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ABSTRACT
Non-control data attacks have become widely popular for circum-
venting authentication mechanisms in websites, servers, and per-
sonal computers. Moreover, in the context of Cyber-Physical Sys-
tems (CPS) attacks can be executed against not only authentication
but also safety. With the tightly coupled nature between the cyber
components and physical dynamics, any unauthorized change to
safety-critical variables may cause damage or even catastrophic con-
sequences. Moving target defense (MTD) techniques such as data
space randomization (DSR) can be effective for protecting against
various types of memory corruption attacks including non-control
data attacks. However, in terms of CPS it is also critical to ensure the
timely Cyber-Physical interactions after attacks thwarted by MTD.
This paper addresses the problem of maintaining system stability
and security properties of a CPS in the face of non-control data
attacks by developing a DSR approach for randomizing binaries at
runtime, creating a variable redundancy based detection algorithm
for identifying variable integrity violations, and integrating a con-
trol reconfiguration architecture for maintaining safe and reliable
operation. Our security framework is demonstrated utilizing an
autonomous vehicle case study.
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1 INTRODUCTION
The design of safety-critical infrastructure is widely changing with
the introduction of Cyber-Physical Systems (CPS). Traditionally
isolated and standalone systems are becoming connected, utiliz-
ing communication channels to form distributed systems. These
changes are beneficial for increasing the precision, consistency, and
reliability of computations by allowing for more sophisticated con-
trol algorithms to be utilized. However, with the newly connected
state of CPS, the attack surface is also expanded. Systems were not
originally designed with remote cyber-attacks in mind, creating a
vast array of problems that could arise from adversary exploitation.
Instead of necessitating physical access adversaries can now gain ac-
cess and exploit software remotely to inflict physical consequences.
In the case of autonomous vehicles, controller compromises can
lead to vehicle crashes, passenger data exfiltration, and destination
changes.

Memory corruption vulnerabilities like buffer overflows often
exist in legacy CPS software and it is difficult to integrate state of
the art security features for hardening purposes. As such, several
attack vectors exist that are less common in traditional information
technology systems. One commonly utilized exploit is a non-control
data attack. Instead of code injection attacks and code reuse attacks
which focus on redirecting control flow, non-control data attacks fo-
cus on utilizing vulnerabilities like buffer overflows to alter adjacent
variables. It is popular to use this technique for bypassing password
authentication mechanisms, but in CPS this can extend to altering
safety-critical variables leading to potentially fatal consequences.
Data Space Randomization (DSR) has become a popular moving
target defense (MTD) technique for protecting against non-control
data attacks. By altering the representation of critical variables at
runtime, any attempt to overwrite will result in an outlier data
value.

In existing DSR approaches, success is defined by the translation
of adversary injected values into outlier data. However, if this data
is still of a valid format it will not result in any program exceptions
and even could possibly satisfy existing detection constraints if
the translated value happens to fall within a defined safe range.
Additionally, existing DSR approaches rely on source code trans-
formations, but legacy software usually can only be accessed in a
binary format. As such, it is important to develop a methodology
for performing DSR at the binary level, allowing for a dynamic
randomization process at runtime, and providing re-randomization
capabilities to further hinder adversary reconnaissance efforts.

In CPS, resiliency is a critical component to maintain system
availability. Even though DSR can prevent non-control data manip-
ulation, a failed attack can still lead to DoS behavior. In this case it
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is paramount to utilize proper fault tolerant recovery methods to
ensure that system availability is maintained at all times.

The main problem that arises in this paper is how do we develop
a DSR approach at the binary level to allow for providing a dynamic
randomization capability. Further, we consider how to integrate
DSR in combination with detection and reconfiguration to maintain
system availability and real time behavior in the event of non-
control data attacks. The main hypothesis of this paper is that by
using DSRwe can protect, and detect non-control data attacks while
recovering control fast enough to maintain safe, and reliable system
behavior.

In past work, we developed a three stage control architecture
consisting of attack protection, detection, and recovery [21]. In
this architecture we utilized Instruction Set Randomization (ISR),
and Address Space Randomization (ASR) to protect against code
injection and code reuse attacks. However, because these MTD
techniques fail to protect against non-control data attacks, DSR
becomes a critical element of providing protection. We leverage
this work to create an attack resistent DSR based control architec-
ture. We create a software DSR implementation utilizing dynamic
binary translation at runtime to randomize critical variables, and
derandomize them for memory accesses. Detection capabilities are
integrated to leverage a variable redundancy structure to identify
instances of attacks. Finally, a fault tolerant recovery algorithm is
integrated for transitioning between redundant software implemen-
tations in the event of an attack. The contributions of our paper
are as follows:

• We develop a DSR runtime approach using dynamic binary
translation for the purpose of randomizing, derandomizing,
and detecting cyber-attacks at runtime

• We develop an attack detection approach to utilize a com-
parison of redundant variables with different randomization
keys to identify a compromise of integrity. Furthermore, we
integrate DSR with a control reconfiguration architecture to
defend against non-control data attacks while maintaining
the resiliency and availability of safety-critical CPS

• We implement our security architecture on a developed hard-
ware in the loop testbed using a combination of off-the-shelf
embedded computing hardware and open source simulation
software

• Wepresent an autonomous vehicle case study to demonstrate
the effectiveness of our security architecture in limiting the
impact of cyber-attacks, as well as the overhead presented
to the system.

