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Achieving end-to-end quality of service (QoS) in distributed real-time embedded (DRE) systems require QoS support and en-
forcement from their underlying operating platforms that integrates many real-time capabilities, such as QoS-enabled network
protocols, real-time operating system scheduling mechanisms and policies, and real-time middleware services. As standards-based
quality of service (QoS) enabled component middleware automates integration and configuration activities, it is increasingly being
used as a platform for developing open DRE systems that execute in environments where operational conditions, input workload,
and resource availability cannot be characterized accurately a priori. Although QoS-enabled component middleware offers many
desirable features, however, it historically lacked the ability to allocate resources efficiently and enable the system to adapt to fluc-
tuations in input workload, resource availability, and operating conditions. This paper presents three contributions to research
on adaptive resource management for component-based open DRE systems. First, we describe the structure and functionality
of the resource allocation and control engine (RACE), which is an open-source adaptive resource management framework built
atop standards-based QoS-enabled component middleware. Second, we demonstrate and evaluate the effectiveness of RACE in the
context of a representative open DRE system: NASA’s magnetospheric multiscale mission system. Third, we present an empirical
evaluation of RACE’s scalability as the number of nodes and applications in a DRE system grows. Our results show that RACE is
a scalable adaptive resource management framework and yields a predictable and high-performance system, even in the face of
changing operational conditions and input workload.

Copyright © 2008 Nishanth Shankaran et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Distributed real-time and embedded (DRE) systems form the
core of many large scale mission-critical domains. In these
systems, achieving end-to-end quality of service (QoS) re-
quires integrating a range of real-time capabilities, such as
QoS-enabled network protocols, real-time operating system
scheduling mechanisms and policies, and real-time middle-
ware services, across the system domain. Although existing
research and solutions [1, 2] focus on improving the per-
formance and QoS of individual capabilities of the system
(such as operating system scheduling mechanism and poli-
cies), they are not sufficient for DRE systems as these systems
require integrating a range of real-time capabilities across

the system domain. Conventional QoS-enabled middleware
technologies, such as real-time CORBA [3] and the real-time
Java [4], have been used extensively as an operating platforms
to build DRE systems as they support explicit configuration
of QoS aspects (such as priority and threading models), and
provide many desirable real-time features (such as priority
propagation, scheduling services, and explicit binding of net-
work connections).

QoS-enabled middleware technologies have traditionally
focused on DRE systems that operate in closed environments
where operating conditions, input workloads, and resource
availability are known in advance and do not vary signif-
icantly at run-time. An example of a closed DRE system
is an avionics mission computer [5], where the penalty of
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not meeting a QoS requirement (such as deadline) can re-
sult in the failure of the entire system or mission. Con-
ventional QoS-enabled middleware technologies are insuf-
ficient, however, for DRE systems that execute in open en-
vironments where operational conditions, input workload,
and resource availability cannot be characterized accurately
a priori. Examples of open DRE systems include shipboard
computing environments [6], multisatellite missions [7];
and intelligence, surveillance, and reconnaissance missions
[8].

Specifying and enforcing end-to-end QoS is an impor-
tant and challenging issue for open systems DRE due to their
unique characteristics, including (1) constraints in multiple
resources (e.g., limited computing power and network band-
width) and (2) highly fluctuating resource availability and
input workload. At the heart of achieving end-to-end QoS
are resource management techniques that enable open DRE
systems to adapt to dynamic changes in resource availabil-
ity and demand. In earlier work, we developed adaptive re-
source management algorithms (such as EUCON [9], DEU-
CON [10], HySUCON [11], and FMUF [12]) and architec-
tures, such as HiDRA [13] based on control-theoretic tech-
niques. We then developed FC-ORB [14], which is a QoS-
enabled adaptive middleware that implements the EUCON
algorithm to handle fluctuations in application workload
and system resource availability.

A limitation with our prior work, however, is that it
tightly coupled resource management algorithms within par-
ticular middleware platforms, which made it hard to enhance
the algorithms without redeveloping significant portions of
the middleware. For example, since the design and imple-
mentation of FC-ORB were closely tied to the EUCON adap-
tive resource management algorithm, significant modifica-
tions to the middleware were needed to support other re-
source management algorithms, such as DEUCON, HySU-
CON, or FMUF. Object-oriented frameworks have tradition-
ally been used to factor out many reusable general-purpose
and domain-specific services from DRE systems and appli-
cations [15]; however, to alleviate the tight coupling between
resource management algorithms and middleware platforms
and improve flexibility, this paper presents an adaptive re-
source management framework for open DRE systems. Con-
tributions of this paper to the study of adaptive resource
management solutions for open DRE systems include the fol-
lowing.

(i) The design of a resource allocation and control engine
(RACE), which is a fully customizable and configurable adap-
tive resource management framework for open DRE systems.
RACE decouples adaptive resource management algorithms
from the middleware implementation, thereby enabling the
usage of various resource management algorithms without
the need for redeveloping significant portions of the middle-
ware. RACE can be configured to support a range of algo-
rithms for adaptive resource management without requiring
modifications to the underlying middleware. To enable the
seamless integration of resource allocation and control al-
gorithms into DRE systems, RACE enables the deployment
and configuration of feedback control loops. RACE, there-
fore, complements theoretical research on adaptive resource
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Figure 1: A resource allocation and control engine (RACE) for
open DRE systems.

management algorithms that provide a model and theoreti-
cal analysis of system performance.

As shown in Figure 1, RACE provides (1) resource mon-
itors that track utilization of various system resources, such
as CPU, memory, and network bandwidth; (2) QoS moni-
tors that track application QoS, such as end-to-end delay;
(3) resource allocators that allocate resource to components
based on their resource requirements and current availabil-
ity of system resources; (4) configurators that configure mid-
dleware QoS parameters of application components; (5) con-
trollers that compute end-to-end adaptation decisions based
on control algorithms to ensure that QoS requirements of ap-
plications are met; and (6) effectors that perform controller-
recommended adaptations.

(ii) Evaluate the effectiveness of RACE in the context of
NASA’s magnetospheric multiscale system (MMS) mission,
which is representative open DRE system. The MMS mission
system consists of a constellation of spacecrafts that maintain
a specific formation while orbiting over a region of scientific
interest. In these spacecrafts, availability of resource such as
processing power (CPU), storage, network bandwidth, and
power (battery) are limited and subjected to run-time vari-
ations. Moreover, resource utilization by, and input work-
load of, applications that execute in this system cannot be
accurately characterized a priori. This paper evaluates the
adaptive resource management capabilities of RACE in the
context of this representative open DRE system. Our results
demonstrate that when adaptive resource management algo-
rithms for DRE systems are implemented using RACE, they
yield a predictable and high-performance system, even in the
face of changing operational conditions and workloads.

(iii) The empirical evaluation of RACE’s scalability as the
number of nodes and applications in a DRE system grows.
Scalability is an integral property of a framework as it de-
termines the framework’s applicability. Since open DRE sys-
tems comprise large number of nodes and applications, to
determine whether RACE can be applied to such systems,
we empirically evaluate RACE’s scalability as the number of
applications and nodes in the system increases. Our results
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Figure 2: Taxonomy of related research.

demonstrate that RACE scales as well as the number of ap-
plications and nodes in the system increases, and therefore
can be applied to a wide range of open DRE systems.

The remainder of the paper is organized as follows:
Section 2 compares our research on RACE with related work;
Section 3 motivates the use of RACE in the context of a rep-
resentative DRE system case study; Section 4 describes the
architecture of RACE and shows how it aids in the develop-
ment of the case study described in Section 3; Section 5 em-
pirically evaluates the performance of the DRE system when
control algorithms are used in conjunction with RACE and
also presents an empirical measure of RACE’s scalability as
the number of applications and nodes in the system grows;
and Section 6 presents concluding remarks.

2. RESEARCH BACKGROUND AND
RELATED WORK COMPARISON

This section presents an overview of existing middleware
technologies that have been used to develop open DRE sys-
tem and also compares our work on RACE with related re-
search on building open DRE systems. As in Figure 2 and
described below, we classify this research along two orthog-
onal dimensions: (1) QoS-enabled DOC middleware versus
QoS-enabled component middleware, and (2) design-time
versus run-time QoS configuration, optimization, analysis,
and evaluation of constraints, such as timing, memory, and
CPU.

2.1. Overview of conventional and QoS-enabled
DOC middleware

Conventional middleware technologies for distributed object
computing (DOC), such as the object management group
(OMG)’s CORBA [16] and Sun’s Java RMI [17], encapsu-
lates and enhances native OS mechanisms to create reusable
network programming components. These technologies pro-
vide a layer of abstraction that shields application devel-
opers from the low-level platform-specific details and de-
fine higher-level distributed programming models whose

reusable API’s and components automate and extend native
OS capabilities.

Conventional DOC middleware technologies, however,
address only functional aspects of system/application devel-
opment such as how to define and integrate object inter-
faces and implementations. They do not address QoS as-
pects of system/-application development such as how to (1)
define and enforce application timing requirements, (2) al-
locate resources to applications, and (3) configure OS and
network QoS policies such as priorities for application pro-
cesses and/or threads. As a result, the code that configures
and manages QoS aspects often become entangled with the
application code. These limitations with conventional DOC
middleware have been addressed by the following run-time
platforms and design-time tools.

