
Advanced Diagnostics and Prognostics Testbed

Scott Poll, Ann Patterson-Hine, Joe Camisa, David Garcia
1
, David Hall

1
, Charles Lee

2
, Ole J. Mengshoel

3
, Christian

Neukom
1
, David Nishikawa, John Ossenfort

2
, Adam Sweet

1
, Serge Yentus

1

1QSS Group, Inc., a subsidiary of Perot Systems Government Services; 2SAIC; 3RIACS

NASA Ames Research Center

M/S 269-1, Moffett Field, CA 94035

{Scott.Poll, Ann.Patterson-Hine}@nasa.gov

Indranil Roychoudhury, Matthew Daigle, Gautam Biswas, Xenofon Koutsoukos

Institute for Software Integrated Systems, Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville, TN 37235

gautam.biswas@vanderbilt.edu

Abstract

Researchers in the diagnosis community have developed a
number of promising techniques for system health manage-
ment. However, realistic empirical evaluation and compari-
son of these approaches is often hampered by a lack of stan-
dard data sets and suitable testbeds. In this paper we de-
scribe the Advanced Diagnostics and Prognostics Testbed
(ADAPT) at NASA Ames Research Center. The purpose of
the testbed is to measure, evaluate, and mature diagnostic
and prognostic health management technologies. This paper
describes the testbed’s hardware, software architecture, and
concept of operations. A simulation testbed that accompa-
nies ADAPT, and some of the diagnostic and decision sup-
port approaches being investigated are also discussed.

Introduction

Automated methods for diagnosing problems with system
behavior are commonplace in automobiles, copiers, and
many other consumer products. Applying advanced diag-
nostic techniques to aerospace systems, especially aero-
space vehicles with human crews, is much more challeng-
ing. The low probability of component and subsystem fail-
ure, the cost of verification and validation, the difficulty of
selecting the most appropriate diagnostic technology for a
given problem, and the lack of large-scale diagnostic tech-
nology demonstrations increase the complexity of these
applications. To meet these challenges, NASA Ames Re-
search Center has developed the Advanced Diagnostic and
Prognostic Testbed with the following goals in mind:
(i) Provide a technology-neutral basis for testing and
evaluating diagnostic systems, both software and hardware,
(ii) Provide the capability to perform accelerated testing
of diagnostic algorithms by manually or algorithmically in-
serting faults,
(iii) Provide a real-world physical system such that issues
that might be disregarded in smaller-scale experiments and
simulations are exposed – “the devil is in the details,”
(iv) Provide a stepping stone between pure research and
deployment in aerospace systems, thus create a concrete
path to maturing diagnostic technologies, and

(v) Develop analytical methods and software architec-
tures in support of the above goals.
 NASA missions have always provided challenging prob-
lem domains for model-based diagnosis researchers. Early
demonstrations (Williams et al., 1998) were typically lim-
ited to particular subsystems or components, and were run
in “shadow-mode,” in parallel with the conventional con-
trol and fault protection software. However, the increasing
complexity of aerospace systems has made advanced diag-
nostic capabilities a necessity to ensure the reliability and
safety of missions. Although they are well-suited to ad-
dress the needs of aerospace missions, many of the tech-
niques that fall under the “model-based diagnosis” um-
brella face opposition from project managers, who may be
reluctant to consider techniques with limited flight experi-
ence.
 We have developed the Advanced Diagnostics and
Prognostics Testbed at NASA Ames Research Center to
enable maturation of advanced fault management tech-
niques. ADAPT provides a representative physical domain
that serves as a benchmark for performance assessment and
comparison of algorithms and concepts that enable auto-
mated diagnosis of complex systems exhibiting hybrid, i.e.,
both continuous and discrete, behavior. The testbed docu-
mentation includes engineering schematics, component de-
scriptions, fault descriptions, and system engineering ana-
lyses, such as functional models, Failure Modes and Ef-
fects Analysis, and Testability Analysis. Additional infor-
mation includes a simulation and an Application Pro-
gramming Interface (API) to facilitate integrating diagnos-
tic applications with the testbed. We will provide the
documentation, simulation model, API, as well as nominal
and faulty testbed data to researchers in the diagnosis
community.
 The process of developing advanced diagnostic applica-
tions is just as important to the verification and validation
of these systems as the specific algorithms that are applied.
ADAPT establishes a problem domain with known fault
signatures and the capability to inject failures during opera-
tion of the testbed. By implementing and testing different

diagnostic approaches on ADAPT, we aim to improve per-
formance assessment methods and the comparison of di-
verse health management strategies.
 This paper presents a description of ADAPT that in-
cludes its hardware and software architectures, the concept
of operations, and a simulation testbed that emulates the
real system. We also discuss some of the diagnostic ap-
proaches that are currently being developed on the testbed.