The rest of the paper is organized as follows: Section 2 introduces
the background relating to DSR and the relevant attack surface of
safety-critical CPS, Section 3 intoduces the threat model for our
paper, Section 4 describes the DSR approach for protecting the
integrity of program variables, Section 5 describes the runtime pro-
cess for detecting non-control data attacks, Section 6 describes the
control reconfiguration process, Section 7 presents an implementa-
tion of our integrated DSR and control reconfiguration architecture,
Section 8 utilizes an autonomous vehicle case study to demonstrate
our DSR implementation, Section 9 presents related work, and
Section 10 provides concluding remarks.

2 BACKGROUND
With the introduction of CPS such as connected and autonomous
vehicles, traditionally standalone systems are now becoming sig-
nificantly reliant on software infrastructure and remote commu-
nication interfaces. Current automobiles include over 100 million
lines of code and 50 to 70 electronic control units (ECUs), similar
to the level of a F35 fighter jet [9]. Due to the large investment
required for redesigning a system from the ground up, automotive
companies often attempt to build security on top of existing in-
frastructure, leaving a large amount of legacy code in the process.
As such, attackers can leverage the large attack surface and lack
of CAN bus authentication to gain entry to automotive networks,
pivot to safety-critical ECU’s, and disrupt the physical actuation of
the vehicle.

For example, one vulnerability discovered from legacy code is
the buffer overflow. Buffer overflow’s result from the absence of
a limitation of the length of stored input in old versions of the C
and C++ language, leading to the overwriting of adjacent memory
locations on the stack. By overwriting adjacent memory locations,
adversaries can inject instruction payloads directly (code injec-
tion [20]), redirect control flow to existing functions in the program
(code reuse [25]), and overwrite adjacent program variables (non-
control data attacks). Unlike code injection and code reuse attacks,
it is more difficult to protect against and detect a non-control data
attack due to the minimal change in program execution.

Through vulnerabilities like buffer overflows, attackers can ma-
nipulate non control program variable data to alter program behav-
ior without altering control flow. One common technique utilized
to disrupt these types of attacks is DSR. DSR changes the internal
or external representation of an application’s data in such a way
as to ensure that the semantic content is unmodified but unautho-
rized use, access, or modification is hindered [19]. For this to be
accomplished the format, syntax, encoding, and other properties
of the data are randomized. As such, DSR acts similarly to ISR in
using a key based randomization and de-randomization process to
encode variable data sensitive to attack. Each variable data object
is randomized before it is written to memory and is derandomized
after it is read from memory. Consistent with the ISR process, the
randomization process can be accomplished by using an XOR op-
eration with a randomization key [5, 7]. In these implementations
the overhead is minimal with an average performance overhead
of around 15% [30]. Additionally, there is also the possibility of
using other symmetric encryption algorithms such as those in the
AES family to add further security to the application. DSR provides
both the ability to use a common shared randomization key, but
for enhanced security, each variable should be mapped to a unique
randomization key.

The main hypothesis considered in this paper is that by using
DSR, we can detect non-control data attacks and reconfigure the
CPS controller fast enough to ensure safety and stability is main-
tained with respect to the physical dynamics and cyber components
of the vehicle. To validate this hypothesis we develop a three stage
security and control architecture consisting of protection, detection,
and control reconfiguration capabilities. We implement this archi-
tecture on a customized hardware-in-the-loop testbed resembling
the ECU setup of an automobile deployment environment. We then
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evaluate the architecture implementation with an autonomous ve-
hicle case study to determine the defense effectiveness, as well as
the effects on real-time performance, and physical behavior.

3 THREAT MODEL
For our threat model, we focus on legacy CPS controllers which
may have memory corruption vulnerabilities such as buffer over-
flows. The attacker can leverage the vulnerabilities to overwrite and
manipulate some adjacent safety critical variables by crafting and
sending a malicious payload to the CPS controller. Consequently,
the goal of the attacker is to manipulate the variable in such a way
as to to bypass authentication, alter program output, or cause the
CPS to enter an unsafe state.

In our threat model we make the following assumptions: 1) The
CPS controller is the only vulnerable process in our system, contain-
ing a memory corruption vulnerability when processing incoming
messages, 2) our security architecture, randomization keys, sensors,
actuators, and underlying operating system are secure, 3) the com-
munication channel can be compromised by the adversary, allowing
for triggering vulnerabilities within the connected CPS controller,
and 4) the CPS includes safety-critical actuation that can result in
damaging consequences if compromised.

