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Abstract. With the inspiration of vision transformers, the concept of
depth-wise convolution revisits to provide a large Effective Receptive
Field (ERF) using Large Kernel (LK) sizes for medical image segmen-
tation. However, the segmentation performance might be saturated and
even degraded as the kernel sizes scaled up (e.g., 21 × 21 × 21) in a
Convolutional Neural Network (CNN). We hypothesize that convolution
with LK sizes is limited to maintain an optimal convergence for local-
ity learning. While Structural Re-parameterization (SR) enhances the
local convergence with small kernels in parallel, optimal small kernel
branches may hinder the computational efficiency for training. In this
work, we propose RepUX-Net, a pure CNN architecture with a simple
large kernel block design, which competes favorably with current net-
work state-of-the-art (SOTA) (e.g., 3D UX-Net, SwinUNETR) using 6
challenging public datasets. We derive an equivalency between kernel re-
parameterization and the branch-wise variation in kernel convergence.
Inspired by the spatial frequency in the human visual system, we extend
to vary the kernel convergence into element-wise setting and model the
spatial frequency as a Bayesian prior to re-parameterize convolutional
weights during training. Specifically, a reciprocal function is leveraged
to estimate a frequency-weighted value, which rescales the correspond-
ing kernel element for stochastic gradient descent. From the experimen-
tal results, RepUX-Net consistently outperforms 3D SOTA benchmarks
with internal validation (FLARE: 0.929 to 0.944), external validation
(MSD: 0.901 to 0.932, KiTS: 0.815 to 0.847, LiTS: 0.933 to 0.949, TCIA:
0.736 to 0.779) and transfer learning (AMOS: 0.880 to 0.911) scenarios in
Dice Score. Both codes and pre-trained models are available at: https://
github.com/MASILab/RepUX-Net.
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1 Introduction

With the introduction of Vision Transformers (ViTs), CNNs have been greatly
challenged as seen with the leading performance in multiple volumetric data
benchmarks, especially for medical image segmentation [7,8,21,23]. The key
contribution of ViTs is largely credited to the large Effective Receptive Field
(ERF) with a multi-head self-attention mechanism [6]. Note the attention mech-
anism is computationally unscalable with respect to the input resolutions [17,18].
Therefore, the concept of depth-wise convolution is revisited to provide a scal-
able and efficient feature computation with large ERF using large kernel sizes
(e.g., 7 × 7 × 7) [14,18]. However, either from prior works or our experiments,
the model performance becomes saturated or even degraded when the kernel
size is scaled up in encoder blocks [4,16]. We hypothesize that scaling up the
kernel size in convolution may limit the optimal learning convergences across
local to global scales. Recently, the feasibility of leveraging large kernel convolu-
tions (e.g., 31 × 31 [4], 51 × 51 [16]) has been shown with natural image domain
with Structural Re-parameterization (SR), which adapts Constant-Scale Linear
Addition (CSLA) block (Fig. 2b) and re-parameterizes the large kernel weights
during inference [4]. As convolutions with small kernel sizes converge more easily,
the convergence of small kernel regions enhances in the re-parameterized weight,
as shown in Fig. 1a. With such observation, we further ask: Can we adapt
variable convergence across elements of the convolution kernel during
training, instead of regional locality only?

In this work, we first derive and extend the theoretical equivalency of the
weight optimization in the CSLA block. We observe that the kernel weight of
each branch can be optimized with variable convergence using branch-specific
learning rates. Furthermore, the ERF with SR is visualized to be more widely
distributed from the center element to the global surroundings [4], demonstrat-
ing a similar behavior to the spatial frequency in the human visual system [13].

Fig. 1. With the fast convergence in small kernels, SR merges the branches weights and
enhances the locality convergence with respect to the kernel size (deep blue region),
while the global convergence is yet to be optimal (light blue region). By adapting
BFR, the learning convergence can rescale in an element-wise setting and distribute
the learning importance from local to global. (Color figure online)
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Fig. 2. Overview of RepUX-Net. Unlike performing SR to merge branches weight or
performing GR within the optimizer, we propose to multiply a Bayesian function δ
and scale the element-wise learning importance in each large kernel. We then put the
scaled weights back into the convolution layer for training.

