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Abstract 

Researchers in the diagnosis community have developed a 
number of promising techniques for system health manage-
ment. However, realistic empirical evaluation and compari-
son of these approaches is often hampered by a lack of stan-
dard data sets and suitable testbeds. In this paper we de-
scribe the Advanced Diagnostics and Prognostics Testbed 
(ADAPT) at NASA Ames Research Center. The purpose of 
the testbed is to measure, evaluate, and mature diagnostic 
and prognostic health management technologies. This paper 
describes the testbed’s hardware, software architecture, and 
concept of operations. A simulation testbed that accompa-
nies ADAPT, and some of the diagnostic and decision sup-
port approaches being investigated are also discussed. 

Introduction 

Automated methods for diagnosing problems with system 
behavior are commonplace in automobiles, copiers, and 
many other consumer products. Applying advanced diag-
nostic techniques to aerospace systems, especially aero-
space vehicles with human crews, is much more challeng-
ing. The low probability of component and subsystem fail-
ure, the cost of verification and validation, the difficulty of 
selecting the most appropriate diagnostic technology for a 
given problem, and the lack of large-scale diagnostic tech-
nology demonstrations increase the complexity of these 
applications. To meet these challenges, NASA Ames Re-
search Center has developed the Advanced Diagnostic and 
Prognostic Testbed with the following goals in mind: 
(i)  Provide a technology-neutral basis for testing and 
evaluating diagnostic systems, both software and hardware, 
(ii) Provide the capability to perform accelerated testing 
of diagnostic algorithms by manually or algorithmically in-
serting faults, 
(iii) Provide a real-world physical system such that issues 
that might be disregarded in smaller-scale experiments and 
simulations are exposed – “the devil is in the details,” 
(iv) Provide a stepping stone between pure research and 
deployment in aerospace systems, thus create a concrete 
path to maturing diagnostic technologies, and 

(v) Develop analytical methods and software architec-
tures in support of the above goals.  
 NASA missions have always provided challenging prob-
lem domains for model-based diagnosis researchers. Early 
demonstrations (Williams et al., 1998) were typically lim-
ited to particular subsystems or components, and were run 
in “shadow-mode,” in parallel with the conventional con-
trol and fault protection software. However, the increasing 
complexity of aerospace systems has made advanced diag-
nostic capabilities a necessity to ensure the reliability and 
safety of missions. Although they are well-suited to ad-
dress the needs of aerospace missions, many of the tech-
niques that fall under the “model-based diagnosis” um-
brella face opposition from project managers, who may be 
reluctant to consider techniques with limited flight experi-
ence.  
 We have developed the Advanced Diagnostics and 
Prognostics Testbed at NASA Ames Research Center to 
enable maturation of advanced fault management tech-
niques. ADAPT provides a representative physical domain 
that serves as a benchmark for performance assessment and 
comparison of algorithms and concepts that enable auto-
mated diagnosis of complex systems exhibiting hybrid, i.e., 
both continuous and discrete, behavior. The testbed docu-
mentation includes engineering schematics, component de-
scriptions, fault descriptions, and system engineering ana-
lyses, such as functional models, Failure Modes and Ef-
fects Analysis, and Testability Analysis. Additional infor-
mation includes a simulation and an Application Pro-
gramming Interface (API) to facilitate integrating diagnos-
tic applications with the testbed. We will provide the 
documentation, simulation model, API, as well as nominal 
and faulty testbed data to researchers in the diagnosis 
community.    
 The process of developing advanced diagnostic applica-
tions is just as important to the verification and validation 
of these systems as the specific algorithms that are applied. 
ADAPT establishes a problem domain with known fault 
signatures and the capability to inject failures during opera-
tion of the testbed. By implementing and testing different 



diagnostic approaches on ADAPT, we aim to improve per-
formance assessment methods and the comparison of di-
verse health management strategies. 
 This paper presents a description of ADAPT that in-
cludes its hardware and software architectures, the concept 
of operations, and a simulation testbed that emulates the 
real system. We also discuss some of the diagnostic ap-
proaches that are currently being developed on the testbed.  