As a classical CPS, autonomous vehicles can be used to illus-
trate our threat model. An example autonomous vehicle model
includes 5 main components: a sensor cluster, actuator cluster, driv-
ing controller, remote function actuator (RFA), and telematics con-
trol unit (TCU). Additionally, two communication interfaces exist:
an external cellular channel for communication with the central
maintenance station, and an internal safety-critical network for
communication between the vehicle ECUs. The driving controller
corresponds to the vulnerable CPS controller in our threat model,
while the communication from the external cellular communication
channel serves as the vulnerable remote communication interface
where the attacker can gain entry into the system.

Figure 1: Autonomous Vehicle System Model

One possible attack vector consists of the following steps: 1)
The attacker compromises the TCU through the remote wireless
communication channel, 2) The adversary pivots to the RFA where
they can manipulate the outgoing status messages to become a
customized attack payload, 3) Malicious RFA status messages are
sent to the driving controller which has an exploitable buffer over-
flow vulnerability allowing for the attacker to overwrite adjacent
safety-critical variables in the program with a non-control data
attack. In this case, the adversary overwrites the vehicle steering
variable, causing the vehicle to lose control and drive off of the road.

The vehicle system model and attacker message path are illustrated
in Figure 1.

4 STATIC ANALYSIS FOR DSR

Binary Lifting

Points To Analysis

Unique Memory 
Locations

Mask Assignment

Binary Lifting

Control Flow Graph Instruction Translation

Binary Executable

PAG

Figure 2: DSR Static Analysis Process

Our DSR approach is designed to transform program variables
from a native binary, eliminating the need for source to source
transformations while providing the capability for automated run-
time randomization and derandomization. Static variables, local
variables, and heap variables can all be randomized for the purpose
of protection. In cases of large programs, local variables adjacent to
input buffers are prioritized in an effort to address non-control data
attacks. Furthermore, by identifying the randomization variables of
interest, we independently assign unique masking keys to prevent
adjacent variables from being of the same encoding. In the rest
of the section we describe the main segments of our DSR static
analysis approach: binary lifting, and points to analysis.

4.1 Binary Lifting

Binary 
Ninja

Control 
Flow Graph

CFG 
Protobuf

Instruction 
Translation

LLVM IR

Figure 3: Binary Lifting Process

In contrast to performing source to source transformations in C
programs it is difficult to manipulate and analyze variable instances
in binary code. For the purpose of general analysis, it is optimal to
convert the binary program into an intermediate representation (IR)
format. The low level virtual machine (LLVM) compiler includes
an IR representation called LLVM bitcode which is the most widely
utilized representation for this purpose [15]. Since many existing
static analysis tools already use this IR, it makes sense to convert
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the binary program to this representation. This process is defined
as binary lifting.

To convert native binary to LLVM bitcode two steps are neces-
sary: control flow recovery, and instruction translation [17]. Control
flow recovery includes analyzing the execution path of a program
for the purpose of understanding the specifics of how a program
functions. In the academic community it is standard to rely on an
existing tool such as IDA Pro [13] or Binary Ninja [8] to compute
the control flow graph due to the state of the art features and sig-
nificant past work put in place. We continue this trend by relying
on Binary Ninja for control flow recovery in our approach.

The instruction translation process uses a very simple approach,
relying on a direct mapping between binary instructions and LLVM
IR code. This decision intends to utilize the LLVM framework for
program optimization which consequently reduces the required
translation codebase. To translate code, we utilize an open source
framework called Mcsema to perform the direct mapping between
the binary and LLVM IR code [12].

4.2 Points To Analysis
In the context of a C based program, a variable can either be stan-
dalone data, or a pointer, As such, it is important when designing
the data randomization process to understand the relationship be-
tween variables, and how many layers of unmasking are necessary.
For example, in the simple case, a variable holding a data value
would only need to be derandomized once to obtain the true value.
However, in the case that the variable is actually a pointer to a
variable at another address, not only does the pointer variable need
to be unmasked to identify what address to access, but the actual
value in the referenced memory needs to be derandomized as well.

Due to being computationally undecideable, pointer analysis
algorithms generally are approximations that provide varying de-
grees of precision and efficiency [23]. There is also the tradeoff of
performance with higher precision algorithms requiring a higher
degree of time complexity. For example, algorithm factors such as
flow-sensitivity, context-sensitivity, heap object modeling, aggre-
gate object modeling, and aliasing increase the time complexity to
exponential and high order polynomial. As such, algorithms with
these factors are avoided in an effort to increase scalability.

The two most common pointer analysis algorithms are Steens-
gaard [28] and Andersen [2] which both provide flow and context
insensitive inter-procedural points to analysis implementations.
These algorithms both compute a points to set over named variables
including local, global, and heap objects. In terms of comparison
Steengaard’s algorithm tends to be less precise, but performs better
in terms of time complexity and scalability. However, since the goal
of DSR is to randomize adjacent memory locations with different
keys, it is very important to make sure that variable memory lo-
cations are segmented as much as possible. Therefore, in terms of
our approach, precision becomes a priority making the Andersen
algorithm a viable option for points to analysis.

