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ABSTRACT
In this work, we study the vulnerabilities of protection systems
that can detect cyber-attacks in power grid systems. We show that
machine learning-based discriminators are not resilient against
Denial-of-Service (DoS) attacks. In particular, we demonstrate that
an adversarial actor can launch DoS attacks on specific sensors,
render their measurements useless and cause the attack detector to
classify a more sophisticated cyber-attack as a normal event. As a
result of this, the system operator may fail to take action against
attack-related faults leading to a decrease in the operation perfor-
mance. To realize a DoS attack, we present an optimization problem
to determine which sensors to attack within a given budget such
that the existing classifier can be deceived. For linear classifiers, this
optimization problem can be formulated as a mixed-integer linear
programming problem. In this paper, we extend this optimization
problem to find attacks for more complex classifiers such as neural
networks. We demonstrate that a neural network, in particular,
with RELU activation functions, can be represented as a set of logic
formulas using Disjunctive Normal Form, and the optimization
problem can be used to efficiently compute a DoS attack. In ad-
dition, we propose a defense model that improves the resilience
of neural networks against DoS through adversarial training. Fi-
nally, we evaluate the efficiency of the approach using a dataset for
classification in power systems.
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1 INTRODUCTION
Power systems coordinate multiple and diverse components to op-
erate efficiently (e.g., generate energy at the lowest coxts) within
given engineering constraints. For example, the system components
operate at fixed frequencies, voltages, and have limits in the power
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that they support. Power systems rely on communication tech-
nologies, such as supervisory control and data acquisition (SCADA)
systems, to assess the system reliability and performance and take
corrective actions. Data is critical to make decisions. In particular,
power companies use sensor measurements to estimate the current
state of the system, to forecast future load or generation, and to
detect faults on the system.

Power systems also have quality requirements. For this reason,
they analyze disturbances of the system to identify and correct
faults. The disturbances occur due to typical events, such as con-
nection or disconnection of large loads, large capacitors, and trans-
formers, or rare events, such as faults (short circuits) or attacks.
Disturbances can create disruptions in the voltage many orders
of magnitude the nominal values and cause efficiency losses (e.g.,
the energy is dissipated as heat), which can deteriorate (and even
can break) equipment. Works in the literature have proposed dis-
turbance classification mechanisms based on machine learning
algorithms, such as artificial neural networks (ANN) and support
vector machines (SVM), decision trees [26, 32, 39, 40]. These algo-
rithms also have been used to detect attacks against power grids
[5, 20, 30].

The technologies used to classify disturbances are critical for the
security of the system. Adversaries may specifically target these
critical systems and exploit their vulnerabilities to cause harm. For
example, SCADA systems may have vulnerabilities because some of
their components have outdated operating systems and use poor se-
curity practices [47]. In fact, some attacks on critical infrastructures
have exploited vulnerabilities in SCADA systems [3]. Moreover,
adversaries can modify the inputs of ML algorithms to get a desired
response, e.g., misclassify samples or induce wrong estimations.
These vulnerabilities can endanger critical infrastructures.

In this work we analyze vulnerabilities of disturbance classifi-
cation systems, which take information about the transitory state
of the system to identify faults or attacks. We analyze how an ad-
versary uses a Denial-of-Service (DoS) attack to induce errors in
classifying disturbances. In this way, the system operator may fail
to detect faults or attacks, which may delay the appropriate cor-
rective action. For example, power companies may fail to identify
components that cause failures or may try to correct faults that
didn’t occur.

In general, disturbance classification systems assume that the
measurements from sensors are not corrupted. However, some of
the sensors may be disabled through DoS attacks. In this paper, we
discuss a DoS attack on a disturbance classification system. The
objective of this model is determining the features to delete in a
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given input data by disabling sensors instance within a budget such
that the classifier will mispredict an attack event as normal. The
features to be deleted correspond to the sensors that will receive the
DoS attack. For linear classifiers, this is Linear Programming (LP)
where the objective function has a convex solution [15]. However,
for more complex classifiers, such as multi-perceptron neural net-
works with nonlinear activation functions, the solution space is not
convex anymore and we cannot utilize LP approach for a solution.
Our attack model describes a method to linearize a neural network
with RELU activation functions and find features to delete that will
cause misprediction. The core idea of this linearization approach is
essentially rewriting the network in terms of logic formulas using
Disjunctive Normal Form. For each clause in DNF, we can describe
a convex Multi Integer Linear Programming (MILP) with proper
constraints, and determine the features to delete. In addition to the
attack model, we also discuss the defender model that is relatively
robust against adversarial feature deletion attacks. The aim of this
defense model is preventing the misprediction caused by the attack
model. For this model, we propose adversarial training, i.e. training
a new network with the attacked/modified data obtained from the
attack model.