Testbed Description 

The ADAPT lab is shown in Figure 1. The equipment 
racks in the background can generate, store, distribute, and 
monitor electrical power. The initial testbed configuration 
functionally represents an exploration vehicle’s Electrical 
Power System (EPS). The EPS can deliver AC (Alternat-
ing Current) and DC (Direct Current) power to loads, 
which in an aerospace vehicle would include subsystems 
such as the avionics, propulsion, life support, and thermal 
management systems. A data acquisition and control sys-
tem sends commands to and receives data from the EPS. 
The testbed operator stations are integrated into a software 
architecture that allows for nominal and faulty operations 
of the EPS, and includes a system for logging all relevant 
data to assess the performance of the health management 
applications. The following sections describe the testbed 
hardware, diagnostic challenges, concept of operations, 
and software. 

Hardware Subsystems 

Figure 2 depicts ADAPT’s major system components and 
their interconnections. Three power generation sources are 
connected to three sets of batteries, which in turn supply 
two load banks. Each load bank has provisions for 6 AC 
loads and 2 DC loads.  
Power Generation. The three sources of power generation 
include two battery chargers and a photovoltaic module. 
The battery chargers are connected to appropriate wall out-

lets through relays. Two metal halide lamps supply the 
light energy for the photovoltaic module. The three power 
generation sources can be interchangeably connected to the 
three batteries. Hardware relay logic prevents connecting 
one charge source to more than one battery at the same 
time, and from connecting one charging circuit to another 
charging circuit. 
Power Storage. Three sets of batteries are used to store 
energy for operation of the loads. Each “battery” consists 
of two 12-volt sealed lead acid batteries connected in series 
to produce a 24-volt output. Two battery sets are rated at 
100 amp-hrs and the third set is rated at 50 amp-hrs. The 
batteries and the main circuit breakers are placed in a ven-
tilated cabinet that is physically separated from the equip-
ment racks; however, the switches for connecting the bat-
teries to the upstream chargers or downstream loads are lo-
cated in the equipment racks.  
Power Distribution. Electromechanical relays are used to 
route the power from the sources to the batteries and from 
the batteries to the AC and DC loads. All relays are the 
normally-open type. An inverter converts the 24-volt DC 

 

 
Figure 1: ADAPT lab at Ames Research Center. 

 

Figure 2: Testbed components and interconnections. 



battery input to a 120-volt rms AC output. Circuit breakers 
are located at various points in the distribution network to 
prevent overcurrents from causing unintended damage to 
the system components. 
Control and Monitoring. Testbed data acquisition and 
control use National Instrument’s LabVIEW software and 
CompactFieldPoint (cFP) hardware. Table 1 lists the mod-
ules that are inserted into the two identical backplanes. The 
instrumentation allows for monitoring of voltages, cur-
rents, temperatures, switch positions, light intensities, and 
AC frequencies, as listed in Table 2.  
 

Table 1: Testbed backplane modules. 

Module Description Chan-
nels 

cFP-2000 Real-time Ethernet Module NA 

cFP-DI-301 Digital Input Module 16 (x2) 

cFP-DO-401 Digital Output Module 16 (x2) 

cFP-AI-100 Analog Input Module  8 

cFP-AI-102 Analog Input Module 8 (x2) 

cFP-RTD-122 RTD Input Module 8 

 
Table 2: Testbed instrumentation. 

Sensed Variable Number of 
Sensors 

Voltage 22 

Current 12 

Temperature 15 

Relay Position 41 

Circuit Breaker Position 17 

Light Intensity 3 

AC Frequency 2 

Diagnosis Challenges 

The ADAPT testbed offers a number of challenges to 
health management applications. The electrical power sys-
tem shown in Figure 2 is a hybrid system with multiple 
system configurations made possible by switching among 
the generation, storage, and distribution units. Timing con-
siderations and transient behavior must be taken into ac-
count when designing diagnosis algorithms. When power 
is input to the inverter there is a delay of a few seconds be-
fore power is available at the output. For some loads, there 
is a large current transient when the device is turned on. As 
shown in Figure 3, system voltages and currents depend on 
the loads attached, and noise in the sensor data becomes 
more pronounced as more loads are added. Due to the low 
probabilities of failure, seeding/inserting faults is needed. 
Through an antagonist function described in the next sec-
tion, it is possible to inject multiple faults into the testbed.  