After points to analysis is performed to determine variable rela-
tionships, an output is generated as a points to graph (PAG). With
this PAG fed in as input, unique randomization keys are generated
at load time for each respective variable object. Since data objects
on the ARM processor are always 64 bits, the key size can be a

consistent size compared to instances of other processors such as
X86. With 64 bits of entropy, 264 possible randomization keys can be
generated which provides for a sufficient number of combinations
for programs with a large amount of variables.

5 RUNTIME RANDOMIZATION

Binary Lifting

Reconfiguration

Detection Recovery

Runtime DSR

Randomize Derandomize
Redundant 
Variables

Binary Executable PAG

Figure 4: Runtime Process

The main vulnerability addressed by DSR is the overwriting and
manipulation of adjacent variable data to input buffers [6]. The
unique randomization and derandomization of individual variables
ensures that if the attacker overwrites data, the semantic effect
in the program will not be of the intended nature. For example,
in the case of an adversary overwriting an adjacent target speed
variable for an automobile, the desired goal could be increasing
the value from 65 mph to 70 mph. In this case, the adversary will
leverage a buffer overflow to insert the value 70 into the target
speed variable memory location on the stack. However, in the
case of DSR, the input buffer and target speed variable will have
different randomization keys. Due to this fact, when the target
speed is read from memory, it will first be derandomized with a
different randomization key than what was utilized for writing, and
the resulting value read will not be 70. An important note is that
the resulting data values may still be of a valid format meaning
that an exception will not occur. However, the masking of variable
values makes it easier for detection algorithms to determine the
presence of a cyber-attack. The process for our runtime approach
is illustrated in Figure 4. We focus on two steps: runtime DSR, and
reconfiguration. These steps are described in more detail below.

A non-control data attack consists of an adversary overwriting an
adjacent variable to an existing input buffer by leveraging a buffer
overflow vulnerability. During a successful attack the variable will
be manipulated to a value intended to accomplish the adversaries
program goal. When this variable is manipulated, DSR can cause the
variable to be different than what the adversary expects, resulting
in unintended program behavior. However, in contrast to other
MTD techniques such as ISR, and ASR, manipulating the variable
with DSR enabled will not result in an exception due to the variable
data still being of a valid format. This means that detection is not
as simple as just relying on signals induced by illegal instruction
execution and invalid memory address access, but a more active
detection mechanism needs to be put in place.
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Figure 5: Variable Randomization Process

Variable redundancy can aid in the process of detecting non-
control data attacks by utilizing different randomization keys for
duplicate variable instances at store time, and performing a com-
parison of the derandomized values at variable load time. Any
difference between the redundant variables during the comparison
will indicate the presence of a variable manipulation. As such, to
successfully bypass the comparison detection algorithm the adver-
sary has to successfully guess both randomization keys correctly
to ensure that the derandomized variables will be equivalent.

The primary defense mechanism utilized in our approach is
the randomization and derandomization process of DSR which is
illustrated in Figure 5. This means that when a variable is written to
memory, encoding will first take place with a unique randomization
key, and when the variable is consequently read from memory it
will be derandomized to the true value with the same randomization
key before use. In other words, there must be two steps inserted into
the program during variable access: a randomization step during
variable stores, and a derandomization step during variable loads.

At load time the PAG is utilized to generate a key hash table
based on the unique variables encountered during static analysis.
For each variable two randomization keys will be generated, one
for the default variable and one for a redundant variable instance.
When a load instruction is encountered, the respective variable key
will first be looked up from the hash map based on the encoun-
tered address and encoded with an XOR operation. Furthermore,
this table will additionally be accessed during the derandomization
stage to look up the respective randomization key to perform a
subsequent XOR operation on the encoded value. Since the XOR op-
eration is a symmetric encoding technique, performing this second
operation will convert the encoded variable back to the true value.
It is important to note that when encoding, one additional XOR
instruction is necessary to be inserted in the program before a store
instruction, and after a load instruction. Additionally, encoding and
decoding operations are only executed on register values, and not
on the respective data in memory.

6 CONTROL RECONFIGURATION
Due to the existence of zero day exploits, security design must be
converted from system hardening to a defense in depth approach.
Security must be implemented at all levels of a system so if adver-
saries can get through outer layer protections, backup mechanisms
are in place to protect the integrity of safety-critical operations. In
CPS, it is not just enough to detect a cyber-attack but it is equally as
critical to ensure availability. In a safety-critical application, a failed
cyber-attack can still result in denial of service behavior, poten-
tially leading to devastating physical consequences. Our approach
is built upon a Simplex based recovery architecture, ensuring that
in the event of a cyber-attack, there is always a path to resume
valid program execution through a backup controller [21].

