithm four times, and
compute the centroid of the four centerpoints returned to get
an interior centerpoint.
Next, we provide a brief overview of Chan’s algorithm
in which he computes a centerpoint of a non-degenerate
pointset in O(nd−1) time [24]. He first solves the decision
version of the problem: does there exist a point of depth k for
a given k? If the answer is yes, then a point of given depth
is reported as well. This decision version is solved using a
randomized Linear Program solver by dualizing the pointset:
given points S are dualized to a set S∗ of hyperplane and
a point of given depth dualizes to special hyperplane that
has at least k hyperplanes from S∗ above or below it. The
problem of finding this hyperplane is solved by partitioning
the space and solving sub-problems in each smaller region.
The partitioning is done by the famous Cutting Lemma [25].
For further details, we refer to the paper [24].

E. Centerpoint-based Resilient Consensus in d-dimensions
for d > 3

In higher dimensions, current methods to compute either
a desirable Tverberg partition or a centerpoint for a given
pointset become computationally impractical. It is known
deciding whether a point lies in the intersection of a Tverberg
partition is NP-Complete and deciding whether a point is
centerpoint is coNP-Complete. Various approximations are
employed to compute these points in practice. In [2], authors
use a “lifting-based” approximation that finds an nf -safe

point in presence of nf ≤ n
2d
− 1 adversarial nodes. In the

following, we outline an algorithm by Miller and Sheehy to
compute an approximate centerpoint [26]. The point returned
by this algorithm has a centerpoint depth of n

dr/r−1 for any
integer r ≥ 2. For r = 3, this gives an nf -safe point when the
number of adversarial nodes is at most n

d3/2
. By increasing

r, the quality of approximation, and hence the bound on the
number of adversarial nodes improves and approaches n/d.
However, it comes at the cost of increasing time complexity
as the runtime of the algorithm is O(rdd) for an integer
r > 1.

Miller and Sheehy centerpoint-approximation algorithm is
based on the technique of Radon’s theorem which states
that for any given set of at least d + 2 points, there exists
a partition into two sets with intersecting convex hulls; a
point in the intersection of the two said sets is called a
Radon point. They improve upon a classic algorithm that
starts by partitioning a given pointset S into groups of d+ 2
points and computing Radon point for each group. The set
of d |S|d+2e Radon points returned in the previous iteration are
assumed to be the new pointset and centerpoint for these
points is recursively computed. An approximate centerpoint
is, thus, found in at most logd+2 |S| iterations. Miller and
Sheehy showed that they can create groups of larger sizes
(of multiples of d + 2 points) and reduce the number of
iterations. Details of their algorithm, anyalsis and proof of
correctness is available in [26]. As a consequence, we have
the following result:

Theorem 4.11: For a given pointset in Rd in general
positions, a

(
n

dr/r−1

)
-safe point exists and can be computed

in time O(rdd) for any integer r > 1.
Thus, using approximate centerpoint in dimension d, con-

sensus is guaranteed if the number of adversarial nodes in
the neighborhood of every normal node is nf ≤ n

dr/r−1 for
an integer r > 1, which is better than the resilience achieved
by using approximate Tverberg partition, where nf ≤ n

2d
−1.

V. NUMERICAL EVALUATION

We perform simulations5 to illustrate resilient consensus in
multirobot systems in two dimensions using centerpoint, and
compare it with the one using approximate Tverberg partition
[2]. We model interconnections between robots using the
following graphs:

• A disk graph Gd = (V, E(t)), in which each node i ∈ V
(representing a robot) has a sensing radius r and (j, i) ∈
E(t) if and only if ||xj(t)− xi(t)|| ≤ r.

• A fixed undirected graph G = (V, E) whose edge set
does not change over time.

At each iteration t of the multi-robot consensus algorithm,
a normal robot i computes a safe point si(t) of its neigh-
bors’ positions (using centerpoint or approximate Tverberg
partition), and calculates its new position using (1). In our
experiments, we set αi(t) = 0.8.