Concept of Operations 

Unlike many other testbeds, the primary articles under test 
in ADAPT are the health management systems, not the 
physical devices of the testbed. To operate the testbed in a 
way that facilitates the study of health management tech-
nologies, the following operator roles are defined: 

• User – who simulates the role of a crew member or pilot 
operating and maintaining the testbed subsystems.  

• Antagonist – who injects faults into the subsystem either 
manually, remotely through the Antagonist console, or 
automatically through software scripts.   

• Observer – who records the experimental data and notes 
how the User responds to the faults injected by the An-
tagonist. The Observer also serves as the safety officer 
during all tests and can initiate an emergency stop.  

During an experiment, the User is responsible for control-
ling and monitoring the EPS and any attached loads that 
are required to accomplish a mission. The Antagonist dis-
rupts system operations by injecting one or more faults un-
beknownst to the User. The User may use output from a 
health management application (test article) to determine 
the state of the system and choose an appropriate recovery 
action. The Observer records the interactions and measures 
the effectiveness of the test article.  
 The testbed has two primary goals: (i) performance 
analysis of, and comparisons among, different test articles, 
and (ii) running of system studies. With the hardware and 
the supporting software infrastructure described in a sub-
sequent section, experiments may be conducted using a va-
riety of test articles to evaluate different health manage-
ment technologies. The test articles may be connected to 
different interface concepts for presenting health manage-
ment information to the human User, to study how the per-
son performs in managing system operations.  

Software 

The testbed software model supports the concept of opera-
tions that includes the previously-mentioned operational 
roles of the User (USR), Antagonist (ANT), Observer 
(OBS), and Test Article (TA), along with the Logger 
(LOG) and the Data Acquisition (DAQ) roles. The Logger 
collects and saves all communication between the various 
components. The DAQ computer interfaces with the Na-
tional Instruments data acquisition and control system. It 
sends command data to the testbed via the appropriate 

Figure 3: Sample testbed voltages (top) and currents (bottom) 

for a battery discharging to loads. 

 



backplane modules and receives testbed sensor data from 
other modules.  
 The underlying data communication is implemented us-
ing a publish/subscribe model in which data from publish-
ers are routed to all subscribers registering an interest in a 
data topic. To enforce testing protocols and ensure the in-
tegrity of the data, filters based on role and location limit 
the topics for which data can be produced or consumed. 
Table 3 lists the message topics and the topic publishers 
and subscribers. 
 

Table 3: Publish/subscribe topics. 

Topic Publisher Subscriber 

Sensor Data DAQ ANT,OBS,LOG 

Antagonist Data ANT TA,USR,LOG 

User Command USR,TA TA,ANT,OBS,LOG 

Antagonist Command ANT DAQ,OBS,LOG 

User Message USR OBS,LOG,ANT 

Note OBS LOG,ANT 

Fault Data TA USR,OBS,LOG 

Diagnostics TA USR,OBS,LOG 

Experiment Control OBS LOG 

  
 The following constraints are enforced on the various 
system components when they are operating on the 
ADAPT computer network: 

•  The DAQ can only read command data sent by the An-
tagonist and only sends sensor data which it gets directly 
from the instrumentation I/O subsystem. When no faults 
are injected, the Antagonist commands are the same as 
the User commands. The DAQ software can run only on 
the DAQ computer. It is the only software that connects 
directly to the instrumentation I/O subsystem. 

• The Antagonist can only read sensor data sent by the 
DAQ and command data sent by Test Articles and Users. 
It forwards sensor data, which it may have modified by 
fault injection. It also sends command data, which are 
read by the DAQ and the Logger. 

• The Test Article and the User cannot see DAQ sensor 
data. They have access only to Antagonist-generated 
sensor data, which are identical to DAQ sensor data 
when no faults are injected. The Test Article and User 
cannot read text data (a Note) sent by the Observer. The 
Test Article can read User commands and Antagonist da-
ta. It can send diagnostics data and User commands. 

• The Observer sends an experiment control record to ini-
tiate a testbed experiment. It also sends text data to de-
scribe observations of the ongoing experiment. The Ob-
server cannot send any data other than control and text 
data. 

•  The Logger reads all data sent over the ADAPT net-
work. The Logger assigns a unique experiment ID for 
each new experiment. 

