Paper Session: Security 2

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Teaching Cybersecurity with Networked Robots

Akos Lédeczi, Miklos Maréti, Hamid Zare, Bernard Yett, Nicole Hutchins, Brian Broll,
Péter Volgyesi, Michael B. Smith, Timothy Darrah, Mary Metelko, Xenofon Koutsoukos,
Gautam Biswas
Vanderbilt University
Nashville, TN, USA

akos.ledeczi@vanderbilt.edu

ABSTRACT

The paper presents RoboScape, a collaborative, networked robotics
environment that makes key ideas in computer science accessible to
groups of learners in informal learning spaces and K-12 classrooms.
RoboScape is built on top of NetsBlox, an open-source, networked,
visual programming environment based on Snap! that is specifically
designed to introduce students to distributed computation and com-
puter networking. RoboScape provides a twist on the state of the art
of robotics learning platforms. First, a user’s program controlling
the robot runs in the browser and not on the robot. There is no need
to download the program to the robot and hence, development and
debugging become much easier. Second, the wireless communica-
tion between a student’s program and the robot can be overheard
by the programs of the other students. This makes cybersecurity
an immediate need that students realize and can work to address.
We have designed and delivered a cybersecurity summer camp to
24 students in grades between 7 and 12. The paper summarizes
the technology behind RoboScape, the hands-on curriculum of the
camp and the lessons learned.

CCS CONCEPTS

« Applied computing — Interactive learning environments;
Collaborative learning; « Computing methodologies — Distrib-
uted programming languages.

KEYWORDS

visual programming, robotics, cybersecurity, computer science ed-
ucation, Snap!, NetsBlox

ACM Reference Format:

Akos Lédeczi, Miklos Mar6ti, Hamid Zare, Bernard Yett, Nicole Hutchins,
Brian Broll,, Péter Vélgyesi, Michael B. Smith, Timothy Darrah, Mary
Metelko, Xenofon Koutsoukos,, Gautam Biswas, Vanderbilt University,
Nashville, TN, USA . 2019. Teaching Cybersecurity with Networked Robots.
In SIGCSE °19: 50th ACM Technical Symposium on Computer Science Educa-
tion, February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3287324.3287450

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5890-3/19/2...$15.00

https://doi.org/10.1145/3287324.3287450

885

1 INTRODUCTION

Educational robotics is widely used to introduce K-12 students
to computer science and engineering [1, 8, 11]. Building and con-
trolling robots have broad appeal for young learners. The typical
means of programming robots is writing the program in either a
block-based or a simple text-based language, connecting the robot
to the computer via USB, and then downloading the program to
the robot. In turn, the program executes on the microcontroller of
the robot. While there is nothing wrong with this approach, this
paper presents an alternative that has certain advantages.

RoboScape relies on WiFi-enabled robots. Each robot has a fixed
program that accepts commands transmitted wirelessly and can
send back sensor readings over WiFi as well. The robot program
that a user of RoboScape is expected to write is, in essence, a smart
remote controller. The program runs locally in the browser, enabling
a rapid development cycle and making debugging easier. It also
makes it possible to control multiple robots from the same program
that, in turn, can carry out a task in a collaborative manner.

The programming interface of RoboScape is implemented as a
NetsBlox service. NetsBlox is an open-source, networked, visual
programming environment based on Snap! [15] that is specifically
designed to introduce students to distributed computation and
computer networking [2, 3, 12]. RoboScape introduces another
unique feature: wireless commands from the users’ programs and
sensor messages from the robots can be overheard by the other
users’ programs in the room. Hence, students can eavesdrop on
and even take control of others’ robots. This provides an excellent
opportunity to illustrate the need for cybersecurity and to teach it
in a hands-on manner.

The rest of the paper is organized as follows. First we present a
brief overview of NetsBlox and then describe the technical details of
RoboScape. Section 4 outlines curricular opportunities Roboscape
enables that we have used to teach cybersecurity to K-12 students
during a week-long summer camp. We conclude by presenting the
lessons learned in delivering the material to 24 students and a brief
summary of related work.