(i) Run-time: early work on resource management mid-
dleware for shipboard DRE systems presented in [18, 19]
motivated the need for adaptive resource management mid-
dleware. This work was further extended by QARMA [20],
which provides resource management as a service for ex-
isting QoS-enabled DOC middleware, such as RT-CORBA.
Kokyu [21] also enhances RT-CORBA QoS-enabled DOC
middleware by providing a portable middleware schedul-
ing framework that offers flexible scheduling and dispatch-
ing services. Kokyu performs feasibility analysis based on
estimated worst case execution times of applications to de-
termine if a set of applications is schedulable. Resource re-
quirements of applications, such as memory and network
bandwidth, are not captured and taken into consideration
by Kokyu. Moreover, Kokyu lacks the capability to track uti-
lization of various system resources as well as QoS of appli-
cations. To address these limitations, research presented in
[22] enhances QoS-enabled DOC middleware by combining
Kokyu and QARMA.

(ii) Design-time: RapidSched [23] enhances QoS-enabled
DOC middleware, such as RT-CORBA, by computing and
enforcing distributed priorities. RapidSched uses PERTS [24]
to specify real-time information, such as deadline, estimated
execution times, and resource requirements. Static schedula-
bility analysis (such as rate monotonic analysis) is then per-
formed and priorities are computed for each CORBA object
in the system. After the priorities are computed, RapidSched
uses RT-CORBA features to enforce these computed priori-
ties.

2.2. Overview of conventional and QoS-enabled
component middleware

Conventional component middleware technologies, such as
the CORBA component model (CCM) [25] and enterprise
Java beans [26, 27], provide capabilities that addresses the
limitation of DOC middleware technologies in the context
of system design and development. Examples of additional
capabilities offered by conventional component middleware
compared to conventional DOC middleware technology in-
clude (1) standardized interfaces for application component
interaction, (2) model-based tools for deploying and inter-
connecting components, and (3) standards-based mecha-
nisms for installing, initializing, and configuring application
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components, thus separating concerns of application devel-
opment, configuration, and deployment.

Although conventional component middleware support
the design and development of large scale distributed sys-
tems, they do not address the QoS limitations of DOC mid-
dleware. Therefore, conventional component middleware
can support large scale enterprise distributed systems, but
not DRE systems that have the stringent QoS requirements.
These limitations with conventional component-based mid-
dleware have been addressed by the following run-time plat-
forms and design-time tools.

(i) Run-time: QoS provisioning frameworks, such as
QuO [28] and Qoskets [8, 29, 30], help ensure desired perfor-
mance of DRE systems built atop QoS-enabled DOC middle-
ware and QoS-enabled component middleware, respectively.
When applications are designed using Qoskets (1) resources
are dynamically (re)allocated to applications in response to
changing operational conditions and/or input workload and
(2) application parameters are fine-tuned to ensure that allo-
cated resources are used effectively. With this approach, how-
ever, applications are augmented explicitly at design-time
with Qosket components, such as monitors, controllers, and
effectors. This approach thus requires redesign and reassem-
bly of existing applications built without Qoskets. When
applications are generated at run-time (e.g., by intelligent
mission planners [31]), this approach would require plan-
ners to augment the applications with Qosket components,
which may be infeasible since planners are designed and
built to solve mission goals and not perform such platform-
/middleware-specific operations.

(ii) Design-time: Cadena [32] is an integrated environ-
ment for developing and verifying component-based DRE
systems by applying static analysis, model-checking, and
lightweight formal methods. Cadena also provides a com-
ponent assembly framework for visualizing and developing
components and their connections. VEST [33] is a design as-
sistant tool based on the generic modeling environment [34]
that enables embedded system composition from component
libraries and checks whether timing, memory, power, and
cost constraints of real-time and embedded applications are
satisfied. AIRES [35] is a similar tool that provides the means
to map design-time models of component composition with
real-time requirements to run-time models that weave to-
gether timing and scheduling attributes. The research pre-
sented in [36] describes a design assistant tool, based on
MAST [37], that comprises a DSML and a suite of analy-
sis and system QoS configuration tools and enables compo-
sition, schedulability analysis, and assignment of operating
system priority for application components.

Some design-time tools, such as AIRES, VEST, and those
presented in [36], use estimates, such as estimated worst
case execution time, estimated CPU, memory, and/or net-
work bandwidth requirements. These tools are targeted for
systems that execute in closed environments, where opera-
tional conditions, input workload, and resource availability
can be characterized accurately a priori. Since RACE tracks
and manages utilization of various system resources, as well
as application QoS, it can be used in conjunction with these
tools to build open DRE systems.

2.3. Comparing RACE with related work

Our work on RACE extends earlier work on QoS-enabled
DOC middleware by providing an adaptive resource man-
agement framework for open DRE systems built atop QoS-
enabled component middleware. DRE systems built using
RACE benefit from (1) adaptive resource management ca-
pabilities of RACE and (2) additional capabilities offered
by QoS-enabled component middleware compared to QoS-
enabled DOC middleware, as discussed in Section 2.2.

Compared to related research presented in [18–20],
RACE is an adaptive resource management framework that
can be customized and configured using model-driven de-
ployment and configuration tools such as the platform-
independent component modeling language (PICML) [38].
Moreover, RACE provides adaptive resource and QoS man-
agement capabilities more transparently and nonintrusively
than Kokyu, QuO, and Qoskets. In particular, it allocates
CPU, memory, and networking resources to application
components and tracks and manages utilization of various
system resources, as well as application QoS. In contrast to
our own earlier work on QoS-enabled DOC middleware,
such as FC-ORB [14] and HiDRA [13], RACE is a QoS-
enabled component middleware framework that enables the
deployment and configuration of feedback control loops in
DRE systems.

In summary, RACE’s novelty stems from its combina-
tion of (1) design-time model-driven tools that can both
design applications and customize and configure RACE it-
self, (2) QoS-enabled component middleware run-time plat-
forms, and (3) research on control-theoretic adaptive re-
source management. RACE can be used to deploy and man-
age component-based applications that are composed at
design-time via model-driven tools, as well as at run-time by
intelligent mission planners [39], such as SA-POP [31].

3. CASE STUDY: MAGNETOSPHERIC MULTISCALE
(MMS) MISSION DRE SYSTEM

This section presents an overview of NASA’s magnetospheric
multiscale (MMS) mission [40] as a case study to motivate
the need for RACE in the context of open DRE systems. We
also describe the resource and QoS management challenges
involved in developing the MMS mission using QoS-enabled
component middleware.

3.1. MMS mission system overview

NASA’s MMS mission system is a representative open DRE
system consisting of several interacting subsystems (both in-
flight and stationary) with a variety of complex QoS require-
ments. As shown in Figure 3, the MMS mission consists of a
constellation of five spacecrafts that maintain a specific for-
mation while orbiting over a region of scientific interest. This
constellation collects science data pertaining to the earth’s
plasma and magnetic activities while in orbit and send it to
a ground station for further processing. In the MMS mission
spacecrafts, availability of resource such as processing power
(CPU), storage, network bandwidth, and power (battery) are
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limited and subjected to run-time variations. Moreover, re-
source utilization by, and input workload of, applications
that execute in this system cannot be accurately characterized
a priori. These properties make the MMS mission system an
open DRE system.

Applications executing in this system can be classified as
guidance, navigation, and control (GNC) applications and
science applications. The GNC applications are responsible
for maintaining the spacecraft within the specified orbit.
The science applications are responsible for collecting science
data, compressing and storing the data, and transmitting the
stored data to the ground station for further processing.

As shown in Figure 3, GNC applications are localized to a
single spacecraft. Science applications tend to span the entire
spacecraft constellation, that is, all spacecrafts in the constel-
lation have to coordinate with each other to achieve the goals
of the science mission. GNC applications are considered hard
real-time applications (i.e., the penalty of not meeting QoS
requirement(s) of these applications is very high, often fatal
to the mission), whereas science applications are considered
soft real-time applications (i.e., the penalty of not meeting
QoS requirement(s) of these applications is high, but not fa-
tal to the mission).

Science applications operate in three modes: slow survey,
fast survey, and burst mode. Science applications switch from
one mode to another in reaction to one or more events of in-
terest. For example, for a science application that monitors
the earth’s plasma activity, the slow survey mode is entered
outside the regions of scientific interests and enables only a
minimal set of data acquisition (primarily for health moni-
toring). The fast survey mode is entered when the spacecrafts
are within one or more regions of interest, which enables
data acquisition for all payload sensors at a moderate rate. If
plasma activity is detected while in fast survey mode, the ap-
plication enters burst mode, which results in data collection
at the highest data rates. Resource utilization by, and impor-
tance of, a science application is determined by its mode of
operation, which is summarized by Table 1.

Table 1: Characteristics of science application.

Mode Relative importance Resource consumption

Slow survey Low Low

Fast survey Medium Medium

Burst High High

Each spacecraft consists of an onboard intelligent mis-
sion planner, such as the spreading activation partial-order
planner (SA-POP) [31] that decomposes overall mission
goal(s) into GNC and science applications that can be
executed concurrently. SA-POP employs decision-theoretic
methods and other AI schemes (such as hierarchical task de-
composition) to decompose mission goals into navigation,
control, data gathering, and data processing applications. In
addition to initial generation of GNC and science applica-
tions, SA-POP incrementally generates new applications in
response to changing mission goals and/or degraded perfor-
mance reported by onboard mission monitors.

We have developed a prototype implementation of the
MMS mission systems in conjunction with our colleagues at
Lockheed Martin Advanced Technology Center, Palo Alto,
California. In our prototype implementation, we used the
component-integrated ACE ORB (CIAO) [41] and deployment
and configuration engine (DAnCE) [42] as the QoS-enabled
component middleware platform. Each spacecraft uses SA-
POP as its onboard intelligent mission planner.