A test article may be integrated with the testbed by install-
ing the application on one of the ADAPT computers or by 
connecting a computer with the test article application to a 
preconfigured auxiliary system that acts as a gateway to 

the ADAPT network. A test article uses an API to sub-
scribe to commands and data, and publish diagnosis results 
to the ADAPT message server. Java and C++ interfaces are 
supported. 

VIRTUAL ADAPT: Simulation Testbed 

We are also developing a high-fidelity simulation testbed 
that emulates the ADAPT hardware for running offline 
health management experiments. This environment, called 
VIRTUAL ADAPT, provides identical interfaces to the ap-
plication system modules through wrappers to the ADAPT 
network. The physical components of the testbed, i.e., the 
chargers, the batteries, relays, and the loads, are replaced 
by simulation modules that generate the same dynamic be-
haviors as the hardware test bed. Also, like the actual 
hardware, VIRTUAL ADAPT subscribes to antagonist 
commands and publishes corresponding sensor data. As a 
result, application systems developed on VIRTUAL ADAPT 
can be run directly on ADAPT, and vice versa. Therefore, 
applications can be developed and tested using VIRTUAL 
ADAPT, and then run as test articles on the actual system. 
The simulation environment also provides for precise repe-
tition of different operational scenarios, and this allows for 
more rigorous testing and evaluation of different diagnostic 
and prognostic algorithms.  
 In order to mirror the real testbed, we have addressed 
several issues that include (i) one-to-one component mod-
eling, (ii) replicating the dynamic behavior of the hardware 
components, (iii) matching the possible configurations, and 
(iv) facilitating the running of diagnosis and prognosis ex-
periments. The following sections provide a more detailed 
description of our approach to addressing these issues.  

Component-Oriented Modeling 

Our approach to component-oriented compositional model-
ing is based on a top-down process, where we first capture 
the structural description of the system in terms of the 
components and their connectivity. Component models 
replicate the component’s dynamic behaviors for different 
configurations. The connectivity relations, represented by 
energy and signal links, capture the interaction pathways 
between the components. Complex systems, such as a 
power distribution system, may operate in multiple con-
figurations. The ability to change from one configuration 
to another is modeled by switching elements. Sets of com-
ponents can also be grouped together to define subsystems. 
The modeling paradigm is implemented as part of the Fault 
Adaptive Control Technology (FACT) tool suite developed 
at Vanderbilt University (Manders et al. 2006). FACT em-
ploys the Generic Modeling Environment (GME) to pre-
sent modelers with a component library organized as hier-
archical collection of components and subsystems and a 
graphical interface for creating component-oriented system 
models (Ledeczi et al. 2001). The VIRTUAL ADAPT mod-
els created using FACT capture a number of possible 
ADAPT testbed configurations. 



 Each component includes an internal behavior model 
and an interface through which the component interacts 
with other components and the environment. The interfaces 
include two kinds of ports: (i) energy ports for energy ex-
change between the component and other components, and 
(ii) signal ports for input and output of signal values from 
the component. The current VIRTUAL ADAPT testbed 
component library includes models for the chargers, batter-
ies, inverters, loads, relays, circuit breakers, and sensors 
that exist on the current ADAPT hardware testbed. For ex-
perimental purposes and “what if” analyses, new compo-
nents can be added to the library by modifying existing 
component models or by creating new ones. System mod-
els are built by creating configurations of component mod-
els.  
 Many ADAPT testbed components are physical proc-
esses that exhibit hybrid behaviors, i.e., mixed continuous 
and discrete behaviors. These components are modeled as 
Hybrid Bond Graph (HBG) fragments (Mosterman and 
Biswas 1998). HBGs extend the bond graph modeling lan-
guage (Karnopp, Margolis, and Rosenberg 2000) by intro-
ducing junctions that can switch on and off. Bond graphs 
are a domain-independent, topological modeling language 
based on the conservation of energy and continuity of 
power. 
 Building complete HBG models for a system requires 
detailed knowledge of the system configuration and com-
ponent behaviors, as well as component parameters. This 
knowledge is typically obtained by consulting system de-
signers and experts, extracting information from device 
manuals and research papers, and using experimental data 
collected during system operations. When experimental da-
ta is used, unknown parameters and functional relations as-
sociated with the models are estimated using system identi-
fication techniques. Often, this is a difficult task that re-
quires significant analysis. 
 Model validation is performed by comparing simulated 
behaviors with data collected from experimental runs on 
ADAPT. A number of parameter estimation iterations may 
be necessary to obtain an accurate model of the system, 
keeping in mind the tradeoff between model accuracy and 
model complexity. 