Testbed Description

The ADAPT lab is shown in Figure 1. The equipment
racks in the background can generate, store, distribute, and
monitor electrical power. The initial testbed configuration
functionally represents an exploration vehicle’s Electrical
Power System (EPS). The EPS can deliver AC (Alternat-
ing Current) and DC (Direct Current) power to loads,
which in an aerospace vehicle would include subsystems
such as the avionics, propulsion, life support, and thermal
management systems. A data acquisition and control sys-
tem sends commands to and receives data from the EPS.
The testbed operator stations are integrated into a software
architecture that allows for nominal and faulty operations
of the EPS, and includes a system for logging all relevant
data to assess the performance of the health management
applications. The following sections describe the testbed
hardware, diagnostic challenges, concept of operations,
and software.

Hardware Subsystems

Figure 2 depicts ADAPT’s major system components and
their interconnections. Three power generation sources are
connected to three sets of batteries, which in turn supply
two load banks. Each load bank has provisions for 6 AC
loads and 2 DC loads.
Power Generation. The three sources of power generation
include two battery chargers and a photovoltaic module.
The battery chargers are connected to appropriate wall out-

lets through relays. Two metal halide lamps supply the
light energy for the photovoltaic module. The three power
generation sources can be interchangeably connected to the
three batteries. Hardware relay logic prevents connecting
one charge source to more than one battery at the same
time, and from connecting one charging circuit to another
charging circuit.
Power Storage. Three sets of batteries are used to store
energy for operation of the loads. Each “battery” consists
of two 12-volt sealed lead acid batteries connected in series
to produce a 24-volt output. Two battery sets are rated at
100 amp-hrs and the third set is rated at 50 amp-hrs. The
batteries and the main circuit breakers are placed in a ven-
tilated cabinet that is physically separated from the equip-
ment racks; however, the switches for connecting the bat-
teries to the upstream chargers or downstream loads are lo-
cated in the equipment racks.
Power Distribution. Electromechanical relays are used to
route the power from the sources to the batteries and from
the batteries to the AC and DC loads. All relays are the
normally-open type. An inverter converts the 24-volt DC

Figure 1: ADAPT lab at Ames Research Center.

Figure 2: Testbed components and interconnections.

battery input to a 120-volt rms AC output. Circuit breakers
are located at various points in the distribution network to
prevent overcurrents from causing unintended damage to
the system components.
Control and Monitoring. Testbed data acquisition and
control use National Instrument’s LabVIEW software and
CompactFieldPoint (cFP) hardware. Table 1 lists the mod-
ules that are inserted into the two identical backplanes. The
instrumentation allows for monitoring of voltages, cur-
rents, temperatures, switch positions, light intensities, and
AC frequencies, as listed in Table 2.

Table 1: Testbed backplane modules.

Module Description Chan-
nels

cFP-2000 Real-time Ethernet Module NA

cFP-DI-301 Digital Input Module 16 (x2)

cFP-DO-401 Digital Output Module 16 (x2)

cFP-AI-100 Analog Input Module 8

cFP-AI-102 Analog Input Module 8 (x2)

cFP-RTD-122 RTD Input Module 8

Table 2: Testbed instrumentation.