In our approach there are two spawned controllers at load time:
a default high performance controller, and a backup safety con-
troller. In general terms the default controller is more optimal for
normal use but is not guaranteed to be completely secure, while the
backup controller is less optimal from a performance standpoint
but is guaranteed to be safe. This N version programming technique
raises the difficulty for the adversary by making it necessary to not
only find a vulnerability in one controller, but multiple different
controller instances. Even though it is more beneficial from a secu-
rity perspective to use different controller versions, our approach
is not limited to a specific type of control algorithm, making it also
possible to use the same controller version for both the default and
backup controller.

At runtime the default controller will be spawned with the
backup controller remaining in an idle state. Both controllers will
contain a different set of randomization keys for their respective
variables. When a cyber-attack is detected, execution in the de-
fault controller is terminated, the backup controller transfers to an
executing state to serve as the new default controller, and a new
controller is spawned to serve as the new backup controller. By us-
ing this process, it is guaranteed that a compromised controller will
never execute, and the availability of safety-critical functionality
will remain intact.

5



7 IMPLEMENTATION
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Attack Detect
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Figure 6: Architecture Design

Figure 6 presents an overview of our control architecture imple-
mentation which is based on a sequence of redundant controllers
(a default and backup controller) and the transfer of execution
during an attack. The key components in the architecture are the
(1) Configuration Manager that oversees, customizes, and adjusts
the operation of the various underlying controller components, (2)
CPS Controller whichs control the physical plant, (3) DBT which
uniquely customizes the runtime environment for each CPS con-
troller, and (4) points to analysis graph (PAG) which describes the
relationship between pointers and variables within a program.

Configuration Manager: This component is responsible for
spawning the underlying CPS control applications, monitoring for
the presence of cyber-attacks with a detection module, and tran-
sitioning execution between controllers with processes defined in
the recovery module. The detection module incorporates a signal
handler which is triggered when a program redundant variable
comparison is not equivalent. Additionally, the recovery module
is implemented to send a posix continue signal to the backup con-
troller at the point of attack detection for the purpose of terminating
the execution of the default controller and transfering execution
to the backup controller. At this point, a new redundant controller
will be spawned to serve as the new backup controller in the archi-
tecture.

CPS Controller: This component is the actual software that
controls the CPS application. From the most generic form, the con-
troller takes sensor input from the system, performs computation
operations, and outputs actuation commands to perform in the
surrounding physical environment.

Dynamic Binary Translator (DBT): This component is re-
sponsible for providing a unique randomization backend for each
spawned CPS controller in the architecture. In other words, the
DBT is a virtual sandbox layer that serves as an intermediary be-
tween the executing binary and the processor. The DBT has the
ability to intercept instructions as they are fetched and mediate
any potential non-control data attack. As such, a DSR methodology
is supported by encoding variables before storage on the stack, as

well as a derandomizaton stage before loading into registers. Each
variable is supported to include a dynamically generated unique
randomization key, as well as a duplicate comparison variable for
detecting variable tampering. Additionally, the DBT is responsi-
ble for storing a variable key mapping table which incorporates
uniquely generated keys for every variable in a program. The open
source instrumentation tool Mambo is utilized to support the DBT
implementation within our architecture [14].

Points to Analysis Graph: This component is responsible for
identifying the relationship between variables within a program.
For the implementation, the open source tool SVF is utilized which
is built upon the LLVM compiler. For a PAG to be successfully
generated with SVF it is necessary to translate the program binary
into a LLVM IR representation. To accomplish this task we utilize
Mcsema integrated with the Binary Ninja disassembler to perform
binary lifting on the original program. The results of the points
to analysis is fed into the DBT as input to aid in establishing the
dynamic generation of variable randomization keys.

The basis behind the execution process of our security frame-
work is a three step approach: 1) Static Analysis, 2) Binary Load
Time, and 3) Runtime. These steps are described below.

7.1 Design Time
At design time, a significant amount of time needs to be dedicated
to properly establishing the CPS controller. This controller is lo-
cated in secondary storage and is responsible for the control of
the CPS based on sensor input and actuator output. Before loading
the binary for execution, static analysis is performed to analyze
the relationship between program variables. The biggest challenge
for variable randomization is to recognize the association between
pointers and memory addresses. It is not just sufficient to random-
ize with respect to the memory storage location, but the pointer
itself must be randomized. As such, during derandomization there
are multiple steps of deencoding before access to the actual vari-
able value is achieved. Static analysis in our security framework is
achieved through 1) variable identification, and 2) points to analysis.
For variable identification, iteration is performed over the Elf sym-
bol table to access the full spectrum of variables within the target
program. Afterwards, points-to-analysis is performed utilizing a
combination of Mcsema [12], and SVF [29]. Mcsema is a binary lifter
that utilizes a combination of control flow recovery and instruction
translation to convert the program executable to an intermediate
code representation that is compatible with current points to anal-
ysis algorithms in the LLVM compiler. Due to the vast amount
of research put into solutions such as Binary Ninja [8], it makes
sense to utilize these solutions for binary disassembly and control
flow graph recovery versus developing a full disassembler from
scratch. With the outputted control flow graph, Mcsema includes an
open source instruction translation implementation to convert the
underlying disassembly instructions into LLVM intermediate bit-
code. After the intermediate bitcode is obtained, Anderson points to
analysis is performed with the open source SVF library. SVF incor-
porates three steps consisting of graph, rules, and solver that takes
a program control flow graph as input, formulates a set of variable
constraints based on the Anderson methodology, and applies these
constraints throughout the program utilizing a constraint solver in