2 NETSBLOX OVERVIEW

NetsBlox adds a few carefully selected abstractions to Snap! that
enable users to create distributed applications. Remote Procedure
Calls (RPC) provide access to a set of online data sources such as
maps, weather, seismic information, astronomy imagery, etc. and
provide useful utilities such as plotting or cloud variables. An RPC is
just like a function, i.e., a custom block in Snap!, but it runs remotely
on the NetsBlox server. Note that an RPC is more than just a call to
a web API. Related RPCs are grouped together into services that

https://doi.org/10.1145/3287324.3287450
https://doi.org/10.1145/3287324.3287450

Paper Session: Security 2

can have state information, can cache data, and optionally can send
messages to the caller. For example, the map service returns an
image from Google Maps but maintains information for subsequent
coordinate transformations from screen coordinates to latitude and
longitude and vice versa. It also caches maps to avoid unnecessary
API calls.

Figure 1 shows a sample RPC calling block. The first pull down
menu lets the user select the service. Picking a service automatically
populates the second menu with the available RPCs of the given
service. Once an RPC is selected, the block re-configures to show
the required input arguments.

call Geolocation | / nearbySearch IatitudellongitudeIkeywordIradius'

Figure 1: A sample RPC call block

NetsBlox also incorporates message passing. Messages are simi-
lar to events already present in Snap!, but they also contain data
fields and can be sent across the network to other NetsBlox pro-
grams running on different computers. A message has a type asso-
ciated with it specifying its name and data fields. A pair of corre-
sponding send and receive blocks are shown below. Notice the last
field of the send block specifying the address the message is to be
sent to. There are a number of ways NetsBlox supports message
addressing that is beyond the scope of this paper. The interested
reader is referred to [3]. Note that NetsBlox simulates peer to peer
messaging, but in reality every message goes through the NetsBlox
server.

when I receive [ocation (ﬁ ’:Iong
send msg location to follower

Figure 2: Message sending and receiving blocks

RPCs and messages enable the creation of a wide range of dis-
tributed applications and consequently, they open the door to teach-
ing some of the fundamental concepts of distributed computing.

3 ROBOSCAPE

RoboScape is implemented as a NetsBlox service. Robot commands
are RPCs. The robot’s responses are messages. There are two ver-
sions of RoboScape. The first one defines a separate RPC for each
different type of command, e.g., set speed, get range, etc. It also uses
different message types for different sensors. The second one was
designed specifically for cybersecurity education. It has a generic
send RPC with two fields: robot and command. The command is
a text field where the user needs to provide the command and its
arguments as text, e.g., “set speed 50 50”. There are only two message
types: robot command and robot message. The robot command is
for eavesdropping on other users’ commands. The NetsBlox server
sends this message to every client who has registered to listen on
the given robot. Similarly, the robot message is sent by the server to
each registered client upon receiving a message from a robot. The
payload of these messages is also text. Making the communication

886

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

text-based makes it easy to motivate and implement encryption.
The rest of the paper covers this text based communication version
of RoboScape only.

The architecture of RoboScape is shown in Figure 3. All clients
running in a web browser are connected to the NetsBlox server
via the internet. Similarly, the WiFi enabled robots are connected
to the NetsBlox server as well. In other words, all communication
goes through the server. The communication between the clients
and the server is the standard NetsBlox method: http requests for
RPCs and WebSockets for messaging. The robots and the server
use UDP for communication. The robots run a custom C program
that receives the commands, executes them, and sends messages
back to the server. The NetsBlox server code was not modified.
RoboScape was added as an additional service akin to any other
service NetsBlox supports.

NetsBlox Server

[Roam J{ Services | RoboScape]
Request & RPCs
Response

Messages Messages

Figure 3: RoboScape architecture

The RoboScape prototype has been implemented with Parallax
ActivityBot 360 robots. The cost of the robot is $250. The platform
has two main wheels driven by motors with optical encoders, an
ultrasonic range sensor, a couple of touch sensors (“whiskers”), a
buzzer, a custom button, two LEDs, and an XBee WiFi module. See
Figure 4.