Sensed Variable Number of
Sensors

Voltage 22

Current 12

Temperature 15

Relay Position 41

Circuit Breaker Position 17

Light Intensity 3

AC Frequency 2

Diagnosis Challenges

The ADAPT testbed offers a number of challenges to
health management applications. The electrical power sys-
tem shown in Figure 2 is a hybrid system with multiple
system configurations made possible by switching among
the generation, storage, and distribution units. Timing con-
siderations and transient behavior must be taken into ac-
count when designing diagnosis algorithms. When power
is input to the inverter there is a delay of a few seconds be-
fore power is available at the output. For some loads, there
is a large current transient when the device is turned on. As
shown in Figure 3, system voltages and currents depend on
the loads attached, and noise in the sensor data becomes
more pronounced as more loads are added. Due to the low
probabilities of failure, seeding/inserting faults is needed.
Through an antagonist function described in the next sec-
tion, it is possible to inject multiple faults into the testbed.

Concept of Operations

Unlike many other testbeds, the primary articles under test
in ADAPT are the health management systems, not the
physical devices of the testbed. To operate the testbed in a
way that facilitates the study of health management tech-
nologies, the following operator roles are defined:

• User – who simulates the role of a crew member or pilot
operating and maintaining the testbed subsystems.

• Antagonist – who injects faults into the subsystem either
manually, remotely through the Antagonist console, or
automatically through software scripts.

• Observer – who records the experimental data and notes
how the User responds to the faults injected by the An-
tagonist. The Observer also serves as the safety officer
during all tests and can initiate an emergency stop.

During an experiment, the User is responsible for control-
ling and monitoring the EPS and any attached loads that
are required to accomplish a mission. The Antagonist dis-
rupts system operations by injecting one or more faults un-
beknownst to the User. The User may use output from a
health management application (test article) to determine
the state of the system and choose an appropriate recovery
action. The Observer records the interactions and measures
the effectiveness of the test article.
 The testbed has two primary goals: (i) performance
analysis of, and comparisons among, different test articles,
and (ii) running of system studies. With the hardware and
the supporting software infrastructure described in a sub-
sequent section, experiments may be conducted using a va-
riety of test articles to evaluate different health manage-
ment technologies. The test articles may be connected to
different interface concepts for presenting health manage-
ment information to the human User, to study how the per-
son performs in managing system operations.

Software

The testbed software model supports the concept of opera-
tions that includes the previously-mentioned operational
roles of the User (USR), Antagonist (ANT), Observer
(OBS), and Test Article (TA), along with the Logger
(LOG) and the Data Acquisition (DAQ) roles. The Logger
collects and saves all communication between the various
components. The DAQ computer interfaces with the Na-
tional Instruments data acquisition and control system. It
sends command data to the testbed via the appropriate

Figure 3: Sample testbed voltages (top) and currents (bottom)

for a battery discharging to loads.

backplane modules and receives testbed sensor data from
other modules.
 The underlying data communication is implemented us-
ing a publish/subscribe model in which data from publish-
ers are routed to all subscribers registering an interest in a
data topic. To enforce testing protocols and ensure the in-
tegrity of the data, filters based on role and location limit
the topics for which data can be produced or consumed.
Table 3 lists the message topics and the topic publishers
and subscribers.

Table 3: Publish/subscribe topics.

Topic Publisher Subscriber

Sensor Data DAQ ANT,OBS,LOG

Antagonist Data ANT TA,USR,LOG

User Command USR,TA TA,ANT,OBS,LOG

Antagonist Command ANT DAQ,OBS,LOG

User Message USR OBS,LOG,ANT

Note OBS LOG,ANT

Fault Data TA USR,OBS,LOG

Diagnostics TA USR,OBS,LOG

Experiment Control OBS LOG

 The following constraints are enforced on the various
system components when they are operating on the
ADAPT computer network:

• The DAQ can only read command data sent by the An-
tagonist and only sends sensor data which it gets directly
from the instrumentation I/O subsystem. When no faults
are injected, the Antagonist commands are the same as
the User commands. The DAQ software can run only on
the DAQ computer. It is the only software that connects
directly to the instrumentation I/O subsystem.

• The Antagonist can only read sensor data sent by the
DAQ and command data sent by Test Articles and Users.
It forwards sensor data, which it may have modified by
fault injection. It also sends command data, which are
read by the DAQ and the Logger.

• The Test Article and the User cannot see DAQ sensor
data. They have access only to Antagonist-generated
sensor data, which are identical to DAQ sensor data
when no faults are injected. The Test Article and User
cannot read text data (a Note) sent by the Observer. The
Test Article can read User commands and Antagonist da-
ta. It can send diagnostics data and User commands.