Generating Efficient Simulation Models  

VIRTUAL ADAPT models created using the FACT tool 
suite can be translated into MATLAB Simulink® models 

using a systematic model transformation process (Roy-
choudhury et al. 2007) that is implemented using GME 
interpreters. The two-step process first transforms the HBG 
models into an intermediate block diagram representation, 
and then converts the block diagram representation into an 
executable Simulink model. The use of the intermediate 
block diagram provides the flexibility of generating 
executable models for other simulation environments with 
minimal effort. 
 Using naïve methods to generate executable hybrid 
system models requires pre-computation of the model for 
all possible system configurations or modes of operation. 
This is space-inefficient. The alternative is incremental 
generation of model structure at runtime when mode 
changes occur, which is time-inefficient (Daigle et al. 
2006). We use a structurally static system model where the 
correct operating configuration of each bond graph element 
is selected online when mode changes occur, thus reducing 
excessive space and time costs at runtime. These 
algorithms exploit causality in bond graphs and, in addition 
to incremental generation, can also minimize the use of 
high-cost fixed point or algebraic loop solvers. Algebraic 
loop structures may arise in the Simulink structures to 
accommodate the switching functions in the HBG models. 
 In addition to generating nominal behaviors, the simula-
tion system provides an interface through which sensor, ac-
tuator, and process faults with different “fault profiles” 
(e.g., abrupt versus incipient) can be injected into the sys-
tem at specific time points. The Simulink model then gen-
erates faulty system behavior, which can form the basis for 
running diagnosis, prognosis, and fault-adaptive control 
experiments. In general, many different user roles and test 
articles, such as controllers, fault detectors, diagnosers, and 
interfaces for observing behaviors, can be tested. 

Example: Battery Component Modeling 

We demonstrate our modeling approach by developing a 
model of the batteries on the ADAPT testbed. The battery 
component model is developed from an electrical equiva-
lent circuit model (Ceraolo 2000), shown in Figure 4 (left). 
The model computes the output battery voltage and the 
current flowing from the battery to a connected load when 
the battery is discharging; or from the charger to the bat-
tery, when it is charging. In both situations, some of this 
current goes into charging or discharging the batteries, and 
the rest is lost to parasitic reactions (e.g., gas production) 

 
 

Figure 4: The equivalent circuit of the battery (left) and its corresponding hybrid bond graph (right). 



modeled by a resistive element, Rp. The capacitor C0, 
which has a large capacitance value, models the steady-
state voltage of the battery. The steady-state voltage of the 
battery is a linear function of this capacitance value and the 
current amount of charge in the battery. The remaining re-
sistor-capacitor pairs model the internal resistance and pa-
rasitic capacitance of the battery. All of the parameter val-
ues are nonlinear functions of system variables, such as 
state of charge and temperature. The nonlinear charging 
and discharging of the battery is captured as distinct modes 
of operation. Moreover, the internal battery model compo-
nents differ for the different modes of operation. For ex-
ample, the R3-C3 pair is only active during the charge 
mode. The two configurations are modeled by a switch in 
Figure 4 (left). Other configuration changes include 
switching between a load and a charger in the discharge 
versus charge modes. 
 Figure 4 (right) shows the HBG model of the equivalent 
circuit of the battery. The capacitors and resistors are in 
one-to-one correspondence with the electrical circuit ele-
ments. The hybrid nature of the battery is modeled by a 
controlled 0-junction, which is switched on and off de-
pending on the direction of current through the battery. 
Most of the parameters in the battery HBG are nonlinear, 
and these nonlinearities are captured by making the bond 
graph element parameters nonlinear functions of system 
variables, such as the battery state of charge (SOC) and 
depth of charge (DOC). These two variables are computed 
in another portion of the model, not shown in Figure 4. As 
an example, the resistance of R2 is proportional to the natu-
ral logarithm of the DOC. The variable parameters are in-
dicated by prefixing their type-name with the letter “M”, 
e.g., MR.  
 We have performed extensive system identification to 
estimate the parameters of the battery model, and have ob-
tained good matches to actual observed behavior. Figure 5 
shows a comparison of actual and simulated battery volt-
age in the battery discharge mode. The battery begins at a 
steady state, and as soon as a load is attached, it begins to 
discharge. As the battery nears its terminal voltage, the 
load is taken offline, and the battery begins to approach its 

new steady-state value. A battery charger is then con-
nected, and the charging process generates an increase in 
the observed battery voltage. 