Inspired by the reciprocal characteristics of spatial frequency, we model the spa-
tial frequency as a Bayesian prior to adapt variable convergence of each kernel
element with stochastic gradient descent (Fig. 1b). Specifically, we compute a
scaling factor with respect to the distance from the kernel center and multiply
the corresponding element for re-parameterization during training. Furthermore,
we simplify the encoder block design into a plain convolution block only to mini-
mize the computation burden in training and achieve State-Of-The-Art (SOTA)
performance. We propose RepUX-Net, a pure 3D CNN with the large kernel size
(e.g., 21 × 21 × 21) in encoder blocks, to compete favorably with current SOTA
segmentation networks. We evaluate RepUX-Net on supervised multi-organ seg-
mentation with 6 different public volumetric datasets. RepUX-Net demonstrates
significant improvement consistently across all datasets compared to all SOTA
networks. We summarize our contributions as below:

– We propose RepUX-Net with better adaptation in large kernel convolution
than 3D UX-Net, achieving SOTA performance in 3D segmentation. To our
best knowledge, this is the first network that effectively leverages large kernel
convolution with plain design in the encoder for 3D segmentation.

– We propose a novel theory-inspired re-parameterization strategy to scale the
element-wise learning convergence in large kernels with Bayesian prior knowl-
edge. To our best knowledge, this is the first re-parameterization strategy to
adapt 3D large kernels in the medical domain.

– We leverage six challenging public datasets to evaluate RepUX-Net in 1)
direct training and 2) transfer learning scenarios with 3D multi-organ seg-
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mentation. RepUX-Net achieves significant improvement consistently in both
scenarios across all SOTA networks.

2 Related Works

Weights Re-parameterization: SR is a methodology of equivalently convert-
ing model structures via transforming the parameters in kernel weights. For
example, RepVGG demonstrates to construct one extra ResNet-style shortcut
as a 1 × 1 convolution, parallel to 3 × 3 convolution during training [5]. Such
parallel branch design is claimed to enhance the learning efficiency during train-
ing, in which the 1× 1 branch is then merged into the parallel 3 × 3 kernel
via a series of linear transformation in the inference stage. OREPA further adds
more parallel branches with linear scaling modules to enhance training efficiency
[10]. Inspired by the parallel branches design, RepLKNet is proposed to scale
up the 2D kernel size (e.g., 31× 31) with a 3× 3 convolution as the parallel
branch [4]. SLaK further extends the kernel size to 51× 51 by decomposing the
large kernel into two rectangular parallel kernels with sparse groups and training
the model with dynamic sparsity [16]. However, the proposed models’ FLOPs
remain at a high-level with the parallel branch design and demonstrates to have a
trade-off between model performance and training efficiency. To tackle the trade-
off, RepOptimizer provides an alternative to re-parameterize the back-propagate
gradient, instead of the structural parameters of kernel weights, to enhance the
training efficiency with plain convolution block design [3]. Significant efforts have
been demonstrated to enlarge the 2D kernel size in the natural image domain,
while limited studies have been proposed for 3D kernels in medical domain. As
3D kernels have a larger number of parameters than 2D, it is challenging to
directly leverage the parallel branch design and maintain an optimal conver-
gence of learning large kernel convolution without trading off the computation
efficiency significantly.

3 Methods

Instead of changing the gradient dynamics during training [3], we introduce
RepUX-Net, a pure 3D CNN architecture that performs element-wise scaling in
large kernel weights to enhance the learning convergence and effectively adapts
large receptive field for volumetric segmentation. To design such behavior, we
adapt a two-step pipeline: 1) we define the theoretical equivalency of variable
learning convergence in convolution branches; 2) we simulate the behavior of
spatial frequency to re-weight the learning importance of each element in kernels
for stochastic gradient descent. Note the theoretical derivation depends on the
optimization with first-order gradient-driven optimizer (e.g., SGD, AdamW) [3].

3.1 Variable Learning Convergence in Multi-Branch Design

From Fig. 2b & 2c, previous re-parameterization strategies only demonstrate the
benefits of the parallel branch design by either adding up the encoded outputs
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from both small and large kernels with SR (RepLKNet [4]) or performing Gra-
dient Re-parameterization (GR) by multiplying with constant values (RepOp-
timizer [3]) in a Single Operator (SO) to enhance the locality learning in large
kernels. Inspired by the concepts of SR and GR, we extend the theoretical equiva-
lency proof in RepOptimizer to adapt variable learning convergence in branches.
Here, we only showcase the conclusion with two convolutions and two constant
scalars as the scaling factors for simplicity. The complete proof of equivalency
is demonstrated in Supplementary 1.1. Let {αL, αS} and {WL,WS} be the two
constant scalars and two convolution kernels (Large & Small) respectively. Let
X and Y be the input and output features, the CSLA block is formulated as
YCSLA = αL(X � WL) + αS(X � WS), where � denotes as convolution. For SO
blocks, we train the plain structure parameterized by W ′ and YSO = X �W ′. Let
i be the number of training iterations, we ensure that Y (i)