• The Observer sends an experiment control record to ini-
tiate a testbed experiment. It also sends text data to de-
scribe observations of the ongoing experiment. The Ob-
server cannot send any data other than control and text
data.

• The Logger reads all data sent over the ADAPT net-
work. The Logger assigns a unique experiment ID for
each new experiment.

A test article may be integrated with the testbed by install-
ing the application on one of the ADAPT computers or by
connecting a computer with the test article application to a
preconfigured auxiliary system that acts as a gateway to

the ADAPT network. A test article uses an API to sub-
scribe to commands and data, and publish diagnosis results
to the ADAPT message server. Java and C++ interfaces are
supported.

VIRTUAL ADAPT: Simulation Testbed

We are also developing a high-fidelity simulation testbed
that emulates the ADAPT hardware for running offline
health management experiments. This environment, called
VIRTUAL ADAPT, provides identical interfaces to the ap-
plication system modules through wrappers to the ADAPT
network. The physical components of the testbed, i.e., the
chargers, the batteries, relays, and the loads, are replaced
by simulation modules that generate the same dynamic be-
haviors as the hardware test bed. Also, like the actual
hardware, VIRTUAL ADAPT subscribes to antagonist
commands and publishes corresponding sensor data. As a
result, application systems developed on VIRTUAL ADAPT
can be run directly on ADAPT, and vice versa. Therefore,
applications can be developed and tested using VIRTUAL
ADAPT, and then run as test articles on the actual system.
The simulation environment also provides for precise repe-
tition of different operational scenarios, and this allows for
more rigorous testing and evaluation of different diagnostic
and prognostic algorithms.
 In order to mirror the real testbed, we have addressed
several issues that include (i) one-to-one component mod-
eling, (ii) replicating the dynamic behavior of the hardware
components, (iii) matching the possible configurations, and
(iv) facilitating the running of diagnosis and prognosis ex-
periments. The following sections provide a more detailed
description of our approach to addressing these issues.

Component-Oriented Modeling

Our approach to component-oriented compositional model-
ing is based on a top-down process, where we first capture
the structural description of the system in terms of the
components and their connectivity. Component models
replicate the component’s dynamic behaviors for different
configurations. The connectivity relations, represented by
energy and signal links, capture the interaction pathways
between the components. Complex systems, such as a
power distribution system, may operate in multiple con-
figurations. The ability to change from one configuration
to another is modeled by switching elements. Sets of com-
ponents can also be grouped together to define subsystems.
The modeling paradigm is implemented as part of the Fault
Adaptive Control Technology (FACT) tool suite developed
at Vanderbilt University (Manders et al. 2006). FACT em-
ploys the Generic Modeling Environment (GME) to pre-
sent modelers with a component library organized as hier-
archical collection of components and subsystems and a
graphical interface for creating component-oriented system
models (Ledeczi et al. 2001). The VIRTUAL ADAPT mod-
els created using FACT capture a number of possible
ADAPT testbed configurations.

 Each component includes an internal behavior model
and an interface through which the component interacts
with other components and the environment. The interfaces
include two kinds of ports: (i) energy ports for energy ex-
change between the component and other components, and
(ii) signal ports for input and output of signal values from
the component. The current VIRTUAL ADAPT testbed
component library includes models for the chargers, batter-
ies, inverters, loads, relays, circuit breakers, and sensors
that exist on the current ADAPT hardware testbed. For ex-
perimental purposes and “what if” analyses, new compo-
nents can be added to the library by modifying existing
component models or by creating new ones. System mod-
els are built by creating configurations of component mod-
els.
 Many ADAPT testbed components are physical proc-
esses that exhibit hybrid behaviors, i.e., mixed continuous
and discrete behaviors. These components are modeled as
Hybrid Bond Graph (HBG) fragments (Mosterman and
Biswas 1998). HBGs extend the bond graph modeling lan-
guage (Karnopp, Margolis, and Rosenberg 2000) by intro-
ducing junctions that can switch on and off. Bond graphs
are a domain-independent, topological modeling language
based on the conservation of energy and continuity of
power.
 Building complete HBG models for a system requires
detailed knowledge of the system configuration and com-
ponent behaviors, as well as component parameters. This
knowledge is typically obtained by consulting system de-
signers and experts, extracting information from device
manuals and research papers, and using experimental data
collected during system operations. When experimental da-
ta is used, unknown parameters and functional relations as-
sociated with the models are estimated using system identi-
fication techniques. Often, this is a difficult task that re-
quires significant analysis.
 Model validation is performed by comparing simulated
behaviors with data collected from experimental runs on
ADAPT. A number of parameter estimation iterations may
be necessary to obtain an accurate model of the system,
keeping in mind the tradeoff between model accuracy and
model complexity.