To evaluate the performance of the attack and defense schemes,
this study employs a dataset designed for power grid disturbance
classifiers. The dataset contains sensor measurements from natural
events and disturbances caused by attacks. The dataset contains
multiplemeasurement collected by phasormeasurement units. Each
data instance is classified as normal or attack. Using this dataset,
we developed a neural network which constitutes our baseline
model. Using the proposed attack model, we generated a modified
dataset that contains instances with deleted features. We tested
the performance of the attack model by looking at the decrease in
the prediction accuracy. Additionally, as prescribed in the defense
model, we trained a new network using the modified data set and
checked the improvement in the accuracy of the new network under
attack. The overall results demonstrate that the attack model works
very efficiently evenwithin constrained budgets. The defense model
increases the accuracy against adversarial attacks to some degree
but the improvement is limited.

In summary, the major contributions of this study are summa-
rized as below:

• A new attack model is proposed that is capable of devising
an effective DoS attack to deceive disturbance classifiers and
disguise more complex cyber-attacks.

• In previous literature, DoS attacks were formulated for linear
classifiers which is not applicable to nonlinear classifiers,
such as neural networks. The attack scheme proposed herein
can compute a DoS attack solution for neural networks ef-
fectively.

• A defense based on adversarial training is proposed such
that the classifier can be more robust against DoS attacks.

• Results demonstrate that the attack model can be very effec-
tive for deceiving the classifiers under limited attack budget.
The defense model improves the resilience of the classifier
considerably.

It should be noted that the proposed attack and defense model
is generalizable for many machine learning-based classifiers in var-
ious domains. In this paper, we specifically focus on the security of
power grid systems. Since the sensors of grid systems are suscepti-
ble to DoS attacks, the methodology discussed in this paper aligns
well with the research needs.

Note: The codes to generate the results presented in this paper
can be accessed from https://github.com/aliirmak/ATPAD.

2 BACKGROUND
Power equipment has tight operational constraints. Thus, devia-
tions from the nominal values can result in energy lost as heat,
which can deteriorate and even can break the equipment. As a
result of this, to extend the equipment life-cycle and reduce the
maintenance costs, electric companies must offer a good power
quality, that is, a continuous supply of voltage with some desired
properties (e.g., symmetry, frequency, magnitude, and waveform)
[1].

Power companies analyze disturbances (i.e., voltage changes) to
assess whether they occurred due to changes in the system or faults
(or as response to faults) [37]. It is possible to distinguish events
because they create distinct disturbances. For example, some faults
cause sudden voltage dips (due to the activation of protections),
while other events (transformer saturation) may create voltage dips
with high harmonics. The following events can cause voltage distur-
bances: energizing components (capacitors, motors), transformer
saturation, transformer saturation followed by protection, trans-
former’s step change, (fault or non-fault) interruptions, or single or
multi stage dips due to faults [11].

For large sensor arrays, the data from sensors can be multi-
dimensional to the point that human operator may not be able to
detect abnormal events manually. For this reason, pattern recog-
nition and data mining algorithms (e.g., ANN, fuzzy logic, expert
systems, SVM) have been used to classify and identify power quality
problems.

Let us consider n labeled samples (xi ,yi ), with i = 1, . . . ,n,
where xi ∈ Rd represents an input vector withd features (attributes
of the power grid) and yi ∈ {−1, 1} denotes the type of event of
the ith sample (−1 for normal event; and 1 for attack event). Let
us denote the output of the function F (xi ,w) ∈ {−1, 1} as the
classification label obtained with some algorithm, such as ANN or
SVM. Here, w represents the weights used by the algorithm. We
select the weight vectorw to minimize the average error classifying
the disturbances. We express the problem of designing the classifier
(choosing the weight vectorw) as

w∗ ∈ min
w

1
n

∑d

i=1
l(yi , F (xi ,w)), (1)

where the loss function l(yi , f (xi ,w)) measures the model’s classi-
fication error. Let us denote the predicted label as ŷi = F (xi ,w

∗).
Throughout the text, we will refer to F (x,w) as F (x) for simplicity.