6



the LLVM compiler environment. After this stage, a GraphViz repre-
sentation of the pointer and variable associations will be outputted
in a dot file.

7.2 Load Time
At binary load time, each variable from the static analysis stage
is stored in a mapping table within the respective DBT with two
associated dynamically generated randomization keys. This lookup
table will form the basis for our randomization approach during
runtime. It is important to note that the generated randomization
keys are unique for each DBT process. As such, there will be a
different set of randomization keys for each spawned controller
process.

7.3 Runtime
MTD forms the backbone of our security architecture, incorpo-
rating DSR to protect against non-control data attacks, as well as
redundant controllers for reconfiguring during an attack. The goal
is to decrease the probability of a successful cyber-attack by raising
the level of effort needed by the adversary for obtaining accurate
reconnaissance knowledge. Utilizing Dynamic Binary Translation
Enclosures, which we implement utilizing the MAMBO DBT envi-
ronment [14], local program variables can be randomized at store
time by XORing the value with a dynamically generated key, as
well as derandomized at variable load time by executing another
XOR operation with the key. Since in between variable store and
load time the variable will be in an encoded state, any effort by the
adversary to alter the variable will result in a derandomized value
wildly different than the attackers intended change. When look-
ing at the randomization process by the MAMBO DBT enclosure,
everytime a variable store instruction is encountered two random-
ization keys will be retrieved from an internal variable map. These
two keys will be associated with the original variable, as well as
a redundant comparison variable. When storing to memory, the
original variable will not only be stored in encoded form, but a
redundant version of that variable will be stored in an adjacent lo-
cation with a different randomization key. When a load instruction
is encountered for the respective variable in the program, a check
is first performed to determine if the derandomized version of both
the original and comparison variable are identical. Any change by
the adversary will result in a failure in this comparison, resulting in
the ability to detect the attack. Once an attack is detected, the con-
figuration manager will disable operation of the current controller
and transfer execution to a backup controller with a different set
of variable randomization keys. This approach aims to reconfigure
the controller fast enough to ensure stable operation of the CPS
physical behavior.

8 EVALUATION
To sufficiently analyze CPS designs, simulation and emulation ap-
proaches are often utilized to link the software processes with the
physical system behavior. We follow this approach by incorporat-
ing an autonomous vehicle case study with a hardware in the loop
testbed setup. By integrating the testbed with a vehicle simulator,
we can test various real world attack scenarios against our architec-
ture, while also observing the effect on vehicle safety. Finally, we

utilize several metrics including performance, vehicle position, and
controller recovery time to evaluate the success of our approach.

8.1 Experiment Setup
To enhance the ability to evaluate cyber-attack impacts in deploy-
ment environments, a hardware in the loop testbed was devel-
oped. Our testbed includes embedded hardware representing CPS
software infrastructure, a simulation workstation representing the
physical environment, and multiple network interfaces represent-
ing communication channels within the automobile environment.
The setup of our testbed includes four components: 2 beaglebone
black microcontrollers [10] representing the sensor and actuator
processes in an automobile ECU cluster, a NVIDIA Jetson TX2
board [1] providing for computational power necessary for design-
ing vehicle control algorithms, an i7 simulation desktop, and a
realtime web based results dashboard. Furthermore, two communi-
cation interfaces exist including 100 Mbps ethernet, and a 1 Mbps
CAN bus. The hardware architecture is illustrated in Figure 7.

Figure 7: Testbed Hardware Architecture

8.1.1 Software Architecture. The software architecture of the testbed
provides the capability to implement real time CPS control algo-
rithms to interact with and operate an autonomous car within a
connected simulator.

Autonomous Vehicle Simulator: The autonomous vehicle
simulator utilized in our testbed is the TORCS Racing Simulator [32].
TORCS can be run on Windows, Linux, and Mac computers, but
for our setup we have the simulator running on Ubuntu 16.04. A
socket based communication is provided to access variables in the
simulation, but we built a customized python API interface for eas-
ing variable access from external processes in the other distributed
hardware in our testbed. The simulator can be customized to out-
put sensor values such as lidar, speed, brake, gear, track position,
distance from start position, vehicle heading, and position in the
race. Among the outputs, the user can change variables such as
steering, acceleration, braking, and gear value.