CSLA = Y (i)
SO,∀i ≥ 0

and derive the stochastic gradient descent of parallel branches as follows:

αLWL(i+1)+αSWS(i+1) = αLWL(i)−λLαL
∂L

∂WLi

+αSWS(i)−λSαS
∂L

∂WSi

, (1)

where L is the objective function; λL and λS are the Learning Rate (LR) of
each branch respectively. We observe that the optimization of each branch can
be different, which is feasible to control by adjusting the branch-specific LR.
The locality convergence in large kernels enhance with the quick convergence
in small kernels. Additionally from our experiments, a significant improvement
is demonstrated with different branch-wise LR using SGD (Table 2). Building
upon this insight, we further hypothesize that the convergence of each large
kernel element can be optimized differently by linear scaling with prior
knowledge.

3.2 Bayesian Frequency Re-parameterization (BFR)

With the visualization of ERF in RepLKNet [4], the diffused distribution (from
local to global) in ERF demonstrates similar behavior with the spatial frequency
in the human visual system [13]. High spatial frequency (small ERF) allows to
refine and sharpen details with high acuity, while global details are demonstrated
with low spatial frequency. Inspired by the reciprocal characteristics in spatial
frequency, we first generate a Bayesian prior distribution to model the spatial
frequency by computing a reciprocal distance function between each element and
the central point of the kernel weight as follows:

d(x, y, z, c) =
√

(x − c)2 + (y − c)2 + (z − c)2

δ(xk, yk, zk, c, α) =
α

d(xk, yk, zk, c) + α

(2)

where k and c are the element and central index of the kernel weight, α is the
hyperparameter to control the shape of the generated frequency distribution.
Instead of adjusting the LR in parallel branches, we propose to re-parameterize
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the convolution weights by multiplying the scaling factor δ to each kernel element
and apply a static LR λ for stochastic gradient descent in single operator setting
as follows:

W
′
i+1 = δW

′
i − λ

∂L

∂δW
′
i

(3)

With the multiplication with δ, each element in the kernel weight is rescaled with
respect to the frequency level and allow to converge differently with a static LR in
stochastic gradient descent. Such design demonstrates to influence the weighted
convergence diffused from local to global in theory, thus tackling the limitation
of enhancing the local convergence only in branch-wise setting.

3.3 Model Architecture

The backbone of RepUX-Net is based on 3D UX-Net [14], which comprises mul-
tiple volumetric convolution blocks that directly utilize 3D patches and leverage
skip connections to transfer hierarchical multi-resolution features for end-to-end
optimization. Inspired by [15], we choose a kernel size of 21× 21× 21 for Depth-
Wise Convolution (DWC-21) as the optimal choice without significant trade-off
between model performance and computational efficiency in 3D. We further
simplify the block design as a plain convolution block design to minimize the
computational burden from additional modules. The encoder blocks in layers l
and l + 1 are defined as follows:

ẑl = GeLU(DWC-21(BN(zl−1))), ẑl+1 = GeLU(DWC-21(BN(zl))) (4)

where ẑl and ẑl+1 are the outputs from the DWC layer in each depth level; BN
denotes as the batch normalization layer.

4 Experimental Setup

Datasets. We perform experiments on six public datasets for volumetric seg-
mentation, which comprise with 1) Medical Segmentation Decathlon (MSD)
spleen dataset [1], 2) MICCAI 2017 LiTS Challenge dataset (LiTS) [2], 3) MIC-
CAI 2019 KiTS Challenge dataset (KiTS) [9], 4) NIH TCIA Pancreas-CT dataset
(TCIA) [20], 5) MICCAI 2021 FLARE Challenge dataset (FLARE) [19], and
6) MICCAI 2022 AMOS challenge dataset (AMOS) [12]. More details of each
dataset (including data split for training and inference) are described in Supple-
mentary Material (SM) Table 1.

Implementation. We evaluate RepUX-Net with three different scenarios: 1)
internal validation with direct supervised learning, 2) external validation with
the unseen datasets, and 3) transfer learning with pretrained weights. All prepro-
cessing and training details including baselines, are followed with [14] for bench-
marking. For external validations, we leverage the AMOS-pretrained weights to
evaluate 4 unseen datasets. In summary, we evaluate the segmentation perfor-
mance of RepUX-Net by comparing current SOTA networks in a fully-supervised
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Table 1. Comparison of SOTA approaches on the five different testing datasets. (*:
p < 0.01, with Paired Wilcoxon signed-rank test to all baseline networks)