Figure 4: Parallax ActivityBot 360

The basic commands are shown in Table 1. The commands can
be overheard as robot command messages. Furthermore, when the
robot receives the given command, it replies with an acknowl-
edgement containing a time stamp. These, in turn, are sent to the
registered clients as robot messages. So, if a user registers to receive
communication from a given robot and it calls the send RPC, it
will receive a robot command message from the server (simulating
overhearing a command) and a robot message from the server simu-
lating overhearing the robot’s acknowledgement. If the command

Paper Session: Security 2

Table 1: Basic RoboScape commands

Command Arguments
is alive RID (Robot ID)
set speed RID, left, right
beep RID, duration, pitch
get range RID
get ticks RID
set led RID, A/B, on/off/toggle
listen RID

requested a sensor reading, e.g., “get range”, a third message will
be sent with the actual sensor values. The following robot messages
are supported:

Table 2: Robot messages

Message Fields
alive RID (Robot ID), time
beep RID, time, duration, pitch
speed RID, time, left, right
range RID, time, range
ticks RID, time, left, right
whiskers RID, time, left, right
button RID, time, isPressed

To illustrate how easy it is to use RoboScape, consider the sim-
ple but fully functional project shown in Figure 5. The program
enables the user to drive the robot using the arrow keys on the
keyboard. When the green flag is clicked (the standard way to start
a program in Scratch, Snap! and NetsBlox), we call the listen RPC
of the RoboScape service that registers the client with the server
that it wants to listen to the specified robot. Note that the robot ID
used is the last few digits of its MAC address.

The arrow key handlers simply use the set speed command to
specify the speed of the left and right wheels, respectively. The
space key serves as the emergency stop button. Finally, there is the
handler of the robot message message. We parse the message and
if its first word is whiskers, we stop the robot. That is, if the robot
encounters an obstacle, it stops.

From a technical point of view, an interesting question is how
network latency effects the performance of the robot programs.
A robot command travels from the web browser of the user to
the NetsBlox server running in the cloud and then down to the
robot. The acknowledgement and/or any sensor values travel back
the same way. From a user experience point of view, this delay is
not noticeable. When running a program like the one depicted in
Figure 5, hitting a the arrow keys starts the robot within a fraction
of a second.

To quantify the latency, we carried out an experiment. We issued
a command in a loop as fast as possible. Since send is a blocking
call returning either a sensor value (get range or get ticks) or a true
or false whether the command succeeded or not (set speed or beep),
the time between two such commands includes the latency of the
full round trip. We tried different commands and two different local
WiFi networks: a relatively slow mobile personal hotspot and a

887

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

set myrobot | to

run RoboScape | / listen ‘my robot

when M key pressed

run RoboScape |/ send |(my robot

set'speed+0-0

run RoboScape |/ send |(my robot [IS

(my robot

set'speed+50+0

run RoboScape | / send | (]

(my robot

setspeed+0-50

run RoboScape | / send

when I receive robotmessage | _-_robot _-_message
if * ' my robot = robot I

Figure 5: A simple RoboScape project implementing driving
the robot with keyboard commands

fast WiFi router. The average latency across all experiments came
to between 100 and 120 milliseconds. That is faster than human
response time. Interestingly, if we measure the time when a message
arrives in response to a command (as opposed to a return value), the
delay doubles. Since the network latency should be about the same,
this added delay must be due to extra processing on the server and
the client dealing with message passing. While this performance
is more than satisfactory, the system can be sped up significantly
by running a copy of the NetsBlox server on the local network as
opposed to the Amazon cloud.

4 CYBERSECURITY

This section briefly summarizes which cybersecurity concepts can
be taught using RoboScape.

DDosS. Since all one needs to know is the robot ID in order to
issue commands to it, it is really easy to mount a (Distributed) Denial
of Service (DDoS) attack. Instead of taking control of a robot overtly
by issuing set speed commands, we show the students how to issue
set led or short beep commands rapidly in a loop. As more and more
students start doing this, the robot starts to lose real messages and
its behavior becomes erratic. The first task we assign the students
is to modify their driving program to detect if there is an attack
occurring. The simplest way is counting the number of commands

Paper Session: Security 2

issued and comparing it to the number of commands overheard.
Then we introduce two new commands. The set total rate command
limits the number of commands (per second) the robot accepts to
a specified number. This is of course not effective since the real
commands and the attackers’ commands are all grouped together.
The second command is called set client rate and it specifies the
maximum rate commands accepted from the same client as well
as a penalty period when the robot does not accept any command
from the given client whenever the limit is crossed.