3 METHODOLOGY
In this section, we describe the fundamental components of the
attack and defense models in detail. First, we introduce the attack
model, which is essentially a maximization problem. Then, we con-
sider the challenges of the maximization problem for nonlinear
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classifiers and suggest some relaxations, such as Disjunctive Nor-
mal Form approach, to compute attacks efficiently. The second
section focuses on the defense model and describes it as a mini-max
problem. This section also discusses adversarial training strategies
for improving the resiliency of the classifier.

3.1 Attack Model
Suppose we have a power system and this system has an inter-
nal discriminator component capable of predicting and classifying
events as normal and attack during operation. DoS attack is a type of
attack where an adversary prevents users or cyber-infrastructures
from accessing the necessary information [29]. For power systems,
the malicious actor can devise a DoS attack such that sensors col-
lecting operation-critical information, such as voltage and phase
values, become inaccessible by real-time monitoring systems. In
such cases, the sensor data will likely be registered as zero.

DoS attacks can be considered as a feature deletion frommachine
learning perspective [15, 36]. The discriminator can be deceived if
relevant features are deleted from the input data. Accordingly, an
adversarial actor can DoS-attack some sensors and make the sensor
measurements inaccessible by the operator. When specific features
are inaccessible, the predictor can mislabel attack events as normal.
As a result, critical faults or more sophisticated cyber-attacks may
be obscured and the misprediction could eventually lead to system
failure and service interruption.

Here, we consider an adversarial model where the attacker at-
tempts to determine features to delete, which will minimize the
capability of the discriminator to detect attack events. In other
words, the attacker model can be formulated as finding an optimal
solution within a given budget (how many sensors can be disabled
using DoS) to maximize the prediction error. While this problem
is solved for linear classifiers, such as support vector machines
(SVMs), to the authors’ best knowledge, there is little research for
more complex learning algorithms, such as neural networks.

Before going forward, there are few assumptions we have made
regarding the attack model:

• The adversary has access to the industrial control system
(ICS) and the sensor readings.

• The adversary can attack a limited number of sensors. The
DoS attack causes ICS to register the readings from attacked
sensors as zero.

• At ICS level, there is an attack detection mechanism utilizing
a machine learning algorithm that can label events as normal
and attack. The adversary has access to the machine learning
algorithm. In other words, this is a white-box attack.

• The adversary attacks only the events labeled as an attack.
• Lastly, we assume neither data nor attack is time-correlated.
In other words, the DoS attack deals with each measurement
individually.

Under the given assumptions, we construct an optimization prob-
lem to determine which features to attack. Suppose that we have
a neural network, F (x) that can classify sensor measurement as
normal or attack. Here, the input to F (x) is xi , the ith electric
transmission measurement instance. Each feature of the input data
corresponds to a sensor reading in xi such that xi ∈ Rd . The net-
work is expected to predict the class label, ŷi where ŷi ∈ {−1,+1},

−1 being normal events, and +1 being attack events. Then, the
attack problem can be formulated as a maximization problem:

αmax
i = arg max [1 − yi ŷi ]+ (2)
= arg max [1 − yi F (xi ◦ (1 − αi ))]+

s .t . αi ∈ {0, 1}d∑d

j=1
αi j ≤ K

where yi is the true label; ŷi is the prediction; αi is a vector de-
scribing which features to be deleted and can be described as
[αi1, . . . ,αi j ] and j corresponds to the jth feature . K is budget,
i.e. the number of features attacker can delete. The operator, [·]+
is simply defined as [y] = max{0, x}. When a particular element
of αi is zero (i.e. αi j = 0), the jth feature should be deleted or
attacked. Finally, the symbol, ◦ represents the element wise prod-
uct. According to the Equation 2, the attacker tries to determine
αi that will maximize the prediction error of the detector. If the
adversary does not cause any misprediction, then the error is zero
since [1 − yi ŷi ]+ = 0. Ideally, the adversary should be able to find
such a vector, α that should switch the predicted class from attack
to normal.

3.1.1 Finding a solution for neural networks. For linear classifiers,
the optimization problem presented in Equation 2, is a convex
mixed-integer LP (MILP) [31]. While MILP is an NP-hard problem
[21], it can be solved still efficiently using heuristic methods [43].
For neural networks (NN) with nonlinear activation functions, the
solution space is not convex and Equation 2 cannot be written as a
MILP. A solution could be still found by applying computationally
exhaustive nonlinear programming (NILP) approaches [4].