Internal Testing External Testing

FLARE MSD KiTS LiTS TCIA

Methods #Params FLOPs Spleen Kidney Liver Pancreas Mean Spleen Kidney Liver Pancreas

nn-UNet [11] 31.2M 743.3G 0.971 0.966 0.976 0.792 0.926 0.917 0.829 0.935 0.739

TransBTS [22] 31.6M 110.4G 0.964 0.959 0.974 0.711 0.902 0.881 0.797 0.926 0.699

UNETR [8] 92.8M 82.6G 0.927 0.947 0.960 0.710 0.886 0.857 0.801 0.920 0.679

nnFormer [23] 149.3M 240.2G 0.973 0.960 0.975 0.717 0.906 0.880 0.774 0.927 0.690

SwinUNETR [7] 62.2M 328.4G 0.979 0.965 0.980 0.788 0.929 0.901 0.815 0.933 0.736

3D UX-Net (k = 7) [14] 53.0M 639.4G 0.981 0.969 0.982 0.801 0.934 0.926 0.836 0.939 0.750

3D UX-Net (k = 21) [14] 65.9M 757.6G 0.980 0.968 0.979 0.795 0.930 0.908 0.808 0.929 0.720

RepOptimizer [3] 65.8M 757.4G 0.981 0.969 0.981 0.822 0.937 0.913 0.833 0.934 0.746

3D RepUX-Net (Ours) 65.8M 757.4G 0.984 0.970 0.983 0.837 0.944* 0.932* 0.847* 0.949* 0.779*

Table 2. Ablation studies with quantitative Comparison on Block Designs with/out
frequency modeling using different optimizer

Optimizer Main Branch Para. Branch BFR Train Steps Main LR Para. LR Mean Dice

SGD 21 × 21 × 21 × × 40000 0.0003 × 0.898

AdamW 21 × 21 × 21 × × 40000 0.0001 × 0.906

SGD 21 × 21 × 21 3 × 3 × 3 × 40000 0.0003 0.0006 0.917

AdamW 21 × 21 × 21 3 × 3 × 3 × 40000 0.0001 0.0001 0.929

AdamW 21 × 21 × 21 × � 40000 0.0001 × 0.938

SGD 21 × 21 × 21 3 × 3 × 3 × 60000 0.0003 0.0006 0.930

AdamW 21 × 21 × 21 3 × 3 × 3 × 60000 0.0001 0.0001 0.938

AdamW 21 × 21 × 21 × � 60000 0.0001 × 0.944

setting. Furthermore, we perform ablation studies to investigate the effect on
Bayesian frequency distribution with different scales generated by α and the
variability of branch-wise learning rates with first-order gradient optimizers (e.g.,
SGD, AdamW) for volumetric segmentation. Dice similarity coefficient is lever-
aged as an evaluation metric to measure the overlapping regions between the
model predictions and the manual ground-truth labels.

5 Results

Different Scenarios Evaluations. Table 1 shows the result comparison of cur-
rent SOTA networks on medical image segmentation in a volumetric setting.
With our designed convolutional blocks as the encoder backbone, RepUX-Net
demonstrates the best performance across all segmentation task with significant
improvement in Dice score (FLARE: 0.934 to 0.944, AMOS: 0.891 to 0.902). Fur-
thermore, RepUX-Net demonstrates the best generalizability consistently with a
significant boost in performance across 4 different external datasets (MSD: 0.926
to 0.932, KiTS: 0.836 to 0.847, LiTS: 0.939 to 0.949, TCIA: 0.750 to 0.779). For
transfer learning scenario, the performance of RepUX-Net significantly outper-



RepUX-Net 639

Table 3. Evaluations on the AMOS testing split in different scenarios. (*: p < 0.01,
with Paired Wilcoxon signed-rank test to all baseline networks)

Train From Scratch Scenario

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet 0.951 0.919 0.930 0.845 0.797 0.975 0.863 0.941 0.898 0.813 0.730 0.677 0.772 0.797 0.815 0.850

TransBTS 0.930 0.921 0.909 0.798 0.722 0.966 0.801 0.900 0.820 0.702 0.641 0.550 0.684 0.730 0.679 0.783

UNETR 0.925 0.923 0.903 0.777 0.701 0.964 0.759 0.887 0.821 0.687 0.688 0.543 0.629 0.710 0.707 0.740

nnFormer 0.932 0.928 0.914 0.831 0.743 0.968 0.820 0.905 0.838 0.725 0.678 0.578 0.677 0.737 0.596 0.785

SwinUNETR 0.956 0.957 0.949 0.891 0.820 0.978 0.880 0.939 0.894 0.818 0.800 0.730 0.803 0.849 0.819 0.871