The challenge problem for the students is a race we call tug of
war. Two students control the same robot. The robot is placed in the
middle of the room and the objective for each student is to drive the
robot to his or her side of the room. The client rate is set to an agreed
upon fixed number. The students can use manual driving, that is,
they can use the keyboard of their laptops for various commands.
The challenge comes from the fact that you want to issue the last
command before the rate limit is reached, because afterwards you
cannot issue any new commands for the duration left of the current
second.

Encryption. Students quickly realize that it would be much
better if the robot did not accept commands from anybody else.
This presents an opportunity to introduce the concept of encryption.
The robots support a simple Caesar’s cipher. The corresponding
command is called set key and it sends the shift amount to the robot.
Once the robot receives a new key (the default is 0 at startup), it
decrypts every message using the key before sending it and it only
accepts commands encrypted with the very same key.

There are two obvious weaknesses with this scheme. Some stu-
dents figure out the first one quickly: since there are only a limited
number of commands and, for example, if you want to drive your
robot, you must use set speed, one can relatively easily break the
encryption by brute force even using a relatively slow, blocks-based
language. The second weakness is that the very first set key com-
mand is not encrypted.

Figure 6 shows the code that listens to set key commands sent to
a robot and steals the key. It uses the last stolen key to decrypt the
command and extract the new key. Since the initial key is zero, if
the attacker intercepts the very first set key command, the program
will be able to eavesdrop on the robot indefinitely, no matter how
many times the key is changed. This simple example introduces
the students to the need of secure key exchange.

when I receive robot‘command \‘irolmi ‘_'onmmand

set key |to ! item &R of

)

Figure 6: Eavesdropping on a robot and stealing the key
when a set key command is overheard

888

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Hardware key/secure key exchange. A simple way for secure
key exchange in RoboScape is to have the robot generate the key
and never send it across the wireless network. When the user pushes
the button on the robot for two seconds, the robot generates a new
key and “plays it” on two LEDs. There is one LED for bit 0 and
another for 1. The robot blinks one or the other for half a second
from the most significant bit to the least. The student writes this
number down, converts it from binary to decimal, and types it in
their program. Once they do this, the key thief program of Figure 6
will no longer work.

The brute force code breaking can also be made much harder:
instead of a single shift value for the Caesar’s cipher, RoboScape
supports using a list of shift values. The encryption then proceeds
by shifting the first character of the message by the first shift value,
the second by the second and so on in a circular fashion. The robot
itself generates four 4-bit shift values. Knowing this, brute forcing
a set speed command may still be possible (even though the number
of possible combinations are over 64,000 as opposed to fewer than
100), but if the first thing the user’s program does is change the key
to a new list of more than 4 values, and then continue to change it
frequently, the attackers will not be able to keep up.

‘when F clicked
set target |to

run RoboScape |/ listen |(target

when I receive robotcommand \ ‘robot (command

run RoboScape | / send |(target (saved cmd

Figure 7: Capturing encrypted commands and replaying
them on demand

Replay attacks. At this point of the curriculum, students should
have secured their robots via the aforementioned, scaffolded tasks.
Instruction on additional robot interference then takes form in the
application of replay attacks. Even though the attackers cannot
break the encryption, they can still overhear messages and reissue
them themselves. The program in Figure 7 allows the attacker to
capture any commands the user sends to the robot and even though
they cannot decrypt it, the person can observe the robot’s behavior,
and issue the saved command at a later time. For example, they
can wait until the robot turns, press the space button to save the
last command overheard (presumably the turn command), and then
they can cause the robot to turn any time they choose to by pressing
the up arrow.

Paper Session: Security 2

There is a simple fix to this problem with RoboScape: each com-
mand can be prepended by a sequence number. If a robot receives
a command that starts with a number, it will only allow commands
that also start with a number from then on. Furthermore, it will
only accept numbers that are strictly greater than the last received
sequence number. To allow for lost messages, it accepts numbers
in the range [seq + 1, seq + 100] where seq is the last received valid
sequence number.

Table 3 lists the cybersecurity related commands.