3.2. Adaptive resource management requirements of
the MMS mission system

As discussed in Section 2.2, the use of QoS-enabled compo-
nent middleware to develop open DRE systems, such as the
NASA MMS mission, can significantly improve the design,
development, evolution, and maintenance of these systems.
In the absence of an adaptive resource management frame-
work, however, several key requirements remain unresolved
when such systems are built in the absence of an adaptive
resource management framework. To motivate the need for
RACE, the remainder of this section presents the key resource
and QoS management requirements that we addressed while
building our prototype of the MMS mission DRE system.

3.2.1. Requirement 1: resource allocation to applications

Applications generated by SA-POP are resource sensitive, that
is, QoS is affected significantly if an application does not re-
ceive the required CPU time and network bandwidth within
bounded delay. Moreover, in open DRE systems like the
MMS mission, input workload affects utilization of system
resources and QoS of applications. Utilization of system re-
sources and QoS of applications may therefore vary signifi-
cantly from their estimated values. Due to the operating con-
ditions for open DRE systems, system resource availability,
such as available network bandwidth, may also be time vari-
ant.

A resource management framework therefore needs to
(1) monitor the current utilization of system resources,
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(2) allocate resources in a timely fashion to applications such
that their resource requirements are met using resource allo-
cation algorithms such as PBFD [43], and (3) support mul-
tiple resource allocation strategies since CPU and memory
utilization overhead might be associated with implementa-
tions of resource allocation algorithms themselves and select
the appropriate one(s) depending on properties of the appli-
cation and the overheads associated with various implemen-
tations. Section 4.2.1 describes how RACE performs online
resource allocation to application components to address this
requirement.

3.2.2. Requirement 2: configuring platform-specific
QoS parameters

The QoS experienced by applications depend on various
platform-specific real-time QoS configurations including (1)
QoS configuration of the QoS-enabled component middleware,
such as priority model, threading model, and request pro-
cessing policy; (2) operating system QoS configuration, such
as real-time priorities of the process(es) and thread(s) that
host and execute within the components, respectively; and
(3) networks QoS configurations, such as diffserv code points
of the component interconnections. Since these configura-
tions are platform-specific, it is tedious and error-prone for
system developers or SA-POP to specify them in isolation.

An adaptive resource management framework therefore
needs to provide abstractions that shield developers and/or
SA-POP from low-level platform-specific details and define
higher-level QoS specification models. System developers
and/or intelligent mission planners should be able to spec-
ify QoS characteristics of the application such as QoS re-
quirements and relative importance, and the adaptive re-
source management framework should then configure the
platform-specific parameters accordingly. Section 4.2.2 de-
scribes how RACE provides a higher level of abstractions
and shield system developers and SA-POP from low-level
platform-specific details to address this requirement.

3.2.3. Requirement 3: enabling dynamic system
adaptation and ensuring QoS requirements are met

When applications are deployed and initialized, resources
are allocated to application components based on the esti-
mated resource utilization and estimated/current availability
of system resources. In open DRE systems, however, actual
resource utilization of applications might be significantly dif-
ferent than their estimated values, as well as availability of
system resources vary dynamically. Moreover, for applica-
tions executing in these systems, the relation between input
workload, resource utilization, and QoS cannot be character-
ized a priori.

An adaptive resource management framework therefore
needs to provide monitors that track system resource utiliza-
tion, as well as QoS of applications, at run-time. Although
some QoS properties (such as accuracy, precision, and fi-
delity of the produced output) are application-specific, cer-
tain QoS (such as end-to-end latency and throughput) can be
tracked by the framework transparently to the application.

Applications with time-varying
resource and QoS requirements

Input Adapter

RACE

Allocators Controllers

Configurators

Central Monitor

Application
QoS

System
Resource

Utilization
Deployment plan

CIAO/DAnCE

Deploy Components

QoS
Monitors

Resource
Monitors

System domain with time-varying
resource availability

Figure 4: Detailed design of RACE.

However, customization and configuration of the frame-
work with domain-specific monitors (both platform-specific
resource monitors and application-specific QoS monitors)
should be possible. In addition, the framework needs to en-
able the system to adapt to dynamic changes, such as varia-
tions in operational conditions, input workload, and/or re-
source availability. Section 4.2.3 demonstrates how RACE
performs system adaptation and ensures QoS requirements
of applications are met to address this requirement.

4. STRUCTURE AND FUNCTIONALITY OF RACE

This section describes the structure and functionality of
RACE. RACE supports open DRE systems built atop CIAO,
which is an open-source implementation of lightweight
CCM. All entities of RACE themselves are designed and im-
plemented as CCM components, so RACE’s Allocators and
Controllers can be configured to support a range of resource
allocation and control algorithms using model-driven tools,
such as PICML.

4.1. Design of RACE

Figure 4 elaborates the earlier architectural overview of
RACE in Figure 1 and shows how the detailed design of
RACE is composed of the following components: (1) In-
putAdapter, (2) CentralMonitor, (3) Allocators, (4) Config-
urators, (5) Controllers, and (6) Effectors. RACE monitors
application QoS and system resource usage via its Resource
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+name: string(idl)
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Figure 6: Main entities of RACE’s E-2-E IDL structure.

Monitor, QoS-Monitors, Node Monitors, and Central Monitor.
Each component in RACE is described below in the context
of the overall adaptive resource management challenge it ad-
dresses.

4.1.1. Challenge 1: domain-specific representation of
application metadata

Problem

End-to-end applications can be composed either at design-
time or at run-time. At design-time, CCM-based end-to-end
applications are composed using model-driven tools, such as
PICML; and at run-time, they can be composed by intelli-
gent mission planners like SA-POP. When an application is
composed using PICML, metadata describing the applica-
tion is captured in XML files based on the PackageConfigu-
ration schema defined by the object management group’s de-
ployment and configuration specification [44]. When appli-
cations are generated during run-time by SA-POP, metadata
is captured in an in-memory structure defined by the plan-
ner.

Solution: domain-specific customization and
configuration of RACE’s adapters

During design-time, RACE can be configured using PICML
and an InputAdapter appropriate for the domain/system can
be selected. For example, to manage a system in which
applications are constructed at design-time using PICML,
RACE can be configured with the PICMLInputAdapter; and
to manage a system in which applications are constructed at
run-time using SA-POP, RACE can be configured with the
SAPOPInputAdapter. As shown in Figure 5, the InputAdapter
parses the metadata that describes the application into an in-
memory end-to-end (E-2-E) IDL structure that is internal to
RACE. Key entities of the E-2-E IDL structure are shown in
Figure 6.

The E-2-E IDL structure populated by the InputAdapter
contains information regarding the application, including
(1) components that make up the application and their
resource requirement(s), (2) interconnections between the
components, (3) application QoS properties (such relative
priority) and QoS requirement(s) (such as end-to-end de-
lay), and (4) mapping components onto domain nodes. The
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Figure 7: Architecture of monitoring framework.

mapping of components onto nodes need not be specified in
the metadata that describes the application which is given to
RACE. If a mapping is specified, it is honored by RACE; if
not, a mapping is determined at run-time by RACE’s Alloca-
tors.

4.1.2. Challenge 2: efficient monitoring of system
resource utilization and application QoS

Problem

In open DRE systems, input workload, application QoS, and
utilization and availability of system resource are subject to
dynamic variations. In order to ensure application QoS re-
quirements are met, as well as utilization of system resources
are within specified bounds, application QoS and utiliza-
tion/availability of system resources are to be monitored pe-
riodically. The key challenge lies in designing and imple-
menting a resource and QoS monitoring architecture that
scales as well as the number of applications and nodes in the
system increase.

Solution: hierarchical QoS and
resource monitoring architecture

RACE’s monitoring framework is composed of the Central
Monitor, Node Monitors, Resource Monitors, and QoS Mon-
itors. These components track resource utilization by, and
QoS of, application components. As shown in Figure 7,
RACE’s Monitors are structured in the following hierarchi-
cal fashion. A Resource Monitor collects resource utilization
metrics of a specific resource, such as CPU or memory. A
QoS Monitor collects specific QoS metrics of an application,
such as end-to-end latency or throughput. A Node Monitor
tracks the QoS of all the applications running on a node as
well as the resource utilization of that node. Finally, a Central

Monitor tracks the QoS of all the applications running the
entire system, which captures the system QoS, as well as the
resource utilization of the entire system, which captures the
system resource utilization.

Resource Monitors use the operating system facilities,
such as /proc file system in Linux/Unix operating systems
and the system registry in Windows operating systems, to
collect resource utilization metrics of that node. As the re-
source monitors are implemented as shared libraries that
can be loaded at run-time, RACE can be configured with
new-/domain-specific resource monitors without making
any modifications to other entities of RACE. QoS-Monitors
are implemented as software modules that collect end-to-
end latency and throughput metrics of an application and
are dynamically installed into a running system using DyInst
[45]. This approach ensure rebuilding, reimplementation, or
restarting of already running application components are not
required. Moreover, with this approach, QoS-Monitors can be
turned on or off on demand at run-time.

The primary metric that we use to measure the perfor-
mance of our monitoring framework is monitoring delay,
which is defined as the time taken to obtain a snapshot of
the entire system in terms of resource utilization and QoS.
To minimize the monitoring delay and ensure that RACE’s
monitoring architecture scales as the number of applications
and nodes in the system increase, the RACE’s monitoring ar-
chitecture is structured in a hierarchical fashion. We validate
this claim in Section 5.

4.1.3. Challenge 3: resource allocation

Problem

Applications executing in open DRE systems are resource
sensitive and require multiple resources such as memory,
CPU, and network bandwidth. In open DRE systems, re-
sources allocation cannot be performed during design-
time as system resource availability may be time variant.
Moreover, input workload affects the utilization of system
resources by already executing applications. Therefore, the
key challenge lies in allocating various systems resources to
application components in a timely fashion.