Fault Injection 

ADAPT supports the repeatable injection of faults into the 
system. Most of the fault injection is currently imple-
mented via software using the Antagonist role described 
previously. Software fault injection includes one or more 
of the following: 1) sending commands to the testbed that 
were not initiated by the User; for this case the Test Article 
will not see the spurious command to the testbed, since it 
was not sent by the User; 2) blocking commands sent to 
the testbed by the User; 3) altering the testbed sensor data; 
for this case the Test Article and the User will see the al-
tered sensor data since these reflect the faulted system. The 
sensor data can be altered in a number of ways, as illus-
trated in Figure 6. For a static fault, the data are frozen at 
previous values and remain fixed. An abrupt fault applies a 
constant offset to the true data value. An incipient fault ap-
plies an offset that starts at zero and grows linearly with 
time. Excess sensor noise is introduced by adding Gaussian 
or uniform noise to the measured value. Future work will 
add intermittent data faults, data spikes, and the ability to 
introduce more than one fault type for a given sensor at the 
same time. By using these three approaches to software 
fault injection, fault scenarios may be constructed that rep-
resent diverse component faults.  

 In addition to the faults that are injected via software, 
faults may be physically injected at the testbed hardware. 
A simple example is tripping a circuit breaker using the 
manual throw bars. Another is using the power toggle 
switch to turn off the inverter. Relays may be failed by 
short-circuiting the appropriate relay terminals. Wires lead-
ing to or from sensors may be short-circuited or discon-
nected. Additional faults include blocking portions of the 
photovoltaic panel and loosening the wire connections in 
power-bus common blocks. Faults may also be introduced 
in the loads attached to the EPS. For example, one load is a 
pump that circulates fluid through a closed loop with a 
flow meter and valve. The valve can be closed slightly to 
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Figure 5: Comparison of actual and simulated battery volt-

ages through discharge, no load, and charge modes. 
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Figure 6: Example fault types. 

 



vary the back pressure on the pump and reduce the flow 
rate. Table 4 lists the faults that are injected into the test-
bed.  
 Since some fault scenarios may be costly, dangerous, or 
impossible to introduce in the actual hardware, VIRTUAL 
ADAPT also provides fault injection capabilities. For ex-
ample, degradation in the batteries can be simulated as an 
incipient change in a battery capacitance parameter. Other 
parametric faults can also be injected and simulated. In ad-
dition, VIRTUAL ADAPT permits experimentation with 
fault scenarios that cannot be realized in the hardware, 
such as an inverter malfunction. Currently, mostly discrete 
failures (e.g., relay failures) and sensor errors are intro-
duced into ADAPT, so the simulation provides added func-
tionality by enabling injection of other types of fault sce-
narios. 
 

Table 4: Faults injected into testbed. 

Fault Description Fault Type 

Circuit breaker tripped discrete 

Relay failed open discrete 

Relay failed closed discrete 

Sensor shorted discrete 

Sensor open circuit discrete 

Sensor stuck discrete 

Sensor drift continuous 

Excessive sensor noise continuous 

AC inverter failed discrete 

PV panel blocked continuous 

Loose bus connections continuous 

Battery faults continuous 

Load faults discrete, cont. 