Generating Efficient Simulation Models

VIRTUAL ADAPT models created using the FACT tool
suite can be translated into MATLAB Simulink® models

using a systematic model transformation process (Roy-
choudhury et al. 2007) that is implemented using GME
interpreters. The two-step process first transforms the HBG
models into an intermediate block diagram representation,
and then converts the block diagram representation into an
executable Simulink model. The use of the intermediate
block diagram provides the flexibility of generating
executable models for other simulation environments with
minimal effort.
 Using naïve methods to generate executable hybrid
system models requires pre-computation of the model for
all possible system configurations or modes of operation.
This is space-inefficient. The alternative is incremental
generation of model structure at runtime when mode
changes occur, which is time-inefficient (Daigle et al.
2006). We use a structurally static system model where the
correct operating configuration of each bond graph element
is selected online when mode changes occur, thus reducing
excessive space and time costs at runtime. These
algorithms exploit causality in bond graphs and, in addition
to incremental generation, can also minimize the use of
high-cost fixed point or algebraic loop solvers. Algebraic
loop structures may arise in the Simulink structures to
accommodate the switching functions in the HBG models.
 In addition to generating nominal behaviors, the simula-
tion system provides an interface through which sensor, ac-
tuator, and process faults with different “fault profiles”
(e.g., abrupt versus incipient) can be injected into the sys-
tem at specific time points. The Simulink model then gen-
erates faulty system behavior, which can form the basis for
running diagnosis, prognosis, and fault-adaptive control
experiments. In general, many different user roles and test
articles, such as controllers, fault detectors, diagnosers, and
interfaces for observing behaviors, can be tested.

Example: Battery Component Modeling

We demonstrate our modeling approach by developing a
model of the batteries on the ADAPT testbed. The battery
component model is developed from an electrical equiva-
lent circuit model (Ceraolo 2000), shown in Figure 4 (left).
The model computes the output battery voltage and the
current flowing from the battery to a connected load when
the battery is discharging; or from the charger to the bat-
tery, when it is charging. In both situations, some of this
current goes into charging or discharging the batteries, and
the rest is lost to parasitic reactions (e.g., gas production)

Figure 4: The equivalent circuit of the battery (left) and its corresponding hybrid bond graph (right).

modeled by a resistive element, Rp. The capacitor C0,
which has a large capacitance value, models the steady-
state voltage of the battery. The steady-state voltage of the
battery is a linear function of this capacitance value and the
current amount of charge in the battery. The remaining re-
sistor-capacitor pairs model the internal resistance and pa-
rasitic capacitance of the battery. All of the parameter val-
ues are nonlinear functions of system variables, such as
state of charge and temperature. The nonlinear charging
and discharging of the battery is captured as distinct modes
of operation. Moreover, the internal battery model compo-
nents differ for the different modes of operation. For ex-
ample, the R3-C3 pair is only active during the charge
mode. The two configurations are modeled by a switch in
Figure 4 (left). Other configuration changes include
switching between a load and a charger in the discharge
versus charge modes.
 Figure 4 (right) shows the HBG model of the equivalent
circuit of the battery. The capacitors and resistors are in
one-to-one correspondence with the electrical circuit ele-
ments. The hybrid nature of the battery is modeled by a
controlled 0-junction, which is switched on and off de-
pending on the direction of current through the battery.
Most of the parameters in the battery HBG are nonlinear,
and these nonlinearities are captured by making the bond
graph element parameters nonlinear functions of system
variables, such as the battery state of charge (SOC) and
depth of charge (DOC). These two variables are computed
in another portion of the model, not shown in Figure 4. As
an example, the resistance of R2 is proportional to the natu-
ral logarithm of the DOC. The variable parameters are in-
dicated by prefixing their type-name with the letter “M”,
e.g., MR.
 We have performed extensive system identification to
estimate the parameters of the battery model, and have ob-
tained good matches to actual observed behavior. Figure 5
shows a comparison of actual and simulated battery volt-
age in the battery discharge mode. The battery begins at a
steady state, and as soon as a load is attached, it begins to
discharge. As the battery nears its terminal voltage, the
load is taken offline, and the battery begins to approach its