Solution:online resource allocation

RACE’s Allocators implement resource allocation algorithms
and allocate various domain resources (such as CPU, mem-
ory, and network bandwidth) to application components by
determining the mapping of components onto nodes in the
system domain. For certain applications, static mapping be-
tween components and nodes may be specified at design-
time by system developers. To honor these static mappings,
RACE therefore provides a static allocator that ensures com-
ponents are allocated to nodes in accordance with the static
mapping specified in the application’s metadata. If no static
mapping is specified, however, dynamic allocators determine
the component to node mapping at run-time based on re-
source requirements of the components and current resource
availability on the various nodes in the domain. As shown in
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Figure 5, input to Allocators include the E-2-E IDL structure
corresponding to the application and the current utilization
of system resources.

The current version of RACE provides the following Al-
locators: (1) a single dimension binpacker [46] that makes
allocation decisions based on either CPU, memory, or net-
work bandwidth requirements and availability, (2) a mul-
tidimensional binpacker—partitioned breadth first decreas-
ing allocator [43]—that makes allocation decisions based on
CPU, memory, and network bandwidth requirements and
availability, and (3) a static allocator. Metadata is associated
with each allocator and captures its type (i.e., static, sin-
gle dimension binpacking, or multidimensional binpacker)
and associated resource overhead (such as CPU and mem-
ory utilization). Since Allocators themselves are CCM com-
ponents, RACE can be configured with new Allocators by us-
ing PICML.

4.1.4. Challenge 4: accidental complexities in configuring
platform-specific QoS parameters

Problem

As described in Section 3.2.2, real-time QoS configuration of
the underlying component middleware, operating system,
and network affects the QoS of applications executing in
open DRE systems. Since these configurations are platform-
specific, it is tedious and error-prone for system developers
or SA-POP to specify them in isolation.

Solution: automate configuration of
platform-specific parameters

As shown in Figure 8, RACE’s Configurators determine values
for various low-level platform-specific QoS parameters, such
as middleware, operating system, and network settings for
an application based on its QoS characteristics and require-
ments such as relative importance and end-to-end delay. For
example, the MiddleWareConfigurator configures component
lightweight CCM policies, such as threading policy, prior-
ity model, and request processing policy based on the class
of the application (important and best effort). The Operat-
ingSystemConfigurator configures operating system parame-
ters, such as the priorities of the component servers that host
the components based on rate monotonic scheduling (RMS)
[46] or based on criticality (relative importance) of the ap-
plication. Likewise, the NetworkConfigurator configures net-
work parameters, such as diffserv code points of the compo-
nent interconnections. Like other entities of RACE, Configu-
rators are implemented as CCM components, so new config-
urators can be plugged into RACE by configuring RACE at
design-time using PICML.

4.1.5. Challenge 5: computation of
system adaptation decisions

Problem

In open DRE systems, resource utilization of applications
might be significantly different than their estimated values

Configurator

Middleware
Configurator

OS
Configurator

Network
Configurator

Middleware
Configuration

OS
Configuration

Network
Configuration

CIAO/DAnCE OS Network

Figure 8: QoS parameter configuration with RACE.

and availability of system resources may be time variant.
Moreover, for applications executing in these systems, the re-
lation between input workload, resource utilization, and QoS
cannot be characterized a priori. Therefore, in order to en-
sure that QoS requirements of applications are met, and uti-
lization system resources are within the specified bounds, the
system must be able to adapt to dynamic changes, such as
variations in operational conditions, input workload, and/or
resource availability.

Solution: control-theoretic adaptive
resource management algorithms

RACE’s Controllers implement various Control-theoretic
adaptive resource management algorithms such as EUCON
[9], DEUCON [10], HySUCON [11], and FMUF [12],
thereby enabling open DRE systems to adapt to changing
operational context and variations in resource availability
and/or demand. Based on the control algorithm they im-
plement, Controllers modify configurable system parameters,
such as execution rates and mode of operation of the appli-
cation, real-time configuration settings—operating system
priorities of component servers that host the components—
and network diffserv code points of the component inter-
connections. As shown in Figure 9, input to the controllers
include current resource utilization and current QoS. Since
Controllers are implemented as CCM components, RACE can
be configured with new Controllers by using PICML.

4.1.6. Challenge 6: efficient execution of
system adaptation decisions

Problem

Although control theoretic adaptive resource management
algorithms compute system adaptation decisions, one of the
challenges we faced in building RACE is the design and im-
plementation of effectors—entities that modify system pa-
rameters in order to achieve the controller recommended
system adaptation. The key challenge lies in designing and
implementing the effector architecture that scales as well
as the number of applications and nodes in the system in-
creases.



10 EURASIP Journal on Embedded Systems

Solution: hierarchical effector architecture

Effectors modify system parameters, including resources al-
located to components, execution rates of applications, and
OS/middleware/network QoS setting for components, to
achieve the controller recommended adaptation. As shown
in Figure 9, Effectors are designed hierarchically. The Central
Effector first computes the values of various system parame-
ters for all the nodes in the domain to achieve the Controller-
recommended adaptation. The computed values of system
parameters for each node are then propagated to Effectors lo-
cated on each node, which then modify system parameters of
its node accordingly.

The primary metric that is used to measure the perfor-
mance of a monitoring effectors is actuation delay, which is
defined as the time taken to execute controller-recommended
adaptation throughout the system. To minimize the actua-
tion delay and ensure that RACE scales as the number of ap-
plications and nodes in the system increases, the RACE’s ef-
fectors are structured in a hierarchical fashion. We validate
this claim in Section 5.

Since the elements of RACE are developed as CCM com-
ponents, RACE itself can be configured using model-driven
tools, such as PICML. Moreover, new- and/or domain-
specific entities, such as InputAdapters, Allocators, Con-
trollers, Effectors, Configurators, QoS-Monitors, and Resource
Monitors, can be plugged directly into RACE without modi-
fying RACE’s existing architecture.

4.2. Addressing MMS mission requirements
using RACE

Section 4.1 provides a detailed overview of various adaptive
resource management challenges of open DRE systems and
how RACE addresses these challenges. We now describe how
RACE was applied to our MMS mission case study from
Section 3 and show how it addressed key resource allocation,
QoS-configuration, and adaptive resource management re-
quirements that we identified in Section 3.

4.2.1. Addressing requirement 1: resource
allocation to applications

RACE’s InputAdapter parses the metadata that describes the
application to obtain the resource requirement(s) of com-
ponents that make up the application and populates the
E-2-E IDL structure. The Central Monitor obtains system
resource utilization/availability information for RACE’s Re-
source Monitors, and using this information along with the
estimated resource requirement of application components
captured in the E-2-E structure, the Allocators map compo-
nents onto nodes in the system domain based on run-time
resource availability.

RACE’s InputAdapter, Central Monitor, and Allocators co-
ordinate with one another to allocate resources to applica-
tions executing in open DRE systems, thereby addressing the
resource allocation requirement for open DRE systems iden-
tified in Section 3.2.1.

4.2.2. Addressing requirement 2: configuring
platform-specific QoS parameters

RACE shields application developers and SA-POP from low-
level platform-specific details and defines a higher-level QoS
specification model. System developers and SA-POP spec-
ify only QoS characteristics of the application, such as QoS
requirements and relative importance, and RACE’s Configu-
rators automatically configures platform-specific parameters
appropriately.

For example, consider two science applications—one ex-
ecuting in fast survey mode and one executing in slow
survey mode. For these applications, middleware param-
eters configured by the Middleware Configurator includes
(1) CORBA end-to-end priority, which is configured based
on execution mode (fast/slow survey) and application
period/deadline; (2) CORBA priority propagation model
(CLIENT PROPAGATED/SERVER DECLARED), which is
configured based on the application structure and intercon-
nection; and (3) threading model (single threaded/thread-
pool/thread-pool with lanes), which is configured based on
number of concurrent peer components connected to a com-
ponent. The Middleware Configurator derives configuration
for such low-level platform-specific parameters from appli-
cation end-to-end structure and QoS requirements.

RACE’s Configurators provides higher-level abstractions
and shield system developers and SA-POP from low-level
platform-specific details, thus addressing the requirements
associated with configuring platform-specific QoS parame-
ters identified in Section 3.2.2.

4.2.3. Addressing requirement 3: monitoring end-to-end
QoS and ensuring QoS requirements are met

When resources are allocated to components at design-time
by system designers using PICML, that is, mapping of ap-
plication components to nodes in the domain are specified,
these operations are performed based on estimated resource
utilization of applications and estimated availability of sys-
tem resources. Allocation algorithms supported by RACE’s
Allocators allocate resources to components based on current
system resource utilization and component’s estimated re-
source requirements. In open DRE systems, however, there is
often no accurate a priori knowledge of input workload, the
relationship between input workload and resource require-
ments of an application, and system resource availability.

To address this requirement, RACE’s control architecture
employs a feedback loop to manage system resource and ap-
plication QoS and ensures (1) QoS requirements of applica-
tions are met at all times and (2) system stability by main-
taining utilization of system resources below their specified
utilization set-points. RACE’s control architecture features a
feedback loop that consists of three main components: Mon-
itors, Controllers, and Effectors, as shown in Figure 9.

Monitors are associated with system resources and QoS of
the applications and periodically update the Controller with
the current resource utilization and QoS of applications cur-
rently running in the system. The Controller implements a
particular control algorithm such as EUCON [9], DEUCON



Nishanth Shankaran et al. 11

Controller
System Wide
Adaptation
Decisions

Central Effector Central
Monitor

System Resource Utilization & QoS

Node

Effector

Node Monitor

E-2-E Application

Per Node
System

Parameters

Figure 9: RACE’s feedback control loop.