Test Articles 

The test articles to be evaluated in ADAPT are health man-
agement applications from industry, academia, and gov-
ernment. The techniques employed may be data-driven, 
rule-based, model-based, or a combination of different ap-
proaches. Health management concepts to be investigated 
include fault detection, diagnosis, recovery, failure predic-
tion and mitigation. 
 The technologies currently integrated with the testbed 
include model-based reasoning tools HyDE – Hybrid Di-
agnostic Engine (Narasimhan, Dearden, and Benazera 
2004); FACT – Fault Adaptive Control Technology 
(Manders et al. 2006); and TEAMS-RT – Testability Engi-
neering and Maintenance System Real Time (Deb et al. 
1998). These tools are from government, academia, and 
industry, respectively. Each test article uses the ADAPT 
API to connect to the ADAPT message server, subscribing 
to the appropriate commands and data, and publishing the 
diagnosis results.  
 Each tool employs different abstraction, modeling, and 
reasoning methodologies. For example, TEAMS-RT typi-
cally discretizes continuous-valued sensor data into 
pass/fail test results. Cause-effect dependencies in a failure 
space, multi-signal model that link causes (components) to 

effects (test results) are used to isolate the fault. In contrast, 
FACT includes a hybrid observer that tracks continuous 
system behavior and mode changes. Statistical tests are 
used to detect a fault. Qualitative and quantitative fault 
signatures are used for fault isolation.   
 We aim to explore the advantages and disadvantages of 
the different approaches to health management to better 
understand their applicability to different fault types and 
operational contexts. 

Performance Assessment 

The purpose and scope of assessments and experiments as 
they relate to diagnostic and prognostic techniques and sys-
tems can vary significantly. We now identify a few differ-
ent classes of assessments.  
 I. Platform assessment: Processors (CPUs) and operat-
ing systems may react differently to different diagnostic 
workloads. Therefore, it can be of interest to test an im-
plementation on different computational platforms.  
 II. Implementation assessment: The programming lan-
guage and the data structures can have a substantial impact 
on performance; hence it may be of interest to compare dif-
ferent implementations of the same algorithm.  
 III. Algorithm assessment: Different algorithms may 
solve the same computational problem. For instance, the 
problem of computing marginals in Bayesian networks can 
be solved using clique tree clustering or other approaches. 
Typically, this type of assessment involves the use of prob-
lem instances (Mengshoel, Wilkins, and Roth 2006).  
 IV. Technique assessment: The problem of electric pow-
er system diagnosis can be addressed using, for example, 
model-based reasoners, Bayesian networks or artificial 
neural networks.  
 V. System assessment:  Overall system performance may 
also depend on the human(s) in the loop, and how they use 
and interact with different automated diagnostics systems. 
 Initial efforts will focus on classes III, IV, and V. The 
assessment of different diagnostic algorithms will consist 
of metrics determined from the compilation of several test 
runs, which include nominal and faulty behavior. For a 
single test run, it will be classified as a false alarm if a fault 
was not injected during the run but the test article reported 
one or if the test article reported a fault before it was in-
jected. If the test article does not report a fault when one 
was injected, it will be classified as a missed alarm. The 
correctness and precision of fault isolation will also be de-
termined for each run. By combining the results over sev-
eral runs, false alarm rates, missed alarm rates, and isola-
tion rates for the test article will be measured. Additional 
metrics include fault detection and isolation times. Not all 
of the metrics will apply to each test article. For example, a 
particular technique may only perform fault detection 
without isolating the cause of the fault. Additional studies 
will include variations in the amount and variability of data 
available to the test articles, i.e., only data from voltage 
sensors is available or some data is available intermittently.  



Conclusions 

This paper describes a testbed at NASA Ames Research 
Center for evaluating and maturing diagnostic and prog-
nostic concepts and technologies. The electrical power sys-
tem hardware, together with the software architecture and 
unique concept of operations, offers many challenges to 
diagnostic applications such as a multitude of system 
modes, transient behavior after switching actions, multiple 
faults, and load-dependent noise. A simulation model is 
available to facilitate the development and testing of health 
management applications. Future work will include the in-
tegration of more test articles, loads, faults, operational 
scenarios, and evaluation techniques. In meeting the five 
goals of the testbed listed in the Introduction, much greater 
knowledge of the trade-offs among diagnostic technologies 
will be available to system designers for future programs. 
Many current technology assessments have relied upon 
trade literature or technical publications of an algorithm’s 
definition and performance. ADAPT provides a technol-
ogy-neutral basis for the comparison of various techniques 
and a highly configurable operational environment for the 
evaluation of an algorithm’s performance under specific 
operational requirements and fault conditions.  
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