CPS Controller: The software for the controller exists on the
NVIDIA Jetson TX2 board. This board is configuredwith the Linux4Tegra
28.2 operating system, GPU libraries such as CUDA, and machine
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learning libraries such has Tensorflow. The operating system is
additionally patched with the RT-PREEMPT patch. Furthermore,
buffer overflow vulnerabilities are inserted to test the effect of a
non-control data attack on the overall system behavior.

Communication: To support automotive applications, multiple
communication interfaces are included such as Ethernet and CAN
bus. For Ethernet communication, the ZeroMQ (ZMQ) communi-
cation library is utilized. Additionally, for the CAN bus communi-
cation, an open source library called SOCKETCAN is utilized to
support the communication between the control code and ECU
cluster.

8.2 Case Study
For evaluation purposes, an autonomous vehicle case study is uti-
lized to demonstrate the capabilities of the developed security ar-
chitecture. It is important to note that our security architecture
can be applied to any distributed CPS scenario utilizing underlying
software computation processes, not just automotive scenarios.

The case study is based on a platoon scenario, with one manual
vehicle driving as the leader and an autonomous vehicle represent-
ing the follower. For the purpose of evaluation, the follower vehicle
will be the center of focus from a security perspective. The auto-
motive system is comprised of electronic control units controlling
steering, and throttle actuation, while receiving lidar, speed and
orientation sensor readings as input. A PID controller is utilized to
control driving behavior based on these inputs and outputs. How-
ever, our security architecture is generic meaning that it is not just
limited to PID controllers, and any other controller software pro-
cess can be utilized instead. The goal for the case study is to control
the follower vehicle to maintain a consistent distance behind the
leader vehicle, as well as staying as close as possible to the center
of the road.

Figure 8: Case Study

8.3 Attack Scenario
As illustrated in Figure 8, the follower vehicle is comprised of several
components including a sensor and actuator ECU cluster, driving
controller, telematics control unit (TCU), remote function actuator,
and RFID sensor. There are two external interfaces including cellu-
lar communications from the TCU for remote monitoring services,
and a RFID sync with the vehicle key fob. The driving controller
constantly polls for the key fob signal to determine if the engine
should remain on. When the key fob is within a close distance,
the vehicle will be able to drive, but as soon as the key fob is out

of communication range the vehicle will turn off. Under normal
operation there is not a communication channel for the TCU to
transmit input to the driving controller. However, since the TCU is
connected remotely through a cellular interface, this component
is the most at risk for being compromised by the adversary. Even
though the attacker can’t compromise the driving controller di-
rectly through the TCU, they can still utilize an intermediary step
through the remote function actuator to inject malicious input into
the driving controller. As such, the attack process consists of the
following steps: 1) Compromise TCU through cellular communica-
tions, 2) Pivot to remote function actuator component, 3) Transmit
malicious input to driving controller, 4) Overwrite target steering
control value for PID controller. By utilizing the above process,
the adversary can cause the follower vehicle to drive off the road,
resulting in massive damage.

8.4 Results
8.4.1 Static Analysis Performance. For the purpose of the case
study a PID controller is utilized to control a vehicle. From an im-
plementation standpoint, this is a fairly small program with a count
of 15 local variables and file size of approximately 50 Kilobytes.
This provides a baseline for measuring the performance of the dif-
ferent components in our static analysis pipeline. Furthermore, to
explore scalability a 1 MB neural network controller developed
from Tensorflow is evaluated with over 500 variables.

The first stage in our DSR static analysis pipeline is binary lifting.
In order to explore the variable space of our target program, it is
necessary for the binary to be converted to LLVM bitcode. Mcsema
is an increasingly popular tool that accomplishes this task. In our
implementation Mcsema relies on Binary Ninja for the disassembly
and control flow graph generation, and a custom developed python
script to perform the instruction translation process. As such, it is
important to note that the performance of the first step especially is
variable dependent on the external disassembly tool that is utilized.
For both the PID and neural network programs it appears that the
execution time of the Mcsema custom section is pretty consistent
averaging approximately 0.015 seconds for the PID controller and
0.018 seconds for the neural network program. This conveys that
there is relatively good scalability, and the execution times are
satisfactory for our purposes since it is only necessary to perform
this step once before load time.

The second stage in our DSR static analysis approach is points
to analysis. In our implementation we use an open source imple-
mentation of the Andersen algorithm which provides polynomial
time efficiency due to the context and flow insensitive approach.
To evaluate the scalability of the points to analysis implementation
we ran 10 iterations of generating PAGs for the PID controller and
neural network respectively. It was observed that the PID scenario
produced an average execution time of approximately .12 seconds
while the neural network controller produced an execution time of
.34 seconds due to the significant increase of program variables to
analyze. Even with this increased overhead the execution times are
reasonable and are only necessary once during program runtime.