Table 2: Lines of source code for various system elements.

Entity Total lines of source code

MMS DRE system 19,875

RACE 157,253

CIAO/DAnCE 511,378

[10], HySUCON [11], and FMUF [12], and computes the
adaptations decisions for each (or a set of) application(s)
to achieve the desired system resource utilization and QoS.
Effectors modify system parameters, which include resource
allocation to components, execution rates of applications,
and OS/middleware/network QoS setting of components, to
achieve the controller-recommended adaptation.

As shown in Figure 9, RACE’s monitoring framework,
Controllers, and Effectors coordinate with one another and
the aforementioned entities of RACE to ensure (1) QoS re-
quirements of applications are met and (2) utilization of sys-
tem resources are maintained within the specified utiliza-
tion set-point set-point(s), thereby addressing the require-
ments associated with run-time end-to-end QoS manage-
ment identified in Section 3.2.3. We empirically validate this
in Section 5.

5. EMPIRICAL RESULTS AND ANALYSIS

This section presents the design and results of experiments
that evaluate the performance and scalability of RACE in our
prototype of the NASA MMS mission system case study de-
scribed in Section 3. These experiments validate our claims
in Sections 4 and 4.2 that RACE is an scalable adaptive re-
source management framework and can perform effective
end-to-end adaptation and yield a predictable and scalable
DRE system under varying operating conditions and input
workload.

5.1. Hardware and software test-bed

Our experiments were performed on the ISISLab test-bed
at Vanderbilt University (www.dre.vanderbilt.edu/ISISlab).
The hardware configuration consists of six nodes, five of
which acted as spacecrafts and one acted as a ground station.

The hardware configuration of all the nodes was a 2.8 GHz
Intel Xeon dual processor, 1 GB physical memory, 1 GHz eth-
ernet network interface, and 40 GB hard drive. The Redhat
Fedora core release 4 OS with real-time preemption patches
[47] was used for all the nodes.

Our experiments also used CIAO/DAnCE 0.5.10, which
is our open source QoS-enabled component middleware that
implements the OMG lightweight CCM [48] and deploy-
ment and configuration [44] specifications. RACE and our
DRE system case study are built upon CIAO/DAnCE.

5.2. MMS DRE system implementation

Science applications executing atop our MMS DRE system
are composed of the following components:

(i) plasma sensor component, which manages and controls
the plasma sensor on the spacecraft, collects metrics
corresponding to the earth’s plasma activity;

(ii) camera sensor component, which manages and controls
the high-fidelity camera on the spacecraft and captures
images of one or more star constellations;

(iii) filter component, which processes the data from the
sensor components to remove any extraneous noise in
the collected data/image;

(iv) analysis component, which processes the collected data
to determine if the data is of interest or not. If the data
is of interest, the data is compressed and transmitted
to the ground station;

(v) compression component, which uses loss-less compres-
sion algorithms to compresses the collected data;

(vi) communication component, which transmits the com-
pressed data to the ground station periodically;

(vii) ground component, which receives the compressed data
from the spacecrafts and stores it for further process-
ing.

All these components—except for the ground component—
execute on the spacecrafts. Our experiments used compo-
nent emulations that have the same resource utilization char-
acteristics as the original components. Table 2 summarizes
the number of lines of C++ code of various entities in our
middleware, RACE, and our prototype implementation of
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Figure 10: Impact of increase in number of nodes on monitoring and actuation delay.

the MMS DRE system case study, which were measured using
SLOCCount (www.dwheeler.com/sloccount/).

5.3. Evaluation of RACE’s scalability

Sections 4.1.2 and 4.1.6 claimed that the hierarchical design
of RACE’s monitors and effectors enables RACE to scale as
the number of applications and nodes in the system grows.
We validated this claim by studying the impact of increas-
ing number of nodes and applications on RACE’s monitor-
ing delay and actuation delay when RACE’s monitors and ef-
fectors are configured hierarchically and nonhierarchically.
As described in Sections 4.1.2 and 4.1.6, monitoring delay is
defined as the time taken to obtain a snapshot of the entire
system in terms of resource utilization and QoS and actua-
tion delay is defined as the time taken to execute controller-
recommended adaptation throughout the system.

To measure the monitoring and actuation delays,
we instrumented RACE’s Central Monitor and Cen-
tral Effector, respectively, with high resolution timers—
ACE High Res Timer [15]. The timer in the Central Monitor
measured the time duration from when requests were
sent to individual Node Monitors to the time instant when
replies from all Node Monitors were received and the data
(resource utilization and application QoS) were assembled
to obtain a snapshot of the entire system. Similarly, the
timer in the Central Effector measured the time duration
from when system adaptation decisions were received from
the Controller to the time instant when acknowledgment
indicating successful execution of node level adaption from
individual Effectors (located on each node) were received.

5.3.1. Experiment 1: constant number of application and
varying number of nodes

This experiment studied the impact of varying number of
nodes in the system domain on RACE’s monitoring and ac-
tuation delay. We present the results obtained from run-

ning the experiment with a constant of five applications,
each composed of six components (plasma-sensor/camera-
sensor, analysis, filter analysis, compression, communica-
tion, and ground), and a varying number of nodes.

Experiment configuration

We varied the number of nodes in the system from one to six.
A total of 30 application components were evenly distributed
among the nodes in the system. The experiment was com-
posed of two scenarios: (1) hierarchical and (2) nonhierar-
chical configuration of RACE’s monitors and effectors. Each
scenario was comprised of seven runs, and the number of
nodes in the system during each run was. During each run,
monitoring delay and actuation delay were collected over
50,000 iterations.

Analysis of results

Figures 10(a) and 10(b) compare the impact of increasing the
number of nodes in the system on RACE’s monitoring and
actuation delay, respectively, under the two scenarios. Fig-
ures 10(a) and 10(b) show that monitoring and actuation de-
lays are significantly lower in the hierarchical configuration
of RACE’s monitors and effectors compared to the nonhier-
archical configuration. Moreover, as the number of nodes in
the system increases, the increases in monitoring and actua-
tion delays are significantly (i.e., 18% and 29%, resp.) lower
in the hierarchical configuration compared to the nonhier-
archical configuration. This result occurs because individual
node monitors and effectors execute in parallel when mon-
itors and effectors are structured hierarchically, thereby sig-
nificantly reducing monitoring and actuation delay, respec-
tively.

Figures 10(a) and 10(b) show the impact on monitor-
ing and actuation delay when the monitors and effectors are
structured hierarchically and the number of nodes in the sys-
tem increases. Although individual monitors and effectors
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Figure 11: Impact of increase in number of application on monitoring and actuation delays.

execute in parallel, resource data aggregation and computa-
tion of per-node adaptation decisions are centralized by the
Central Monitor and Central Effector, respectively. The results
show that this configuration yields a marginal increase in the
monitoring and actuation delay (i.e., 6% and 9%, resp.) as
the number of nodes in the system increases.

Figures 10(a) and 10(b) show that when there is only one
node in the system, the performance of the hierarchical con-
figuration of RACE’s monitors and effectors is worse than
the nonhierarchical configuration. This result measures the
overhead associated with the hierarchical configuration. As
shown in Figures 10(a) and 10(b), however, as the number of
nodes in the system increase, the benefit of the hierarchical
configuration outweighs this overhead.

5.3.2. Experiment 2: constant number of nodes and
varying number of applications

This experiment studied the impact of varying the number
of applications on RACE’s monitoring and actuation delay.
We now present the results obtained from running the ex-
periment with six nodes in the system and varying number of
applications (from one to five), each composed of six compo-
nents (plasma-sensor/camera-sensor, analysis, filter analysis,
compression, communication, and ground).

Experiment configuration

We varied the number of applications in the system from one
to five. Once again, the application components were evenly
distributed among the six nodes in the system. This exper-
iment was composed of two scenarios: (1) hierarchical and
(2) nonhierarchical configuration of RACE’s monitors and
effectors. Each scenario was comprised of five runs, with the
number of applications used in each run held constant. As we
varied the number of applications from one to five, for each
scenario we had a total of five runs. During each run, mon-
itoring delay and actuation delay were collected over 50,000
iterations.

Analysis of results

Figures 11(a) and 11(b) compare the impact on increase in
number of applications on RACE’s monitoring and actuation
delay, respectively, under the two scenarios. Figures 11(a) and
11(b) show that monitoring and actuation delays are signifi-
cantly lower under the hierarchical configuration of RACE’s
monitors and effectors compared with the nonhierarchical
configuration. These figures also show that under the hierar-
chical configuration, there is a marginal increase in the mon-
itoring delay and negligible increase in the actuation delay as
the number of applications in the system increase.

These results show that RACE scales as well as the num-
ber of nodes and applications in the system increase. The re-
sults also show that RACE’s scalability is primarily due to the
hierarchical design of RACE’s monitors and effectors, there
by validating our claims in Sections 4.1.2 and 4.1.6.

5.4. Evaluation of RACE’s adaptive resource
management capabilities

We now evaluate the adaptive resource management capabil-
ities of RACE under two scenarios: (1) moderate workload,
and (2) heavy workload. Applications executing on our pro-
totype MMS mission DRE system were periodic, with dead-
line equal to their periods. In both the scenarios, we use the
deadline miss ratio of applications as the metric to evaluate
system performance. For every sampling period of RACE’s
Controller, deadline miss ratio for each application was com-
puted as the ratio of number of times the application’s end-
to-end latency was greater than its deadline to the number of
times the application was invoked. The end-to-end latency of
an application was obtained from RACE’s QoS Monitors.