We can consider some relaxations and assumptions regarding the
NN structure to find a solution faster than a NILP does. Specifically,
NN with linear and rectified linear unit (RELU) activations holds a
piece-wise linearity characteristic. It is possible to reconstruct NN
as a set of logic formulas using the Disjunctive Normal Form (DNF)
[34] and solve Equation 2 using MILP. Each formula corresponds to
the state whether a RELU is activated or not. This idea is sought in
detail for the formal verification of neural networks [22]. Suppose
we have a NN with a single RELU-activated neuron. We omit the
bias for presentation purposes. Then, we can describe the NN as
following:

ŷ = RELU(w x) (3)
=max(0,w x) (4)

where the DNF clauses would be:

(ŷ == w x ∧ y > 0) (5)
∨(ŷ == 0 ∧ w x ≤ 0) (6)

Using these clauses, we can write NN as an MILP problem and
each clause can be regarded as a collection of constraints that needs
to be satisfied based on the state of the activation [13]. For example,
clause given in Equation 5 implies that the RELU is active andw x
should be larger than zero. Similarly, the next clause (Equation 6)
describes a state where RELU is not activated, thus, thew x should
be smaller than zero.
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For each clause, we can findα that canmaximize the error accord-
ing to Equation 2. For example, for the first clause, the maximization
problem will be written as:

αi ,1 = arg max [1 − yi ŷi ]+ (7)

s .t . αi ∈ {0, 1}d∑d

j=1
αi j ≤ K

ŷi == w xi ◦ (1 − αi )

ŷi > 0

where αi ,1 is the vector of features to attack for the ith data in-
stance using the 1st clause given in Equation 5. As seen above, in
addition to the original formulation in Equation 2, the two clause
components are added and the problem is properly constrained for
a single perceptron. If the problem is still feasible, then we should
be able to find αi . For the second clause, the last two constraints will
be substituted with the components from Equation 6. Eventually,
for a system that has k number of clauses, we can determine αmax

i
that will maximize the prediction error as following:

αmax
i = arg max

αi ,1, ...,αi ,k
[1 − yi F (xi ◦ (1 − αi ))]+ (8)

For NN with k neurons, there will 2k clauses since the activation
state of each neuron is independent of each other. To find an optimal
solution, we need to go through all clauses and compute the α and
the corresponding prediction error, and test whether there a switch
in the labels upon prediction. For large networks, this search is
extremely exhaustive and infeasible as the number of clauses is
growing exponentially. Instead, we can go through each clause until
we find a solution that will cause the misprediction, labeling an
attack event as normal. In other words, we don’t need to maximize
the error among all clauses as the maximization problem presumes.
Instead, we only need one clause that will cause mislabeling. In the
worse case, this approach will still go through all possibilities. Most
of the time, if the problem is feasible, the solution is usually found
when all RELUs is activated. Algorithm 1 outlines the core idea of
the proposed attack model.

3.2 Defense Model
Usually, the simplest solution to defend against the adversarial
feature deletion would be training the classifier with the adversarial
examples [16]. Ideally, we want to train the network based on the
worse prediction error over the entire training set [15]. Then, we
can formalize the defense model as a minimization problem:

w = arg min
1
n

n∑
i=1

[1 − yi ŷi ]+

= arg min
1
n

n∑
i=1

[
1 − yi F (xi ◦ (1 − αmax

i ))
]
+

(9)

We can rewrite this problem more explicitly as given below:

min
w

max
α1, ...,αn

1
n

n∑
i=1

[1 − yi F (xi ◦ (1 − αi ))]+ (10)

Algorithm 1: Proposed Attack Model
Input: (xi ,yi ),w , F (x)
Output: αi

1 Generate DNF clauses for the given weights of the network
2 foreach DNF clause set do
3 Assign clause components as constraints to Equation 2
4 Solve Equation 2 with new constraints
5 if Problem is infeasible then
6 continue with the next clause set
7 else
8 Obtain αi

9 Predict the label → ŷi = F (xi ◦ (1 − αi ))

10 if ŷi == normal then
/* there is a successfully attack! */

11 continue with the next input (xi+1,yi+1)

12 if ŷi == normal for all DNF clause sets then
/* there is no successfully attack! */

13 αi = 0
14 continue with the next input (xi+1,yi+1)

This problem is now, in essence, a mini-max where our aim
is finding the weights that will minimize the average maximum
prediction error caused by the adversarial examples. There are few
important considerations regarding the training. In the previous
section, it has been argued that finding the optimal solution for
the worse attack can be sometimes challenging, and a sub-optimal
solution can be used as an attack if it is powerful enough to cause a
misclassification. A similar logic can be pursued here where we can
train the network with the sub-optimal yet powerful adversarial
examples. Here, there are three strategies to pursue adversarial
training:

• One-shot Training: First, we train an NN with the given data
set which constitutes the baseline reference. Let’s denote
this network as F (x). Then, we compute α for each example
with given F (x) and derive the adversarial example dataset, x̂ .
Finally, we train a new network using x̂ as the input dataset.
This approach is used mainly in [16].