8.4.2 Experiment Results. Due to the target sampling rate of 20
Hz, it is paramount to limit the overhead of our security architec-
ture. As shown in Figure 9, the overhead created with DSR enabled
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Figure 9: Controller Execution Times

is minimal. For example, when looking at the PID controller execu-
tion times, overhead is about 10%, bringing the average execution
time from approximately 96 microseconds to 106 microseconds.
Additionally, this overhead brings the worst case execution time
from 105 microseconds to 128 microseconds. These results repre-
sent the lower bound of our architecture overhead. Even with a
scaling factor of 10, this is still well under the 50 millisecond dead-
line defined in the design process. However, it is important to note
that the PID controller is a relatively small sized program. With a
large sized program, there is potential for the overhead to increase
significantly.

Figure 10: Recovery Times

During the case of a non-control data attack, the adversary is
able to manipulate the PID controller operation by altering the
target steering angle. With this adjustment, the new target steering
value is set at the value of -1, causing the vehicle to make a hard left
turn. Due to the fact that this value is constantly transmitted to the
vehicle controller from the remote function actuator, the vehicle
remains in a constant turning state and consequently performs
donuts until crashing into the wall. However, in the scenario where
DSR and reconfiguration is activated, the attack attempt will fail,
and control will be transferred to a backup PID controller with a
new randomization environment, decreasing the probability of a
successful future attack. Furthermore, when looking at the damage

of the follower vehicle behind the leader vehicle, the resultant attack
disrupts the platoon behavior causing the following vehicle to be
left behind in a crashed state. With reconfiguration enabled, the
following vehicle continues to have reliable and safe operation. The
vehicle driving behavior can be observed in Figure 11.

Figure 11: Road Center Offset Time Plot

9 RELATEDWORK
Implementations of DSR started with a software toolkit called Point-
Guard [11]. Pointguard randomized the stored pointer addresses to
prevent attackers from gaining reconnaissance knowledge about
pointer data. In contrast, current DSR implementations not only
randomize pointer addresses but encode the stored variable data [6].
However, current implementations are developed for source code
which poses a challenge when attempting to construct a dynamic
security framework on binaries. To the best of our knowledge, our
security framework is the first DSR implementation designed at
the binary level. Some attacks against DSR listed in the literature
include data leakage attacks, brute force and guessing attacks, and
partial pointer overwrites [5]. With strategic derandomization and
high randomization entropy these types of attacks are deterred.

With regards to recovery, there has been a wealth of work in
the area of software fault tolerance. Several existing methodologies
integrate N-Version programming to lower the probability of suc-
cessive attacks by implementing different software versions with
different structures, but similar semantics [3]. Additionally, check-
pointing techniques such as recovery blocks have been utilized
for rollback recovery implementations, allowing for controllers
to maintain state through the reconfiguration process [16, 22, 24].
Simplex, which is the primary motivator of our security architec-
ture, has been a widely utilized fault tolerant architecture, which
consists of a complex controller, safety controller, and decision
module which switches execution between the two based on spe-
cific events [27]. Several previous simplex based implementations
include Secure System Simplex [18], Net Simplex [33], and L1 Sim-
plex [31]. Furthermore, simplex architectures have been popular
in safety-critical applications such as flight control systems [26],
medical devises [4], and unmanned aerial vehicles [34].
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10 CONCLUSION
In this paper we have shown how DSR can be integrated with con-
trol reconfiguration techniques in autonomous vehicles for the pur-
pose of ensuring secure, and reliable operation. Due to the tightly
coupled nature between the cyber and physical components in CPS,
it is not just acceptable to maintain data integrity, but is necessary
to guarantee a safe state of operation. Furthermore, non-control
data attacks are a viable technique for altering physical behavior
without the need for manipulating program control flow. Instead of
overwriting the function return address on the stack, these attacks
overwrite adjacent data variables to the input buffer with the goal of
utilization in safety-critical operations. DSR can protect against non-
control data attacks by changing the representation of variables,
leaving adversary reconnaissance obsolete. As such, any manip-
ulation of data variables will be vastly different compared to the
intended goal. Furthermore, by including a duplicate stored variable
with a different randomization key, a comparison can be performed
at variable load time to detect the presence of variable tampering.
This method serves as the front line algorithm for attack detection
in our framework. Finally, we utilized a redundant fault tolerant ap-
proach for integrating control reconfiguration into our framework.
When an attack is detected, the configuration manager component
successfully transfers execution to an idle backup controller, while
a third controller is spawned to serve as the new backup controller.
Our framework was tested with a hardware in the loop testbed and
an autonomous vehicle case study to illustrate CPS behavior on
embedded hardware similar to deployment environments. By per-
forming experimentation we found that our framework produced
positive security protection against non-control data attacks and
limited physical behavior effects, while introducing minimal per-
formance overhead and recovery time to the system. In the future,
we plan to integrate our security framework with ISR, and ASR to
introduce protections against code injection and code reuse attacks
in addition to non-control data attacks. Furthermore, we plan to test
our DSR implementation against larger programs and benchmarks
to identify how well it scales.
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