new steady-state value. A battery charger is then con-
nected, and the charging process generates an increase in
the observed battery voltage.

Fault Injection

ADAPT supports the repeatable injection of faults into the
system. Most of the fault injection is currently imple-
mented via software using the Antagonist role described
previously. Software fault injection includes one or more
of the following: 1) sending commands to the testbed that
were not initiated by the User; for this case the Test Article
will not see the spurious command to the testbed, since it
was not sent by the User; 2) blocking commands sent to
the testbed by the User; 3) altering the testbed sensor data;
for this case the Test Article and the User will see the al-
tered sensor data since these reflect the faulted system. The
sensor data can be altered in a number of ways, as illus-
trated in Figure 6. For a static fault, the data are frozen at
previous values and remain fixed. An abrupt fault applies a
constant offset to the true data value. An incipient fault ap-
plies an offset that starts at zero and grows linearly with
time. Excess sensor noise is introduced by adding Gaussian
or uniform noise to the measured value. Future work will
add intermittent data faults, data spikes, and the ability to
introduce more than one fault type for a given sensor at the
same time. By using these three approaches to software
fault injection, fault scenarios may be constructed that rep-
resent diverse component faults.

 In addition to the faults that are injected via software,
faults may be physically injected at the testbed hardware.
A simple example is tripping a circuit breaker using the
manual throw bars. Another is using the power toggle
switch to turn off the inverter. Relays may be failed by
short-circuiting the appropriate relay terminals. Wires lead-
ing to or from sensors may be short-circuited or discon-
nected. Additional faults include blocking portions of the
photovoltaic panel and loosening the wire connections in
power-bus common blocks. Faults may also be introduced
in the loads attached to the EPS. For example, one load is a
pump that circulates fluid through a closed loop with a
flow meter and valve. The valve can be closed slightly to

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
21

22

23

24

25

26

27

28

29

Time (s)

V
o
lt
a
g
e
 (
V
)

Voltage Comparison

Actual Voltage

Model Voltage

Figure 5: Comparison of actual and simulated battery volt-

ages through discharge, no load, and charge modes.

20

21

22

23

24

25

26

27

28

29

30

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

Time (s)

Nominal Static Ramp Step

Excessive Noise Intermittent (step) Intermittent (spike)

V
o
lt
a
g
e
 (
V
)

Figure 6: Example fault types.

vary the back pressure on the pump and reduce the flow
rate. Table 4 lists the faults that are injected into the test-
bed.
 Since some fault scenarios may be costly, dangerous, or
impossible to introduce in the actual hardware, VIRTUAL
ADAPT also provides fault injection capabilities. For ex-
ample, degradation in the batteries can be simulated as an
incipient change in a battery capacitance parameter. Other
parametric faults can also be injected and simulated. In ad-
dition, VIRTUAL ADAPT permits experimentation with
fault scenarios that cannot be realized in the hardware,
such as an inverter malfunction. Currently, mostly discrete
failures (e.g., relay failures) and sensor errors are intro-
duced into ADAPT, so the simulation provides added func-
tionality by enabling injection of other types of fault sce-
narios.

Table 4: Faults injected into testbed.

Fault Description Fault Type

Circuit breaker tripped discrete

Relay failed open discrete

Relay failed closed discrete

Sensor shorted discrete

Sensor open circuit discrete

Sensor stuck discrete

Sensor drift continuous

Excessive sensor noise continuous

AC inverter failed discrete

PV panel blocked continuous

Loose bus connections continuous

Battery faults continuous

Load faults discrete, cont.