5.4.1. Summary of evaluated scheduling algorithms

We studied the performance of the prototype MMS system
under various configurations: (1) a baseline configuration
without RACE and static priority assigned to application
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Table 3: Application configuration under moderate workload.

Application
Component allocation

Period (msec) ModeSpacecraft Ground station

1 2

1 Communication plasma-sensor Analysis compression Ground 1000 Fast survey

2 Analysis camera-sensor Filter Communication compression Ground 900 Slow survey

3 Plasma-sensor camera-sensor Communication compression Filter Ground 500 Slow survey

components based on rate monotonic scheduling (RMS)
[46], (2) a configuration with RACE’s maximum urgency
first (MUF) Configurator, and (3) a configuration with
RACE’s MUF Configurator and flexible MUF (FMUF) [12]
Controller. The goal of these experiments is not to compare
the performance of various adaptive resource management
algorithms, such as EUCON [9], DEUCON [10], HySUCON
[11], or FMUF. Instead, the goal is to demonstrate how RACE
can be used to implement these algorithms.

A disadvantage of RMS scheduling is that it cannot pro-
vide performance isolation for higher importance applica-
tions [49]. During system overload caused by dynamic in-
crease in the workload, applications of higher importance
with a low rate may miss deadlines. Likewise, applications
with medium/lower importance but high rates may experi-
ence no missed deadlines.

In contrast, MUF provides performance isolation to ap-
plications of higher importance by dividing operating system
and/or middleware priorities into two classes [49]. All com-
ponents belonging to applications of higher importance are
assigned to the high-priority class, while all components be-
longing to applications of medium/lower importance are as-
signed to the low-priority class. Components within a same
priority class are assigned operating system and/or middle-
ware priorities based on the RMS policy. Relative to RMS,
however, MUF may cause priority inversion when a higher
importance application has a lower rate than medium/lower
importance applications. As a result, MUF may unneces-
sarily cause an application of medium/lower importance to
miss its deadline, even when all tasks are schedulable under
RMS.

To address limitations with MUF, RACE’s FMUF Con-
troller provides performance isolation for applications of
higher importance while reducing the deadline misses of ap-
plications of medium/lower importance. While both RMS
and MUF assign priorities statically at deployment time,
the FMUF Controller adjusts the priorities of applications
of medium/lower importance dynamically based on perfor-
mance feedback. The FMUF Controller can reassign applica-
tions of medium/lower importance to the high-priority class
when (1) all the applications currently in the high-priority
class meet their deadlines while (2) some applications in the
low-priority class miss their deadlines. Since the FMUF Con-
troller moves applications of medium/lower importance back
to the low-priority class when the high-priority class experi-
ences deadline misses it can effectively deal with workload
variations caused by application arrivals and changes in ap-
plication execution times and invocation rates.

5.4.2. Experiment 1: moderate workload

Experiment configuration

The goal of this experiment configuration was to evalu-
ate RACE’s system adaptation capabilities under a moder-
ate workload. This scenario therefore employed two of the
five emulated spacecrafts, one emulated ground station, and
three periodic applications. One application was initialized
to execute in fast survey mode and the remaining two were
initialized to execute in slow survey mode. As described in
Section 3.1, applications executing in fast survey mode have
higher relative importance and resource consumption than
applications executing in slow survey mode. Each application
is subjected to an end-to-end deadline equal to its period.
Table 3 summarizes application periods and the mapping of
components/applications onto nodes.

The experiment was conducted over 1,400 seconds, and
we emulated variation in operating condition, input work-
load, and a mode change by performing the following steps.
At time T = 0 second, we deployed applications one and
two. At time T = 300 seconds, the input workload for all the
application was reduced by ten percent, and at time T = 700
seconds we deployed application three. At T = 1000 seconds,
application three switched mode from slow survey to fast sur-
vey. To emulate this mode change, we increased the rate (i.e.,
reduced the period) of application three by twenty percent.
Since each application was subjected to an end-to-end dead-
line equal to its period, to evaluate the performance of RACE,
we monitored the deadline miss ratio of all applications that
were deployed.

RACE’s FMUF Controller was used for this experiment
since the MMS mission applications described above do not
support rate adaptation. RACE is a framework, however, so
other adaptation strategies/algorithms, such as HySUCON
[11], can be implemented and employed in a similar way.
Below, we evaluate the use of FMUF for end-to-end adap-
tation. Since this paper focuses on RACE—and not the de-
sign or evaluation of individual control algorithms—we use
FMUF as an example to demonstrate RACE’s ability to sup-
port the integration of feedback control algorithms for end-
to-end adaptation in DRE systems. RACE’s FMUF controller
was configured with the following parameters: sampling pe-
riod = 10 seconds, N = 5, and threshold = 5%.

Analysis of results

Figures 12(a), 12(b), and 12(c) show the deadline miss ra-
tio of applications when the system was operated under
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Figure 12: Deadline miss ratio under moderate workload.

baseline configuration, with RACE’s MUF Configurator, and
with RACE’s MUF Configurator along with FMUF Controller,
respectively. These figures show that under all the three con-
figurations, deadline miss ratio of applications (1) reduced at
T = 300 seconds due to the decrease in the input work load,
(2) increased at T = 700 seconds due to the introduction of

new application, and (3) further increased at T = 1, 000 sec-
onds due to the mode change from slow survey mode to fast
survey mode. These results demonstrate the impact of fluctu-
ation in input workload and operating conditions on system
performance.

Figure 12(a) shows that when the system was operated
under the baseline configuration, deadline miss ratio of
medium-importance applications (applications executing in
fast survey mode) were higher than that of low-importance
applications (applications executing in slow survey mode)
due to reasons explained in Section 5.4.1. Figures 12(b)
and 12(c) show that when RACE’s MUF Configurator is
used (both individually and along with FMUF Controller),
deadline miss ratio of medium importance applications
were nearly zero throughout the course of the experiment.
Figures 12(a) and 12(b) demonstrate that the RACE im-
proves QoS of our DRE system significantly by configuring
platform-specific parameters appropriately.

As described in [12], the FMUF Controller responds to
variations in input workload and operating conditions (in-
dicated by deadline misses) by dynamically adjusting the
priorities of the low-importance applications (i.e., moving
low-importance applications into or out of the high-priority
class). Figures 12(a) and 12(c) demonstrate the impact of the
RACE’s Controller on system performance.

5.4.3. Experiment 2: heavy workload

Experiment configuration

The goal of this experiment configuration was to evaluate
RACE’s system adaptation capabilities under a heavy work-
load. This scenario, therefore, employed all five emulated
spacecrafts, one emulated ground station, and ten periodic
applications. Four of these applications were initialized to
execute in fast survey mode and the remaining six were
initialized to execute in slow survey mode. Table 4 summa-
rizes the application periods and the mapping of compo-
nents/applications onto nodes.

The experiment was conducted over 1,400 seconds, and
we emulated the variation in operating condition, input
workload, and a mode change by performing the following
steps. At time T = 0 second, we deployed applications one
through six. At time T = 300 seconds, the input workload
for all the application was reduced by ten percent, and at time
T = 700 seconds, we deployed applications seven through
ten. At T = 1, 000 seconds, applications two through five
switched modes from slow survey to fast survey. To emulate
this mode change, we increased the rate of applications two
through five by twenty percent. RACE’s FMUF controller was
configured with the following parameters: sampling period =
10 seconds, N = 5, and threshold = 5%.

Analysis of results

Figure 13(a) shows that when the system was operated un-
der the baseline configuration, the deadline miss ratio of
the medium importance applications were again higher than
that of the low-importance applications. Figures 13(b) and
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Figure 13: Deadline Miss Ratio under Heavy Workload.

13(c) show that when RACE’s MUF Configurator is used
(both individually and along with FMUF Controller), dead-
line miss ratio of medium importance applications were
nearly zero throughout the course of the experiment. Fig-
ures 13(a) and 13(b) demonstrate how RACE improves
the QoS of our DRE system significantly by configuring

platform-specific parameters appropriately. Figures 12(a)
and 12(c) demonstrate that RACE improves system perfor-
mance (deadline miss ratio) even under heavy workload.

These results show that RACE improves system perfor-
mance by performing adaptive management of system re-
sources there by validating our claim in Section 4.2.3.

5.5. Summary of experimental analysis

This section evaluated the performance and scalability of
the RACE framework by studying the impact of increase in
number of nodes and applications in the system on RACE’s
monitoring delay and actuation delay. We also studied the
performance of our prototype MMS DRE system with and
without RACE under varying operating condition and input
workload. Our results show that RACE is a scalable adap-
tive resource management framework and performs effec-
tive end-to-end adaptation and yields a predictable and high-
performance DRE system.

From analyzing the results in Section 5.3, we observe that
RACE scales as well as the number of nodes and applications
in the system increases. This scalability stems from RACE’s
the hierarchical design of monitors and effectors, which val-
idates our claims in Sections 4.1.2 and 4.1.6. From ana-
lyzing the results presented in Section 5.4, we observe that
RACE significantly improves the performance of our pro-
totype MMS DRE system even under varying input work-
load and operating conditions, thereby meeting the require-
ments of building component-based DRE systems identi-
fied in Section 3.2. These benefits result from configuring
platform-specific QoS parameters appropriately and per-
forming effective end-to-end adaptation, which were per-
formed by RACE’s Configurators and Controllers, respectively.