• Iterative Training: Here, we start with a NN with random
weights. At the beginning of each batch or epoch, we com-
pute α for each example with given F (x) and derive the
adversarial example dataset to be used in the training un-
til next batch or epoch. After enough training iterations,
the weights of the NN are expected to converge. Iterative
training is similar to Bundle Methods for Regularized Risk
Minimization (BMRM) approach discussed by [38] and [15].

• Training and Retraining: We perform one-shot training and
obtain a NN.We perform an attack on the training data using
this NN and derive the adversarial example dataset. Then,
we train a completely new NN.We perform this process until
network performance converges.

This paper focuses on the one-shot training and the effectiveness
of other training methods is left for future research.
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Figure 1: ICS overview, adopted from [18]

4 EVALUATION
4.1 Dataset
The efficiency of the proposed DoS attack and defense scheme is
investigated using a dataset that includes measurements from an
electric transmission system network [18]. This network contains
four breakers, each controlled by an intelligent electronic relay
(IED) individually. The breakers can be manually and automatically
tripped. A substation switch monitors all the relay and breakers
and sends this information to a SCADA system (see Figure 1). An
IED is expected to alert the operator and trip the breaker when an
abnormal (natural or man-made) event occurs. However, SCADA
does not have an internal validation detection system to assess if the
fault is fake or valid. Additionally, data can be multi-dimensional
and complex enough such that human operator may not be able to
detect abnormal events manually either. The purpose of the origi-
nal dataset is to provide reference data for researchers to develop
effective cyber-attack classification methods that can discriminate
power system disturbances. Accordingly, the aim of the DoS attack
explained in this paper is disguising attack events, such that the
SCADA will not be able to discriminate against cyber-attacks and
the network will operate under undesirable conditions.

The original dataset contains six types of scenarios categorized
under normal and attack events. Those are i) normal operation,
short-circuit fault, and line maintenance for normal events sum-
ming up to 9 scenarios; and ii) remote tripping command injection,
relay setting change, data injection for 30 different attack scenarios.
There are 128 features for each record in the dataset. There are 4
phasor measurement units (PMU) measuring the electrical waves
on the electricity grid, each measuring 29 features summing up to
116 features. Those features include phase angle and magnitude
values for current and voltage; frequency and impedance values
for relays. Additionally, there are 12 columns for control panel logs.
The data does not contain any time-stamp information. Finally,
each data entry contains a label marking if an event is normal or

attack. We focus on a subset of this dataset for training and testing.
The training dataset contains 880 normal events and 3092 attack
instances. Likewise, for the testing dataset, 220 normal events and
774 attack events are used. The ratio of normal events to attack
events is about 28 percent.

In our attack model, the adversary has access to the sensor read-
ings. A DoS attack defines the interruption between the sensor and
the control room. We assume a DoS attack will result in a zero
sensor reading in the control room. The discriminator evaluates
this data to predict the correct class.

4.2 Implementation
This study uses a single-hidden-layer neural network to discrimi-
nate against cyber-attacks. The neural network is trained with the
training dataset using MLPClassifier from scikit-learn v0.22 [35]
running on Python v3.6.7 [41]. The hidden layer has 5 neurons and
RELU is used as the activation function for all hidden neurons. This
network is optimized using Limited-memory BFGS while training.
The network is denoted as the Original Model. At this stage, the
accuracy of the Original Model for training and testing dataset
constitutes the baseline.