Test Articles

The test articles to be evaluated in ADAPT are health man-
agement applications from industry, academia, and gov-
ernment. The techniques employed may be data-driven,
rule-based, model-based, or a combination of different ap-
proaches. Health management concepts to be investigated
include fault detection, diagnosis, recovery, failure predic-
tion and mitigation.
 The technologies currently integrated with the testbed
include model-based reasoning tools HyDE – Hybrid Di-
agnostic Engine (Narasimhan, Dearden, and Benazera
2004); FACT – Fault Adaptive Control Technology
(Manders et al. 2006); and TEAMS-RT – Testability Engi-
neering and Maintenance System Real Time (Deb et al.
1998). These tools are from government, academia, and
industry, respectively. Each test article uses the ADAPT
API to connect to the ADAPT message server, subscribing
to the appropriate commands and data, and publishing the
diagnosis results.
 Each tool employs different abstraction, modeling, and
reasoning methodologies. For example, TEAMS-RT typi-
cally discretizes continuous-valued sensor data into
pass/fail test results. Cause-effect dependencies in a failure
space, multi-signal model that link causes (components) to

effects (test results) are used to isolate the fault. In contrast,
FACT includes a hybrid observer that tracks continuous
system behavior and mode changes. Statistical tests are
used to detect a fault. Qualitative and quantitative fault
signatures are used for fault isolation.
 We aim to explore the advantages and disadvantages of
the different approaches to health management to better
understand their applicability to different fault types and
operational contexts.

Performance Assessment

The purpose and scope of assessments and experiments as
they relate to diagnostic and prognostic techniques and sys-
tems can vary significantly. We now identify a few differ-
ent classes of assessments.
 I. Platform assessment: Processors (CPUs) and operat-
ing systems may react differently to different diagnostic
workloads. Therefore, it can be of interest to test an im-
plementation on different computational platforms.
 II. Implementation assessment: The programming lan-
guage and the data structures can have a substantial impact
on performance; hence it may be of interest to compare dif-
ferent implementations of the same algorithm.
 III. Algorithm assessment: Different algorithms may
solve the same computational problem. For instance, the
problem of computing marginals in Bayesian networks can
be solved using clique tree clustering or other approaches.
Typically, this type of assessment involves the use of prob-
lem instances (Mengshoel, Wilkins, and Roth 2006).
 IV. Technique assessment: The problem of electric pow-
er system diagnosis can be addressed using, for example,
model-based reasoners, Bayesian networks or artificial
neural networks.
 V. System assessment: Overall system performance may
also depend on the human(s) in the loop, and how they use
and interact with different automated diagnostics systems.
 Initial efforts will focus on classes III, IV, and V. The
assessment of different diagnostic algorithms will consist
of metrics determined from the compilation of several test
runs, which include nominal and faulty behavior. For a
single test run, it will be classified as a false alarm if a fault
was not injected during the run but the test article reported
one or if the test article reported a fault before it was in-
jected. If the test article does not report a fault when one
was injected, it will be classified as a missed alarm. The
correctness and precision of fault isolation will also be de-
termined for each run. By combining the results over sev-
eral runs, false alarm rates, missed alarm rates, and isola-
tion rates for the test article will be measured. Additional
metrics include fault detection and isolation times. Not all
of the metrics will apply to each test article. For example, a
particular technique may only perform fault detection
without isolating the cause of the fault. Additional studies
will include variations in the amount and variability of data
available to the test articles, i.e., only data from voltage
sensors is available or some data is available intermittently.

Conclusions

This paper describes a testbed at NASA Ames Research
Center for evaluating and maturing diagnostic and prog-
nostic concepts and technologies. The electrical power sys-
tem hardware, together with the software architecture and
unique concept of operations, offers many challenges to
diagnostic applications such as a multitude of system
modes, transient behavior after switching actions, multiple
faults, and load-dependent noise. A simulation model is
available to facilitate the development and testing of health
management applications. Future work will include the in-
tegration of more test articles, loads, faults, operational
scenarios, and evaluation techniques. In meeting the five
goals of the testbed listed in the Introduction, much greater
knowledge of the trade-offs among diagnostic technologies
will be available to system designers for future programs.
Many current technology assessments have relied upon
trade literature or technical publications of an algorithm’s
definition and performance. ADAPT provides a technol-
ogy-neutral basis for the comparison of various techniques
and a highly configurable operational environment for the
evaluation of an algorithm’s performance under specific
operational requirements and fault conditions.