Table 3: Cybersecurity specific commands

Command Arguments
set key RID (Robot ID), key
set total rate RID, rate
set client rate | RID, rate, penalty
reset rates RID
reset seq RID

5 LESSONS LEARNED

We conducted two one-week long camps with a total of 24 students
from grades 7-12. The students were split approximately evenly
between male and female. A high school teacher also participated
in one of the camps. Based on the curricular affordances provided
by our environment, we completed a domain unpacking of key CS
concepts and practices available in the K-12 CS Framework [7] to
support the design of a scaffolded introduction to cybersecurity
and a prepost assessment to evaluate learning gains. Key concepts
include computational thinking (CT), algorithms and programming,
networks and the internet, and the impact of computing, with
a focus on the practice of creating computational artifacts. We
could not assume prior computer programming experience, so we
started with an introduction to NetsBlox programming that in-
cluded increasingly difficult tasks designed to target the CT and
programming concepts of control structures, variables, and mod-
ularity. The second day was dedicated to learning RoboScape by
creating simple robot driving programs. This day not only allowed
for additional programming practice, but it also provided for a pre-
liminary introduction to key networking concepts to support the
more advanced cybersecurity tasks to come. The final three days tar-
geted our cybersecurity-specific material through scaffolded tasks
introducing DDoS, encryption, and other concepts. We addition-
ally emphasized the framework concept of impacts of computing
through cybersecurity guest lectures applying curriculum content
to real world applications. The hands-on portion of the curriculum
is summarized in Table 4.

Our prepost assessment was designed based on the concepts
and practices implemented in our curriculum and was sectioned
into CT, networking, and cybersecurity. For instance, given the
assumption of little to no prior programming experience and the
introduction to control structures on Day 1 of the camp, the CT
section of our assessment included a question on the use of condi-
tional statements to better assess prior knowledge and to evaluate
student understanding post-camp. In addition to learning gains, we
implemented a prepost survey targeting students’ self efficacy in

889

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Table 4: Daily schedule
Day Topics
Intro to NetsBlox programming
Intro to RoboScape programming
Attack detection, DDoS, its mitigation
Encryption, secure key exchange
Replay attack, its mitigation, final project

QW[N] =

programming, attitudes towards technology, and task values placed
upon robotics and cybersecurity to evaluate student attitudes to-
ward the curriculum content and their abilities.

Table 5 reflects our results, showing that most categories im-
proved significantly (p-score < 0.05) from pre-test to post-test. This
is reflected in the average scores from the assessment (on a 0-1
scale) and survey (on a 1-6 scale). Also included is the effect size ex-
perienced in each area; effect size is simply the average of post-test
scores minus the average of pre-test scores, which is then divided by
the standard deviation of the full sample. As shown here, students
experienced remarkably significant improvements in all sections
of the questionnaire; they were specifically addressed during the
camp in the form of robotics applications and throughout several
guest lectures, so it is reassuring to see the results. Additionally, stu-
dents expressed improvement in two sections of the motivational
survey, showing that they feel more comfortable in completing
programming tasks related to robotics and cybersecurity while also
appreciating the value of technology. This makes sense considering
the topics of the camp as well as its elective nature. In addition,
students could be heard saying the following during post camp in-
terviews that nicely supports our results: “The robots really helped
because we got to apply what we’ve learned to an actual situation
where we can see the results.” “It’s interesting and I really like cod-
ing now... before I kind of viewed it [coding] as something that
could spark my interest, but now it [the camp] has heightened my
love for coding and I want to explore more."

Table 5: Survey Results

Category Pre Avg. | Post Avg. | P-Score | Eff. Size
CT 0.70 0.91 0.001 0.833
Networking 0.58 0.80 0.001 0.845
Cybersecurity 0.61 0.81 0.002 0.674
Self-Efficacy 4.81 5.42 <0.001 0.627
Tech Att. 5.39 5.65 0.011 0.368
Task Values 5.27 5.55 0.176 0.159

We would next like to briefly address the result which did not
experience significant improvement. While there was some amount
of improvement in the value students place on robotics, cybersecu-
rity, and programming tasks, it was not enough to be significant.
The main issue here seems to be that students already valued those
areas highly, so there was not as much room for improvement as
in the other areas.

There is plenty of anecdotal evidence of the success of the camps
as well. Student engagement in both camps was very high. After
the second day, that is, after the students started programming the

Paper Session: Security 2

robots, they regularly arrived half an hourly early and took very
short lunch breaks. One could hardly see any mobile phones even
though we did not ban them. None of the students went on social
media or played online games during the camp. The participating
high school teacher remarked how unusual this was with teenagers,
saying “I did not see them on cell phones, they were engaged with
programming their robot."