For the attack model formulation, we assumed the output layer
is linearly activated. When the network contains n neurons for the
hidden layer, there are 2n independent RELU activation state. In
other words, there are 2n clauses we should go through, to com-
pute α for each data instance. We only focused on data instances
that are labeled as (ground-truth) attack since the ultimate aim is
disguising only the cyber-attacks. At each data instance, xi , for
each clause, we adopted Equation 7 with the respective constraints.
We went through all the clauses and computed αi until the label
predicted by the Original Model is switched from attack to normal
for a given xi ◦ (1 − αi ) as prescribed in Algorithm 1. Once we
found an adversarial example, we stopped further solution-seeking
process for the particular data instance and moved on to the next
data instance, xi+1. The MILP problem for each clause is formulated
using a Python-based modeling language for convex optimization
problems, CVXPY v1.0 [2, 10]. CVXPY allows utilizing Gurobi Opti-
mizer as the solver for MILP problems [27]. To accelerate the attack
modeling, we parallelized the optimization over 8 cores. For an Intel
9900K CPU, finding attacks over the entire training dataset usually
takes less than 3 minutes.

After we go through all the data instances and compute α for
each instance, we obtained the modified data set, x̂ . At this stage,
the accuracy of the undefended network, Original Model is tested
with x̂test derived from the original testing dataset. This accuracy
shows how vulnerable the Original Model is against attacks.

For the adversarial training, we trained a new network, Re-
silient Model with the same properties as the first model. However,
here, the modified training dataset (x̂train derived from the original
dataset) is used for the adversarial training. The accuracy of the de-
fended model is tested using a new modified dataset to demonstrate
the improvement of the defense model against attacks. This set is
derived from xtest by attacking to the Resilient Model. Additionally,
we tested the generalizability of the Resilient Model with original
datasets.
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4.3 Results and Discussion
For this study, we attacked a shallow network with 5 neuron on a
single hidden layer using a variety of attack budgets (K = 1, 3, 6)
corresponding to 1, 2.5 and 5 percent of all features. To evaluate
the attack and defense success, we computed the accuracy of the
undefended (Original Model) and the defended (Resilient Model)
networks against original (xtrain and xtest) and modified (x̂train and
x̂test) datasets.

Table 1 summarizes the prediction accuracy values of the Origi-
nal Model for the efficiency of the attack when it is introduced to
the original dataset using the Original Model. Here, the Original
Model (baseline) is first trained with the original training dataset.
After training, the Original Model has an accuracy above 80 percent
for both training and testing datasets. The success of the model is
comparable to the classifiers tested by [18]. Then, we introduced
the attack to the original testing dataset with various budgets. For
this attack, we used the Original Model network structure when
computing the features to be deleted. Eventually, we derived the
modified testing dataset for each budget. When the attack was
launched with a budget ofK = 1 (i.e. the adversary can only disrupt
one sensor), the accuracy decreased to about 30 percent (see Mod-
ified Testing Dataset (K = 1)). This observation clearly shows that
the attack is very efficient even under a very constrained budget.
For higher budgets (K = 3 and K = 6), the attacker can generate
more severe attacks that can reduce the prediction accuracy even
further. For budgets higher than 6, almost all attack-labeled events
are predicted as normal. Overall, results show that for the given
Original Model, the attack scheme can effectively disguise the at-
tacks such that the classifier cannot properly discriminate against
the modified entries.

Table 1: Efficiency of the attackmodel on theOriginalModel

Dataset Accuracy in Percentage

Original Training Dataset 87.47
Original Testing Dataset 83.23

K = 1 K = 3 K = 6

Modified Testing Dataset 31.08 16.29 12.77

Next, the efficiency of the defensemodel is summarized in Table 2.
Here, the Resilient Model is trained with an adversarial training
dataset derived from the original training data set. Namely, we intro-
duced attacks with various budgets on the original training dataset
using the Original Model network structure. Then, we aggregated
25 percent of the original training dataset and 75 percent of the at-
tacked dataset. This new dataset constitutes the adversarial training
dataset for the Resilient Model. The accuracy of the Resilient Model
is above 85 percent for the three budgets. Additionally, we tested
the generalizability of the Resilient Model against the original train-
ing and testing dataset. For both original sets, accuracy is above 80
percent which is consistent with the results from Table 1. Please
note that prediction error is slightly larger for the Resilient Model
when original datasets are considered (about 1 to 3 percent). This
implies that the increased resiliency may cause a minor drop in the

overall prediction performance of the classifier. As for resiliency, we
launched DoS with various budgets on the original testing dataset
using the Resilient Model network structure under various budget
constraints. For a budget of K = 1, the accuracy of the Resilient
Model is about 39 percent. The increase of the accuracy relative
to the Original Model (∼ 31 percent for K = 1) corresponds to 8
percent. When the budget increases, the prediction performance of
the Resilient Model decreases as the DoS attack has more room to
be efficient. On the other end, the accuracy of the Resilient Model
is always higher than the one of the Original Model against attacks
for all budgets. The improvement varies between 7 to 10 percent.