Acknowledgments

The authors thank Somnath Deb, Sudipto Ghoshal, Charles
Domagala and Venkat Malepati from Qualtech Systems,
Inc. for creating the TEAMS model of ADAPT under
NASA contract number NNA06AA51Z and the TEAMS-
RT application for the testbed under NASA contract num-
ber NNA06AA64C, and for their many discussions on the
design of the diagnostic experiments. Contributions by
RIACS were based upon work supported by NASA under
award NCC2-1426. Contributions by Perot Systems were
supported by NASA under contract NNA04AA18B and
contributions by SAIC were supported by NASA under
contract NAS2-02091. Contributions by Vanderbilt Uni-
versity were supported by NASA USRA grant 08020-013,
NASA NRA grant NNX07AD12A, and NSF CNS-
0615214.

References

Williams, B. C.; Nayak, P.; and Muscettola, N. 1998. Re-
mote Agent: To Boldly Go Where No AI System Has
Gone Before. Artificial Intelligence 103(1–2):5–48.

Mosterman, P. J.; and Biswas, G. 1998. A Theory of Dis-
continuities in Physical System Models. In J Franklin In-
stitute 335 B(3):401–439.

Karnopp, D. C.; Margolis, D. L.; and Rosenberg, R. C.

2000. Systems Dynamics: Modeling and Simulation of Me-

chatronic Systems. New York: John Wiley & Sons, Inc., 3
rd

edition.

Manders, E. J.; Biswas, G.; Mahadevan, N.; and Karsai, G.

2006. Component-Oriented Modeling of Hybrid Dynamic

Systems Using the Generic Modeling Environment. In

Proceedings of the 4th Workshop on Model-Based Devel-

opment of Computer Based Systems.

Narasimhan, S., and Biswas, G. 2007. Model-Based Diag-

nosis of Hybrid Systems. IEEE Transactions on Systems,

Man, and Cybernetics, Part A, 37(3):348–361.

Roychoudhury, I.; Daigle, M.; Biswas, G.; Koutsoukos, X.;
and Mosterman, P. J. 2007. A Method for Efficient Simu-
lation of Hybrid Bond Graphs. In Proceedings of the Inter-
national Conference on Bond Graph Modeling (ICBGM
2007), 177–184.

Daigle, M.; Roychoudhury, I.; Biswas, G.; and Koutsou-
kos, X. 2006. Efficient Simulation of Component-Based
Hybrid Models Represented as Hybrid Bond Graphs.
Technical Report ISIS-06-712, Institute for Software Inte-
grated Systems, Vanderbilt University, Nashville, TN,
USA.

Ceraolo, M. 2000. New Dynamical Models of Lead-Acid

Batteries. IEEE Transactions on Power Systems

15(4):1184–1190.

Mosterman, P. J., and Biswas, G. 1999. Diagnosis of Con-
tinuous Valued Systems in Transient Operating Regions.
IEEE Transactions on Systems, Man and Cybernetics, Part
A 29(6):554–565.

Mengshoel, O. J.; Wilkins, D. C.; and Roth, D. 2006. Con-
trolled Generation of Hard and Easy Bayesian Networks:
Impact on Maximal Clique Tree in Tree Clustering. Artifi-
cial Intelligence, 170(16–17):1137–1174.

Ledeczi, A.; Maroti, M.; Bakay, A.; Nordstrom, G.; Gar-
rett, J.; Thomason IV, C.; Sprinkle J.; and Volgyesi P.
2001. GME 2000 Users Manual (v2.0).

Narasimhan, S.; Dearden, R.; and Benazera, E. 2004.
Combining Particle Filters and Consistency-Based Ap-
proaches for Monitoring and Diagnosis of Stochastic Hy-
brid Systems. 15th International Workshop on Principles
of Diagnosis (DX04), Carcassonne, France.

Deb, S.; Mathur, A; Willitt, P; and Pattipati, K. 1998. De-
centralized Real-Time Monitoring and Diagnosis. IEEE
Transactions on Systems, Man, and Cybernetics.