The anonymous survey at the end of the camp also showed very
positive attitudes toward the camp. Most students expressed how
much fun they had and how much they learned. The few negative
comments were from students who had no previous programming
experience (and were probably the younger learners) who had
a somewhat harder time keeping up with the fast-paced camp.
To illustrate students’ attitudes about the camp, here are some
answers to the question, “What was your favorite part of the camp?”:
“Writing brute-force programs for 4-key encryption.” “..being able
to apply new and exciting features to the robots that I never thought
I would be able to do. It really makes we want to get more engaged
in computer science as well as networking” “...hacking people’s
robots and watching them become confused and making them think
their robots are broken.” ... racing other teams’ robots and fighting
with others to get the robot to go a certain direction”

Several students identified encryption as the most difficult con-
cept they learned. Others listed various aspects: “Everything I tried
that didn’t work made sense once I broke it down and really thought
about it except for maybe the command to stop and turn around
the robot when its whiskers hit an obstacle” “For a day or two I
couldn’t wrap my head around lists for some reason but it clicked.
Everything else was also a challenge but I eventually got the hang
of most of the content!” “The geometry killed me, and some of
the robot programming was hard..” The students’ engagement is
nicely illustrated by this comment: “Lots of complex subjects were
taught in the GPS presentation that I studied more when I got home,
but it did take me a while to try and fully understand some of the
concepts taught”

6 RELATED WORK

The most similar camp to the one we put on seems to be Cyber
Discovery and its offshoot, Junior Cyber Discovery (JCD), which
covered the same general topic areas of robotics and cyberspace
and used a Parallax Boe-Bot for hands-on activities to teach the
students about code security, wireless signal transmission, and
programming [16]. The use of the Boe-Bot was very prominent
during the one reported year of JCD, though those students also
designed and build the robots [5]. Another series of camps that has
seen rapid growth is GenCyber [13],[10]. One example occurred
at Purdue University Northwest [6], where cybersecurity ideas
were integrated with game-based learning, using a pair of 3D VR
games to teach social engineering, information security, and secure
online behavior. Another example built around the GenCyber model
was CyberPDX [4]. The GenCyber programming section involved
two tools for teaching new programmers - Blockly, which is a
graphical, block-based language similar to NetsBlox, and Turtle
Graphics in Python. CyberPDX students move on to writing their
own encryption program (given a decryption one) or to creating a

890

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

brute-force attack program. Both camps demonstrated significant
learning gains.

Our camp mainly differs from these examples in that attendees
were able to focus entirely on how to best program the robots. On
the cyber side, our camp was focused on cybersecurity instead of
general cyber ideas, as students were tasked with defending their
robots while attempting to hack the robots of other groups. These
examples also tend to be aimed at different age or experience groups
instead of using robotics as a teaching tool for programming and
cybersecurity aimed at predominantly high school students.

The Cozmo robot from Anki [14] is a sophisticated yet inexpen-
sive platform. It is being used in introductory robotics course at
Georgia Tech (CS 3630), and supports remote control through an
SDK. However, it requires a direct Bluetooth connection to a mobile
device, and only one robot per device is allowed. As such, it would
not be an ideal platform for our purposes. Finally, Sphero is a small
robotic ball that is suitable for a robotics and mobile computing
course [9]. Students can learn and use simple programming tools
on a smart-phone app to send commands or other information to
the robots. It is also set up to allow for growth in programming
knowledge, from simple block languages up to JavaScript. We plan
to provide support for additional robot platforms in the future.

7 CONCLUSIONS AND FUTURE WORK

While both RoboScape and the curriculum of the camp are first
prototypes, and the participants were self selected and not rep-
resentative of the general K-12 student population, we can draw
some preliminary conclusions. The apparent success of the summer
camps shows the promise of teaching robotics and cybersecurity
together in a hands-on manner. The fact that students with no pre-
vious programming experience were able to mount cyber attacks
and implement simple cyber defense techniques by the end of the
week seems to validate the value of the RoboScape approach. Imple-
menting and running the code in the browser made understanding
the concepts and designing and debugging the robot control pro-
grams easier. One lesson for the future is that we need to create
two versions of the curriculum: one with students who have not
programmed before and a more advanced version for students who
have. Next year, we will develop and deliver two such variants. We
also plan to develop a PD week for interested teachers so that they
can take the material and implement it in their schools as an after
school club. Finally, we’ll evaluate additional robotic platforms with
different sensors and actuators for potential support by RoboScape
and the cybersecurity curriculum.