Table 2: Efficiency of the defense model on the Resilient
Model

Accuracy in Percentage

Dataset K = 1 K = 3 K = 6

Adversarial Training Dataset 86.12 86.70 88.06
Original Training Dataset 85.14 85.32 86.58
Original Testing Dataset 81.89 82.69 80.78
Modified Testing Dataset 39.23 26.05 19.51

The confusion matrices for the Original Model before and after
the DoS attack over the Testing Dataset (K = 1) are given in Tables 3,
and 4, respectively. Similarly, Table 5 presents the confusion matrix
for the Resilient Model against DoS attacks over Testing Dataset.
Accordingly, the Original Model predicts 708 out of 774 attack
events as attack which corresponds to 90 percent correct labeling.
When the Original Model is attacked by DoS, the class for 506 attack
events switched to normal label summing to 572 false positives. As
a result, only 26 percent of the attack events are predicted correctly.
After retraining using the defense scheme, the Resilient Model was
able to predict 266 out of 774 attack events correctly and the recall
value for the attack events increased to 34 percent. The increase in
recall demonstrates that the defense mechanism may improve the
prediction accuracy and reduce the impact of cyber-attacks on the
performance of the grid systems, albeit the defense is limited.

Table 3: Confusion Matrix for Original Model before attack
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Table 4: Confusion Matrix for Original Model after attack
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Table 5: Confusion Matrix for Resilient Model
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Overall, results show that the attack model is very efficient in
deceiving the classifier. While the defense model increased the
prediction performance against DoS attacks, the improvement is
limited. It is possible that one-shot training strategy generates a
resilient network that can only defend against a limited number
of DoS attacks. For example, the accuracy of the Resilient Model
against Modified Testing Set created for the Original Model yields
about 80 percent (not shown in this work). But the accuracy of
the Resilient Model against Modified Testing Set created for the
Resilient Model is still low. This shows the Resilient Model cannot
generalize well over all types of DoS attacks. Iterative training or
training-retraining strategies discussed in Section 3.2 may produce
classifiers more robust against adversarial feature deletion.

5 LITERATURE REVIEW
5.1 Vulnerabilities of ML
ML algorithms have some vulnerabilities, which makes them unsafe
for security critical applications. Adversaries may use different
attacks depending on their objectives [23].

• Poisoning attacks affect the training phase to contaminate
the model generated and misclassify specific examples. For
example, an adversary may mimic legitimate applications
(e.g., traffic behavior) so that systems that learn signatures
(e.g., antivirus) learn to filter out legitimate applications [9].

• Model inversion attacks allow the recovery of the (private)
features used in the model. Previous works have shown that
attackers can infer sensitive information (e.g., facial images)
from facial recognition systems (provided that they know
the person’s name) [14].

• Perturbation attacks modify the inputs to get a desired re-
sponse (bypass content filters or malware detection algo-
rithms). For example, it is possible to attack voice controlled
devices through inaudible commands [7, 46]. Likewise, ad-
versaries can induce misclassification of images by adding
noise to them [16]. Lastly, [12] modify physical traffic signs
to mislead the algorithms that classify them.

An adversary needs limited information to craft adversarial ex-
amples, the instances/features/inputs designed to mislead ML mod-
els. This happens because the attacks are transferable, that is, ad-
versarial examples that affect a particular model often affect other
models that perform the same task, even if they have different ar-
chitectures [19, 33]. Thus, an adversary can train a substitute model
and find adversarial examples to attack the victim’s model.

In some cases, the adversary does not need access to model nor
the data set used in training. An adversary able to submit queries
to the victim’s model create a data set using the labels that the
victim’s model assigns to some chosen instances.

Most of the research on adversarial examples focus on classifica-
tion problems; however, other applications also have vulnerabilities.
[6, 8] show how an adversary can manipulate sensor measurements
to increase or decrease load forecasts.

5.2 Defenses
Works in the literature have explored several mechanisms to mit-
igate the impact of adversarial examples. Some works train the
models using adversarial examples to anticipate the adversary’s
actions [28]. Likewise, [45] use bounded RELU activation neurons
and augment the data set adding Gaussian noise to the inputs to
limit the effect of perturbations and increase the generalization
capabilities

Some papers design robust NNs in image classification appli-
cations introducing randomness in the system. For example, [44]
modifies images randomly (e.g., rotate or scale the images) before
their processing. Likewise, [24] injects noise in the inputs using
differential privacy (DP) to guarantee that it will induce bounded
changes in the output, preventing the misclassification. [25] adds
noise in the layers of the NN. In this way, a single NN acts as
multiple models, which combined conform an ensemble of models.