3D UX-Net (k=7) 0.966 0.959 0.951 0.903 0.833 0.980 0.910 0.950 0.913 0.830 0.805 0.756 0.846 0.897 0.863 0.890

3D UX-Net (k=21) 0.963 0.959 0.953 0.921 0.848 0.981 0.903 0.953 0.910 0.828 0.815 0.754 0.824 0.900 0.878 0.891

RepOptimizer 0.968 0.964 0.953 0.903 0.857 0.981 0.915 0.950 0.915 0.826 0.802 0.756 0.813 0.906 0.867 0.892

RepUX-Net (Ours) 0.972 0.963 0.964 0.911 0.861 0.982 0.921 0.956 0.924 0.837 0.818 0.777 0.831 0.916 0.879 0.902*

Transfer Learning Scenario

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet 0.965 0.959 0.951 0.889 0.820 0.980 0.890 0.948 0.901 0.821 0.785 0.739 0.806 0.869 0.839 0.878

TransBTS 0.885 0.931 0.916 0.817 0.744 0.969 0.837 0.914 0.855 0.724 0.630 0.566 0.704 0.741 0.650 0.792

UNETR 0.926 0.936 0.918 0.785 0.702 0.969 0.788 0.893 0.828 0.732 0.717 0.554 0.658 0.683 0.722 0.762

nnFormer 0.935 0.904 0.887 0.836 0.712 0.964 0.798 0.901 0.821 0.734 0.665 0.587 0.641 0.744 0.714 0.790

SwinUNETR 0.959 0.960 0.949 0.894 0.827 0.979 0.899 0.944 0.899 0.828 0.791 0.745 0.817 0.875 0.841 0.880

3D UX-Net (k = 7) 0.970 0.967 0.961 0.923 0.832 0.984 0.920 0.951 0.914 0.856 0.825 0.739 0.853 0.906 0.876 0.900

3D UX-Net (k = 21) 0.969 0.965 0.962 0.910 0.824 0.982 0.918 0.949 0.915 0.850 0.823 0.740 0.843 0.905 0.877 0.898

RepOptimizer 0.967 0.967 0.957 0.908 0.847 0.983 0.913 0.945 0.914 0.838 0.825 0.780 0.836 0.915 0.864 0.897

RepUX-Net 0.973 0.968 0.965 0.933 0.865 0.985 0.930 0.960 0.923 0.859 0.829 0.793 0.869 0.918 0.891 0.911*

Fig. 3. Qualitative Representations of organ segmentation in LiTS and TCIA datasets

forms the current SOTA networks with mean Dice of 0.911 (1.22% enhance-
ment), as shown in Table 2. RepUX-Net demonstrates its capabilities across the
generalizability of unseen datasets and transfer learning ability. The qualitative
representations (in Fig. 3) further provides additional confidence of the quality
improvement in segmentation predictions with RepUX-Net (Table 3).

Ablation Studies with Block Designs & Optimizers. With the plain convo-
lution design, a mean dice score of 0.906 is demonstrated with AdamW optimizer
and perform slightly better than that with SGD. With the additional design
of a parallel small kernel branch, the segmentation performance significantly
improved (SGD: 0.898 to 0.917, AdamW: 0.906 to 0.929) with the optimized
parallel branch LR using SR. The performance is further enhanced (SGD: 0.917
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to 0.930, AdamW: 0.929 to 0.937) without being saturated with the increase of
the training steps. By adapting BFR, the segmentation performance outperforms
the parallel branch design significantly with a Dice score of 0.944.

Effectiveness on Different Frequency Distribution. From Fig. 1 in SM,
RepUX-Net demonstrates the best performance when α = 1, while comparable
performance is demonstrated in both α = 0.5 and α = 8. A possible family
of Bayesian distributions (different shapes) may need to further optimize the
learning convergence of kernels across each channel.

Limitations. The shape of the generated Bayesian distribution is fixed across all
kernel weights with an unlearnable distance function. Each channel in kernels is
expected to extract variable features with different distributions. Exploring dif-
ferent families of distributions to rescale the element-wise convergence in kernels
will be our potential future direction.

6 Conclusion

We introduce RepUX-Net, the first 3D CNN adapting extreme large kernel con-
volution in encoder network for medical image segmentation. We propose to
model the spatial frequency in the human visual system as a reciprocal function,
which generates a Bayesian prior to rescale the learning convergence of each ele-
ment in kernel weights. By introducing the frequency-guided importance during
training, RepUX-Net outperforms current SOTA networks on six challenging
public datasets via both direct training and transfer learning scenarios.
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