8 ACKNOWLEDGEMENTS

This material is based in part upon work supported by the Na-
tional Security Agency Science of Security Lablet, the Air Force
Research Laboratory under Award FA 8750-14-2-0180 and the Na-
tional Science Foundation under grants CNS-1644848, CNS-1238959,
CNS-1739328, and DRL-1640199. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the US
Government.

Paper Session: Security 2

REFERENCES

[1] F. B. V. Benitti. Exploring the educational potential of robotics in schools: A

[2

—

=

systematic review. Computers & Education, 58(3):978-988, 2012.

B. Broll, A. Lédeczi, P. Volgyesi,]. Sallai, M. Maroti, A. Carrillo, S. L. Weeden-
Wright, C. Vanags, J. D. Swartz, and M. Lu. A visual programming environment
for learning distributed programming. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, pages 81-86. ACM, 2017.
B. Broll, A. Lédeczi, H. Zare, D. N. Do, J. Sallai, P. Vélgyesi, M. Maréti, L. Brown,
and C. Vanags. A visual programming environment for introducing distributed
computing to secondary education. Journal of Parallel and Distributed Computing,
118:189-200, 2018.

W. chang Feng, R. Liebman, L. Delcambre, M. Lupro, T. Sheard, S. Britell, and
G. Recktenwald. Cyberpdx: A camp for broadening participation in cybersecurity.
In 2017 USENIX Workshop on Advances in Security Education (ASE 17), Vancouver,
BC, 2017. USENIX Association.

J. Holcomb, M. Nelson, H. Tims, G. Cazes, and G. Turner. Junior cyber discovery:
Creating a vertically integrated middle school cyber camp. In Proceedings of the
American Society for Engineering Education, June 2012.

G. Jin, M. Tu, T.-H. Kim, J. Heffron, and J. White. Game based cybersecurity
training for high school students. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, SIGCSE 18, pages 68-73, New York,
NY, USA, 2018. ACM.

891

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

— =
)

K12 Computer Science Framework. http://www.k12cs.org, 2016. Cited 2018
August 31.

F. Klassner and S. D. Anderson. Lego mindstorms: Not just for k-12 anymore.
IEEE Robotics & Automation Magazine, 10(2):12-18, 2003.

S. Kurkovsky. Mobile computing and robotics in one course: Why not? In
Proceedings of the 18th ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE *13, pages 64-69, New York, NY, USA, 2013. ACM.

T. Ladabouche and S. Lafountain. Gencyber: Inspiring the next generation of
cyber stars. IEEE Security & Privacy, 14(5):84-86, 2016.

M. J. Mataric. Robotics education for all ages. In Proc. AAAI Spring Symposium
on Accessible, Hands-on Al and Robotics Education, 2004.

NetsBlox website. https://netsblox.org. Cited 2018 August 31.

B. R. Payne, T. Abegaz, and K. Antonia. Planning and implementing a successful
nsa-nsf gencyber summer cyber academy. Journal of Cybersecurity Education,
Research and Practice, 2016(2), 2016.

[14] J. Skageby. “Well-Behaved Robots Rarely Make History": Coactive Technologies

[15]

[16]

and Partner Relations. Design and Culture, 10(2):187-207, 2018.

Snap!: a visual, drag-and-drop programming language. http://snap.berkeley.edu/
snapsource/snap.html. Cited 2018 August 31.

H. Tims, G. Turner, C. Duncan, and B. Etheridge. Work in progress - cyber
discovery camp - integrated approach to cyber studies. In 2009 39th IEEE Frontiers
in Education Conference, pages 1-2, Oct 2009.

http://www.k12cs.org
https://netsblox.org
http://snap.berkeley.edu/snapsource/snap.html
http://snap.berkeley.edu/snapsource/snap.html

	Abstract
	1 Introduction
	2 NetsBlox Overview
	3 RoboScape
	4 Cybersecurity
	5 Lessons Learned
	6 Related Work
	7 Conclusions and Future Work
	8 Acknowledgements
	References