6. CONCLUDING REMARKS

Open DRE systems require end-to-end QoS enforcement
from their underlying operating platforms to operate cor-
rectly. These systems often run in environments where re-
source availability is subject to dynamic changes. To meet
end-to-end QoS in these dynamic environments, open DRE
systems can benefit from adaptive resource management
frameworks that monitors system resources, performs effi-
cient application workload management, and enables effi-
cient resource provisioning for executing applications. Re-
source management algorithms based on control-theoretic
techniques are emerging as a promising solution to handle
the challenges of applications with stringent end-to-end QoS
executing in open DRE systems. These algorithms enable
adaptive resource management capabilities in open DRE sys-
tems and adapt gracefully to fluctuation in resource availabil-
ity and application resource requirement at run-time.

This paper described the resource allocation and con-
trol engine (RACE), which is our adaptive resource manage-
ment framework that provides end-to-end adaptation and
resource management for open DRE systems built atop QoS-
enabled component middleware. Open DRE systems built
using RACE benefit from the advantages of component-
based middleware, as well as QoS assurances provided
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Table 4: Application configuration under heavy workload.

Application

Component allocation
Period
(msec)

ModeSpacecraft Ground

1 2 3 4 5 station

1 Communication
Analysis
Plasma-sensor

Filter Compression Ground 1000
Fast
Survey

2
Camera-sensor
Compression

Filter Analysis Communication Ground 900
Slow
Survey

3 Camera-sensor Plasma-sensor
Communication
Compression

Analysis Filter Ground 500
Slow
Survey

4 Communication Filter Analysis Plasma-sensor Compression Ground 800
Slow
Survey

5
Communication
Filter

Camera-sensor Analysis Compression Ground 1200
Slow
Survey

6 Analysis Filter Communication Compression Plasma-sensor Ground 700
Slow
Survey

7 Plasma-sensor Plasma-sensor
Communication
Compression

Analysis Filter Ground 600
Fast
Survey

8
Communication
Filter

Analysis Plasma-sensor Compression Ground 700
Slow
Survey

9
Communication
Filter

Camera-sensor
Plasma-sensor

Analysis Compression Ground 400
Fast
Survey

10
Compression
Filter

Communication
Analysis

Plasma-sensor Ground 700
Fast
Survey

by adaptive resource management algorithms. We demon-
strated how RACE helped resolve key resource and QoS man-
agement challenges associated with a prototype of the NASA
MMS mission system. We also analyzed results from perfor-
mance in the context of our MMS mission system prototype.

Since the elements of the RACE framework are CCM
components, RACE itself can be configured using model-
driven tools, such as PICML [38]. Moreover, new In-
putAdapters, Allocators, Configurators, and Controllers can be
plugged into RACE using PICML without modifying its ar-
chitecture. RACE can also be used to deploy, allocate re-
sources to, and manage performance of, applications that are
composed at design-time and run-time.

The lessons learned in building RACE and applying to
our MMS mission system prototype thus far include the fol-
lowing.

(i) Challenges involved in developing open DRE systems.
Achieving end-to-end QoS in open DRE systems requires
adaptive resource management of system resources, as well
as integration of a range of real-time capabilities. QoS-
enabled middleware, such as CIAO/DAnCE, along with
the support of DSMLs and tools, such as PICML, provide
an integrated platform for building such systems and are
emerging as an operating platform for these systems. Al-
though CIAO/DAnCE and PICML alleviate many challenges
in building DRE systems, they do not address the adaptive
resource management challenges and requirements of open
DRE systems. Adaptive resource management solutions are
therefore needed to ensure QoS requirements of applications
executing atop these systems are met.

(ii) Decoupling middleware and resource management
algorithms. Implementing adaptive resource management
algorithms within the middleware tightly couples the re-
source management algorithms within particular middle-
ware platforms. This coupling makes it hard to enhance the
algorithms without redeveloping significant portions of the
middleware. Adaptive resource management frameworks,
such as RACE, alleviate the tight coupling between resource
management algorithms and middleware platforms and im-
prove flexibility.

(iii) Design of a framework determines its performance and
applicability. The design of key modules and entities of the
resource management framework determines the scalability,
and therefore the applicability, of the framework. To apply
a framework like RACE to a wide range of open DRE sys-
tem, it must scale as the number of nodes and application in
the system grows. Our empirical studies on the scalability of
RACE showed that structuring and designing key modules of
RACE (e.g., monitors and effectors) in a hierarchical fashion
not only significantly improves the performance of RACE,
but also improves its scalability.

(iv) Need for configuring/customizing the adaptive resource
management framework with domain specific monitors. Uti-
lization of system resources, such as CPU, memory, and
network bandwidth, and system performance, such as la-
tency and throughput, can be measured in a generic fashion
across various system domains. In open DRE systems, how-
ever, the need to measure utilization of domain-specific re-
sources, such as battery utilization, and application-specific
QoS metrics, such as the fidelity of the collected plasma data,
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Figure 14: Hierarchical Composition of RACE.

might occur. Domain-specific customization and configura-
tion of an adaptive resource management framework, such as
RACE, should therefore be possible. RACE supports domain-
specific customization of its Monitors. In future work, we will
empirically evaluate the ease of integration of these domain-
specific resource entities.

(v) Need for selecting an appropriate control algorithm
to manage system performance. The control algorithm that
a Controller implements relies on certain system parame-
ters that can be fine-tuned/modified at run-time to achieve
effective system adaptation. For example, FMUF relies on
fine-tuning operating system priorities of processes hosting
application components to achieve desired system adapta-
tion; EUCON relies on fine-tuning execution rates of end-
to-end applications to achieve the same. The applicabil-
ity of a control algorithm to a specific domain/scenario is
therefore determined by the availability of these run-time
configurable system parameters. Moreover, the responsive-
ness of a control algorithm and the Controller in restor-
ing the system performance metrics to their desired val-
ues determines the applicability of a Controller to a spe-
cific domain/scenario. During system design-time, a Con-
troller should be selected that is appropriate for the system
domain/scenario.

(vi) Need for distributed/decentralized adaptive resource
management. It is easier to design, analyze, and implement
centralized adaptive resource management algorithms that
manage an entire system than it is to design, analyze, and im-
plement decentralized adaptive resource management algo-
rithms. As a the size of a system grows, however, centralized
algorithms can become bottlenecks since the computation
time of these algorithms can scale exponentially as the num-
ber of end-to-end applications increases. One way to alle-
viate these bottlenecks is to partition system resources into
resource groups and employ hierarchical adaptive resource
management, as shown in Figure 14. In our future work, we
plan to enhance RACE so that a local instance of the frame-
work can manage resource allocation, QoS configuration,
and run-time adaption within a resource group, whereas a
global instance can be used to manage the resources and per-
formance of the entire system.

RACE, CIAO, DAnCE, and PICML are available in open
source form for download at http://deuce.doc.wustl.edu/.
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The last decade has witnessed an immense increase of wire-
less communications services to keep pace with the ever in-
creasing demand for higher data rates combined with higher
mobility. To satisfy this demand for higher data rates, the
throughput over the existing transmission media had to be
increased. Several techniques were proposed to boost up the
data rate: multicarrier systems to combat selective fading,
ultrawide band (UWB) com-munications systems to share
the spectrum with other users, MIMO transmissions to in-
crease the capacity of wireless links, iteratively decodable
codes (e.g., turbo codes and LDPC codes) to improve the
quality of the link, cognitive radios, and so forth.

To function properly, the receiver must synchronize with
the incoming signal. The accuracy of the synchronization
will determine whether the communication system is able
to perform well. The receiver needs to determine at which
time instants the incoming signal has to be sampled (tim-
ing synchronization), and for bandpass communications the
receiver needs to adapt the frequency and phase of its local
carrier oscillator with those of the received signal (carrier
synchronization). However, most of the existing communi-
cation systems operate under hostile conditions: low SNR,
strong fading, and (multiuser) interference, which make the
acquisition of the synchronization parameters burdensome.
Therefore, synchronization is considered in general as a chal-
lenging task.

The objective of this special issue (whose preparation is
also carried out under the auspices of the EC Network of
Excellence in Wireless Communications NEWCOM++) is to
gather recent advances in the area of synchronization of wire-
less systems, spanning from theoretical analysis of synchro-
nization schemes to practical implementation issues, from
optimal synchronizers to low-complexity ad hoc synchroniz-
ers. Suitable topics for this special issue include but are not
limited to:

• Carrier phase and frequency offset estimation and
compensation

• Doppler shift frequency synchronization
• Phase noise estimation and compensation
• Timing recovery
• Sampling clock offset impairments and detection
• Frame synchronization
• Joint carrier and timing synchronization

• Joint synchronization and channel estimation
• Data-aided, non-data-aided and decision directed syn-

chronization algorithms
• Feedforward or feedback synchronization algorithms
• Turbo-synchronization
• Synchronization for MIMO receivers
• Signal processing for (distributed) synchronization
• Acquisition and tracking performance analysis
• Spreading code acquisition and tracking
• Theoretical bounds on synchronizer performance
• Design of efficient training sequences or pilots
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scribed at the journal site http://www.hindawi.com/journals/
wcn/. Prospective authors should submit an electronic
copy of their complete manuscript through the journal
Manuscript Tracking System at http://mts.hindawi.com/, ac-
cording to the following timetable.