5Our code is available at https://github.com/JianiLi/
MultiRobotsRendezvous

https://github.com/JianiLi/MultiRobotsRendezvous
https://github.com/JianiLi/MultiRobotsRendezvous

7

A. Centerpoint based resilient consensus

We consider a group of 120 robots, out of which 100 are
normal and 20 are adversarial. They are deployed in a planar
region W = [−1, 1]× [−1, 1] ∈ R2 as shown in Figure 6(a),
where nodes in blue are normal robots executing consensus
and nodes in red represent adversarial robots. We consider
three types of adversarial behaviors:
• Stationary adversaries - each red node has a fixed

position that does not change throughout the simulation.
• Oscillating adversaries - each red node changes its

position by moving from corner to corner within the
square of length 0.1 as depicted in Figure 6(b).

• Move-away adversaries - each red node moves towards
the closest corner of the region W from its initial posi-
tion, and stays stationary at the corner if the next move
will make it escape from W , as shown in Figure 6(c).

The interconnection topology is captured by a disk graph
with a fixed sensing radius of r = 0.45 for every normal
robot. Each normal robot executes consensus algorithm based
on centerpoint. Consensus is guaranteed if the number of
adversarial robots in the neighborhood of each normal robot
i is nfi ≤

(
d |Ni|

3 e − 1
)

, which is indeed the case in all
the simulations here. Consequently, normal robots achieve
consensus, as shown in Figures 7 and 8, in the presence of
all three types of adversarial nodes.

(a) (b) (c)

Fig. 6. Robots initial positions with (a) stationary, (b) oscillating and (c)
move-away adversaries.

(a) (b) (c)

Fig. 7. Robots positions after consensus with (a) stationary, (b) oscillating,
and (c) move-away adversaries.

B. Comparison Between Centerpoint and Approximate Tver-
berg Partition Based Resilient Consensus

To demonstrate the improved resilience of centerpoint
based consensus as compared to the Tverberg partition based
one, we consider only stationary adversarial nodes here
due to the space constraints. Moreover, we assume that the
network graphs are fixed and are not time-varying.

(a) (b) (c)

Fig. 8. Positions of normal robots as a function of iterations in the case
of (a) stationary, (b) oscillating, and (c) move-away adversaries.

In our first example, we consider a group of 28
robots deployed in a planar region W = [−1.5, 1.5] ×
[−0.375, 0.375] ∈ R2 as shown in Figure 9. There are six
adversarial nodes (depicted in red) on the left, and six on
the right side of the planar region. At the same time, 16
normal robots (depicted in blue) are divided equally into two
clusters in the middle part of the region, each containing 8
robots. All of the 16 normal robots are connected to each
other. Moreover, each normal robot is further connected to
six of the adversarial robots located in either the left or the
right part of the region. Figure 9 shows the evolution of
robots’ positions using approximate Tverberg partition based
and centerpoint based algorithms. As illustrated, approximate
Tverberg partition based algorithm fails to make the normal
robots converge to one point, but centerpoint based algorithm
succeeds. The reason behind this is that each normal robot
i has |Ni| = 22 robots in its neighborhood (including the
robot itself), of which 6 are adversarial. The approximate
Tverberg partition based algorithm is resilient to at most(
d |Ni|

4 e − 1
)

= 5 adversaries, whereas, the centerpoint

based algorithm is resilient to at most
(
d |Ni|

3 e − 1
)

= 7

adversaries. This simple example shows that the improved
resilience of centerpoint based algorithm as compared to the
approximate Tverberg partition based algorithm.

(a) (b)

Fig. 9. Robots’ positions evolution (from top to down) in the case of
(a) approximate Tverberg partition based and the (b) centerpoint based
algorithms..