Some papers estimate the robustness of models to attacks ex-
amining their sensitivity to changes in the inputs. In particular,
certified defenses measure the the Lipschitz constant of the mod-
els, which gives an upper bound on how fast the output changes
with respect to changes in the inputs [17, 42]. In other words, the
Lipschitz constant gives a measure of the sensitivity of the model,
which gives information of the perturbation that the model can
withstand. Hence, it is possible to improve the resiliency of models
regularizing the training to reduce the Lipschitz constant, i.e., make
the model less sensitive to attacks.

6 CONCLUSIONS
With rapidly growing demand for electricity, the power grid systems
became a critical infrastructure and backbone of the US economy.
Today, with the integration of the Internet, the power systems serve
as a cyber-physical platform capable of accessing and monitoring
multiple sensors and controlling the state of the operation quality
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for the continued delivery of electricity. While such interconnected
systems are exposed to new vulnerabilities, such as cyber-attack,
internal detection mechanisms, such as classifiers exist to discrimi-
nate adversaries.

The aim of this study is deceiving attack detection systems using
Denial-of-Service type attacks. By interrupting the communication
between the control room and sensors using DoS attack, it is possi-
ble to disguise a more mature cyber-attack such that the detection
system fails to predict the correct label for the event. To achieve
this aim, we formulated an attack model utilizing DoS. According to
this model, the objective of the problem is finding the most effective
features to delete to maximize the prediction error, such that the
classifier will mispredict an attack event as a normal event. This
is essentially a MILP for linear classifiers. For more complex clas-
sifiers, such as multi-perceptron neural networks with nonlinear
activation functions, MILP is not applicable as the solution space
is not convex. However, for neural networks specifically with RE-
LUs, we can write the network in terms of logic formulas using
Disjunctive Normal Form. For each clause in DNF, we can describe
a convex MILP with proper constraints, and determine the features
to delete. Using this approach, we can optimize the search for a
DoS attack.

Another aim of this paper is defending the classifier against DoS
attacks such that the predictions can be still accurate under DoS
attack. The essential idea of the defense model is minimizing the
maximum prediction error caused by the attack model. Thus, it can
be considered as a minimax problem. For the defender model, we
proposed three defense strategies, (one-shot, iterative, and train-
and-retrain) and focused on the first one. In the one-shot scheme,
we train the network with the adversarial attacks obtained from
the attack model.

To evaluate the results, this study utilized a power system dataset
specifically created for the development of power disruption and
cyber-attack classification. This dataset contains a set of sensor
measurement collected from multiple PMU along with a label in-
dicating if the record is normal or attack. Using this dataset, we
developed a shallow neural network with 5 neurons. Additionally,
we derived an attacked dataset using the proposed attack model.
Three different attack budgets have been tested corresponding to
1, 2.5, and 5 percent of the total number of features. The overall
results show that the network is prone to DoS attack even under
limited budget constraints. The low accuracy implies that the attack
detection cannot predict the labels under DoS attack properly. To
defend against DoS attacks, we trained a new network with one-
shot adversarial training approach proposed in the defense model.
As a result of this, the prediction accuracy against attacks increased
but the improvement was limited.

Overall, this paper has shown that a power system can be at-
tacked using DoS, and a classifier may be deceived. Equally, it is
possible to defend against such attacks by training a new network
using the defense scheme up to some point. It should be noted that
the attack scheme discussed here assumes the adversarial actor has
access to the modeling parameters of the machine learning classi-
fier. While, in reality, the attacker may not have full access to the
system all the time, we assume that the system is eventually prone
to white-box attack. For future research, we want to explore deeper
and more complex networks to obtain better generalization and

higher accuracy values for the defense. Additionally, the effective-
ness of the attack should be investigated for large networks, since
it may be time-consuming to find attacks due to the exponentially
growing worse-case time complexity of the attack model. As an
alternative adversarial training strategy, the iterative training and
train-and-retrain procedure should be investigated and resistance of
those training schemes against adversarial examples should be stud-
ied. Last but not least, we want to compare the DoS attacks to more
complicated attack schemes such as false data injection attacks in
terms of the cost of devising the attack and its effectiveness.
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