Manuscript Due July 1, 2008

First Round of Reviews October 1, 2008

Publication Date January 1, 2009

Guest Editors

Heidi Steendam, Department of Telecommunications and
Information Processing (TELIN), Ghent University, 9000
Gent, Belgium; heidi.steendam@telin.ugent.be

Mounir Ghogho, School of Electronic and Electrical
Engineering, Leeds University, 182 Woodhouse Lane, Leeds
LS2 9JT, UK; m.ghogho@leeds.ac.uk

Marco Luise, Department of Information Engineering,
University of Pisa, 56122 Pisa, Italy; m.luise@iet.unipi.it

Erdal Panayirci, Department of Electronics Engineering,
Kadir Has University, 34083 Istanbul, Turkey;
eepanay@khas.edu.tr

Erchin Serpedin, Department of Electrical Engineering,
A&M University, College Station, TX 77840, USA;
serpedin@ece.tamu.edu

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/wcn/
http://www.hindawi.com/journals/wcn/
http://mts.hindawi.com/
mailto:heidi.steendam@telin.ugent.be
mailto:m.ghogho@leeds.ac.uk
mailto:m.luise@iet.unipi.it


EURASIP Journal on Image and Video Processing

Special Issue on
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After many years of exciting research, the field of multimedia
information retrieval (MIR) has become mature enough to
enter a new development phase—the phase in which MIR
technology is made ready to get adopted in practical so-
lutions and realistic application scenarios. High users’ ex-
pectations in such scenarios require high dependability of
MIR systems. For example, in view of the paradigm “get-
ting the content I like, anytime and anyplace” the service
of consumer-oriented MIR solutions (e.g., a PVR, mobile
video, music retrieval, web search) will need to be at least
as dependable as turning a TV set on and off. Dependability
plays even a more critical role in automated surveillance so-
lutions relying on MIR technology to analyze recorded scenes
and events and alert the authorities when necessary.

This special issue addresses the dependability of those crit-
ical parts of MIR systems dealing with semantic inference.
Semantic inference stands for the theories and algorithms de-
signed to relate multimedia data to semantic-level descrip-
tors to allow content-based search, retrieval, and manage-
ment of data. An increase in semantic inference dependabil-
ity could be achieved in several ways. For instance, better
understanding of the processes underlying semantic concept
detection could help forecast, prevent, or correct possible se-
mantic inference errors. Furthermore, the theory of using re-
dundancy for building reliable structures from less reliable
components could be applied to integrate “isolated” seman-
tic inference algorithms into a network characterized by dis-
tributed and collaborative intelligence (e.g., a social/P2P net-
work) and let them benefit from the processes taking place in
such a network (e.g., tagging, collaborative filtering).

The goal of this special issue is to gather high-quality and
original contributions that reach beyond conventional ideas
and approaches and make substantial steps towards depend-
able, practically deployable semantic inference theories and
algorithms.

Topics of interest include (but are not limited to):

• Theory and algorithms of robust, generic, and scalable
semantic inference

• Self-learning and interactive learning for online adapt-
able semantic inference

• Exploration of applicability scope and theoretical per-
formance limits of semantic inference algorithms

• Modeling of system confidence in its semantic infer-
ence performance

• Evaluation of semantic inference dependability using
standard dependability criteria

• Matching user/context requirements to dependability
criteria (e.g., mobile user, user at home, etc.)

• Modeling synergies between different semantic in-
ference mechanisms (e.g., content analysis, indexing
through user interaction, collaborative filtering)

• Synergetic integration of content analysis, user ac-
tions (e.g., tagging, interaction with content) and
user/device collaboration (e.g., in social/P2P net-
works)

Authors should follow the EURASIP Journal on Im-
age and Video Processing manuscript format described
at http://www.hindawi.com/journals/ivp/. Prospective au-
thors should submit an electronic copy of their complete
manuscripts through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:
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Game theory is a branch of mathematics aimed at the mod-
eling and understanding of rational behavior in strategic sit-
uations. In the last decade, game theory has been applied
to solve conflict problems in economics, and has found im-
portant applications in politics, sociology, psychology, and
transportation. Game theory has more recently been em-
ployed to model and analyze modern communication sys-
tems, such as power control in wireless networks and rout-
ing in wire line networks. Also, it provides a structured ap-
proach to many important signal processing problems, in-
cluding cognitive radio, waveform design, and dynamic spec-
trum access. Game theory is successfully applied to design
decentralized algorithms and robust signal processing meth-
ods in various deployment scenarios.

This special issue aims to promote the field of game the-
ory to the signal processing audience. We are soliciting high-
quality unpublished research papers addressing the theory
and practice of game theory in signal processing and com-
munications. Topics include, but are not limited to:

• Static non-cooperative games (Nash and Stackelberg
equilibria)

• Finite and infinite dynamic games
• Cooperative (bargaining) game theory
• Auctions, coalitions, and pricing
• Game theory for resource allocation in communica-

tions
• Game theory for adaptive waveform design
• Game theory for cognitive radio and dynamic spec-

trum access
• Stochastic games, repeated games, and fading channels
• Development of decentralized algorithms using game

theory

Authors should follow the EURASIP Journal on Advances in
Signal Processing manuscript format described at the jour-
nal site http://www.hindawi.com/journals/asp/. Prospective
authors should submit an electronic copy of their complete
manuscript through the EURASIP JASP Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:
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First Round of Reviews January 1, 2009
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Wireless access in vehicular environments (WAVE) technol-
ogy comes into sight as a state-of-the-art solution to con-
temporary vehicular communications, which is anticipated
to be widely applied in the near future to radically im-
prove the transportation environment in aspects of safety,
intelligent management, and data exchange services. WAVE
systems will fundamentally smooth the progress of intelli-
gent transportation systems (ITSs) by providing them with
high-performance physical platforms. WAVE systems will
build upon the IEEE 802.11p standard, which is still active
and expected to be ratified in April, 2009. Meanwhile, the
VHF/UHF (700 MHz) band vehicular communication sys-
tems are attracting increasingly attention recently.

The fast varying and harsh vehicular environment brings
about several fresh research topics on the study of WAVE sys-
tems and future vehicular communication systems, which in-
clude physical layer challenges associated with mobile chan-
nels, capacity evaluation, novel network configuration, effec-
tive media access control (MAC) protocols, and robust rout-
ing and congestion control schemes.

The objective of this special section is to gather and cir-
culate recent progresses in this fast developing area of WAVE
and future vehicular communication systems spanning from
theoretical analysis to testbed setup, and from physical/MAC
layers’ enabling technology to network protocol. These re-
search and implementation activities will be considerably
helpful to the design of WAVE and future vehicular commu-
nications systems by removing major technical barriers and
presenting theoretical guidance. This special issue will cover,
but not limited to, the following main topics:

• 700 MHz/5.8 GHz vehicle-to-vehicle (V2V)/vehicle-
to-infrastructure (V2I) single-input single-output
(SISO)/MIMO channel measurement and modeling,
channel spatial and temporal characteristics explo-
ration

• Doppler shift study, evaluation and estimate, time and
frequency synchronizations, channel estimate and pre-
diction

• Utilization of MIMO, space-time coding, smart an-
tenna, adaptive modulation and coding

• Performance study and capacity analysis of V2V and
V2I communications operating over both 5.8GHz and
700Mz

• Software radio, cognitive radio, and dynamic spectrum
access technologies applied to WAVE and future vehic-
ular communication systems

• Mesh network and other novel network configurations
for vehicular networks

• Efficient MAC protocols development
• Routing algorithms and congestion control schemes

for both real-time traffic warning message broadcast-
ing and high-speed data exchange

• Cross-layer design and optimization
• Testbed or prototype activities

Authors should follow the EURASIP Journal on Wire-
less Communications and Networking manuscript for-
mat described at the journal site http://www.hindawi.com/
journals/wcn/. Prospective authors should submit an elec-
tronic copy of their complete manuscript through the
EURASIP Journal on Wireless Communications and Net-
working’s Manuscript Tracking System at http://mts.hindawi
.com/, according to the following timetable.
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The smallest primitive employed for describing an image is
the pixel. However, analyzing an image as an ensemble of
patches (i.e., spatially adjacent pixels/descriptors which are
treated collectively as a single primitive), rather than indi-
vidual pixels/descriptors, has some inherent advantages (i.e.,
computation, generalization, context, etc.) for numerous im-
age and video content extraction applications (e.g., match-
ing, correspondence, tracking, rendering, etc.). Common de-
scriptors in literature, other than pixels, have been contours,
shape, flow, and so forth.

Recently, many inroads have been made into novel tasks
in image and video content extraction through the employ-
ment of patch-based representations with machine learning
and pattern recognition techniques. Some of these novel ar-
eas include (but are not limited to):

• Object recognition/detection/tracking
• Event recognition/detection
• Structure from motion/multiview

In this special issue, we are soliciting papers from the im-
age/video processing, computer vision, and pattern recogni-
tion communities that expand and explore the boundaries of
patch representations in image and video content extraction.

Relevant topics to the issue include (but are not limited
to):

• Novel methods for identifying (e.g., SIFT, DoGs, Har-
ris detector) and employing salient patches

• Techniques that explore criteria for deciding the size
and shape of a patch based on image content and the
application

• Approaches that explore the employment of multiple
and/or heterogeneous patch sizes and shapes during
the analysis of an image

• Applications that explore how important relative patch
position is, and whether there are advantages in allow-
ing those patches to move freely or in a constrained
fashion

• Novel methods that explore and extend the concept of
patches to video (e.g. space-time patches/volumes)

• Approaches that draw upon previous work in struc-
tural pattern recognition in order to improve current
patch-based algorithms

• Novel applications that extend the concept of patch-
based analysis to other, hitherto, nonconventional ar-
eas of image and video processing, computer vision,
and pattern recognition

• Novel techniques for estimating dependencies between
patches in the same image (e.g., 3D rotations) to im-
prove matching/correspondence algorithmic perfor-
mance

Authors should follow the EURASIP Journal on Image and
Video Processing manuscript format described at the jour-
nal site http://www.hindawi.com/journals/ivp/. Prospective
authors should submit an electronic copy of their complete
manuscripts through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due May 1, 2008

First Round of Reviews August 1, 2008

Publication Date November 1, 2008
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