Next, we consider a larger network in a planar region
W = [−1, 1]× [−1, 1] ∈ R2 containing 45 robots of which 5
are adversarial as shown in Figure 10(a). All normal robots
have at most

(
d |Ni|

3 e − 1
)

adversaries in their neighbor-
hood, which means resilient consensus is guaranteed by the
centerpoint based algorithm. However, a couple of normal

8

robots (depicted in yellow color) have nfi adversaries in their
neighborhood, where

(
d |Ni|

4 e − 1
)
< nfi ≤

(
d |Ni|

3 e − 1
)

.
For the two robots in yellow, they have 7 and 8 neighbors,
and both of them have 2 adversarial neighbors in their re-
spective neighborhoods. Consequently, the resilient consen-
sus condition for the approximate Tverberg partition based
algorithm is not satisfied, and consensus is not guaranteed.
Figures 10(b) and (c) show final positions of robots for both
algorithms. It is clear that consensus is achieved with the
centerpoint based algorithm, whereas robots fail to converge
at a common point using the approximate Tverberg partition
based algorithm. Figure 11 illustrates positions of robots as
a function of iterations and demonstrate the same results.

(a) (b) (c)

Fig. 10. (a) Initial positions of robots. (b) Final positions of robots using
approximate Tverberg partition based algorithm. (c) Final positions using
centerpoint based algorithm.

(a) (b)

Fig. 11. Positions of normal robots as a function of iterations using (a)
approximate Tverberg partition based, and (b) centerpoint based algorithms.

VI. CONCLUSION

The task of ensuring consensus in the convex hull of
vector states for a set of nodes, a fraction of which may be
under the influence of an adversary, is a challenging problem.
In this work, we presented a geometric characterization
of an optimal point, in the form of a centerpoint, in the
convex hull of normal nodes when the number of adversarial
nodes is limited to a 1/(d + 1) fraction of the size of the
neighborhood of a node. It also followed that the upper
bound on the number of adversarial nodes is best possible
in the worst case. We proposed to use well-known efficient
algorithms to compute exact centerpoints in two and three
dimensions. For higher dimensions, we used an approximate
centerpoint algorithm proposed in [26], and significantly
improved previous bound on the number of adversarial nodes
while guaranteeing resilient consensus.

It follows from our results that if the fraction of adversarial
nodes in the neighborhood of every normal node is at
least d/(d + 1), then adversarial nodes can make normal
nodes converge to any point they desire. At the same time,
if their fraction is less than 1/(d + 1), then the resilient
consensus is guaranteed. In future, we aim to study and
characterize the effect of adversarial nodes if their fraction
in the neighborhood of a normal node is between the above
two numbers.

ACKNOWLEDGEMENTS

This work was supported in part by the National Institute
of Standards and Technology under Grant 70NANB18H198,
and by the National Science Foundation under award CNS-
1739328.

REFERENCES

[1] L. Tseng and N. Vaidya, “Iterative approximate byzantine consensus
under a generalized fault model,” in International Conference on
Distributed Computing and Networking. Springer, 2013, pp. 72–86.

[2] H. Park and S. A. Hutchinson, “Fault-tolerant rendezvous of multirobot
systems,” IEEE Transactions on Robotics, vol. 33, pp. 565–582, 2017.

[3] J. Li and X. Koutsoukos, “Resilient distributed diffusion for multi-task
estimation,” in Proceedings of the 14th International Conference on
Distributed Computing in Sensor Systems, 2018, pp. 93–102.

[4] W. Abbas, A. Laszka, and X. Koutsoukos, “Improving network
connectivity and robustness using trusted nodes with application
to resilient consensus,” IEEE Transactions on Control of Network
Systems, vol. 5, no. 4, pp. 2036–2048, 2017.

[5] S. Sundaram and B. Gharesifard, “Consensus-based distributed opti-
mization with malicious nodes,” in 53rd Annual Allerton Conference
on Communication, Control, and Computing, 2015.

[6] L. Su and N. Vaidya, “Multi-agent optimization in the presence of
byzantine adversaries: Fundamental limits,” in 2016 American Control
Conference (ACC). IEEE, 2016, pp. 7183–7188.

[7] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient
asymptotic consensus in robust networks,” IEEE Journal on Selected
Areas in Communications, vol. 31, no. 4, pp. 766–781, 2013.

[8] N. H. Vaidya and V. K. Garg, “Byzantine vector consensus in complete
graphs,” in Proceedings of the 2013 ACM Symposium on Principles
of Distributed Computing (PODC). ACM, pp. 65–73.

[9] N. H. Vaidya, “Iterative byzantine vector consensus in incomplete
graphs,” in International Conference on Distributed Computing and
Networking. Springer, 2014, pp. 14–28.

[10] H. Mendes and M. Herlihy, “Multidimensional approximate agreement
in byzantine asynchronous systems,” in 45th Annual ACM Symposium
on Theory of Computing, 2013, pp. 391–400.

[11] L. Su and N. H. Vaidya, “Fault-tolerant multi-agent optimization: opti-
mal iterative distributed algorithms,” in ACM Symposium on Principles
of Distributed Computing, 2016, pp. 425–434.

[12] M. Shabbir, “Some results in computational and combinatorial geom-
etry,” Ph.D. dissertation, Rutgers University-New Brunswick, 2014.

[13] N. H. Mustafa, S. Ray, and M. Shabbir, “k-centerpoints conjectures
for pointsets in d,” International Journal of Computational Geometry
& Applications, vol. 25, no. 03, pp. 163–185, 2015.

[14] H. Tverberg, “A generalization of Radon’s theorem,” Journal of the
London Mathematical Society, vol. 1, no. 1, pp. 123–128, 1966.

[15] J. R. Reay, “An extension of Radon’s theorem,” Illinois J. Math.,
vol. 12, no. 2, pp. 184–189, 06 1968.

[16] J.-P. Roudneff, “New cases of Reays conjecture on partitions of points
into simplices with k-dimensional intersection,” European Journal of
Combinatorics, vol. 30, no. 8, pp. 1919–1943, 2009.

[17] ——, “Partitions of points into intersecting tetrahedra,” Discrete
Mathematics, vol. 81, no. 1, pp. 81–86, 1990.

[18] W. Mulzer and D. Werner, “Approximating tverberg points in linear
time for any fixed dimension,” Discrete & Computational Geometry,
vol. 50, no. 2, pp. 520–535, 2013.

[19] R. Rado, “A theorem on general measure,” Journal of the London
Mathematical Society, vol. 1, no. 4, pp. 291–300, 1946.

[20] J. Matoušek, Lectures on Discrete Geometry. Springer, 2002.

9

[21] N. H. Mustafa and S. Ray, “An optimal extension of the centerpoint
theorem,” Computational Geometry, vol. 42, pp. 505–510, 2009.

[22] S. Jadhav and A. Mukhopadhyay, “Computing a centerpoint of a
finite planar set of points in linear time,” Discrete & Computational
Geometry, vol. 12, no. 3, pp. 291–312, 1994.

[23] N. Megiddo, “Partitioning with two lines in the plane,” Journal of
Algorithms, vol. 6, no. 3, pp. 430 – 433, 1985.

[24] T. M. Chan, “An optimal randomized algorithm for maximum tukey
depth,” in Proceedings of the 15th annual ACM-SIAM Symposium on
Discrete Slgorithms (SODA). SIAM, 2004, pp. 430–436.

[25] B. Chazelle, “Cutting hyperplanes for divide-and-conquer,” Discrete
& Computational Geometry, vol. 9, no. 2, pp. 145–158, 1993.

[26] G. L. Miller and D. R. Sheehy, “Approximate centerpoints with
proofs,” Computational Geometry, vol. 43, no. 8, pp. 647–654, 2010.

	I Introduction
	II Notations and Preliminaries
	III Background and Approximate Distributed Robust Convergence (ADRC) Algorithm
	III-A How Can We Improve the Resilience of ADRC?

	IV ADRC Using Centerpoints
	IV-A Safe point and the Interior Centerpoint
	IV-B Centerpoint-based Resilient Consensus in 2-D
	IV-C Computing Centerpoint in 2-D
	IV-D Centerpoint-based Resilient Consensus in 3-D
	IV-E Centerpoint-based Resilient Consensus in d-dimensions for d>3

	V Numerical Evaluation
	V-A Centerpoint based resilient consensus
	V-B Comparison Between Centerpoint and Approximate Tverberg Partition Based Resilient Consensus

	VI Conclusion
	References

