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Model-based approaches have proven fruitful in the design and implementation of 

intelligent systems that provide automated diagnostic functions. A wide variety of models are 

used in these approaches to represent the particular domain knowledge, including analytic 

state-based models, input-output transfer function models, fault propagation models, and 

qualitative and quantitative physics-based models. Diagnostic applications are built around 

three main steps: observation, comparison, and diagnosis. If the modeling begins in the early 

stages of system development, engineering models such as fault propagation models can be 

used for testability analysis to aid definition and evaluation of instrumentation suites for 

observation of system behavior. Analytical models can be used in the design of monitoring 

algorithms that process observations to provide information for the second step in the 

process, comparison of expected behavior of the system to actual measured behavior. In the 

final diagnostic step, reasoning about the results of the comparison can be performed in a 

variety of ways, such as dependency matrices, graph propagation, constraint propagation, 

and state estimation. Realistic empirical evaluation and comparison of these approaches is 

often hampered by a lack of standard data sets and suitable testbeds. In this paper we 

describe the Advanced Diagnostics and Prognostics Testbed (ADAPT) at NASA Ames 

Research Center. The purpose of the testbed is to measure, evaluate, and mature diagnostic 

and prognostic health management technologies. This paper describes the testbed’s 

hardware, software architecture, and concept of operations. A simulation testbed that 
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accompanies ADAPT, and some of the diagnostic and decision support approaches being 

investigated are also discussed.  

I. Introduction 

Automated methods for diagnosing problems with system behavior are commonplace in automobiles, copiers, 

and many other consumer products. Applying advanced diagnostic techniques to aerospace systems, especially 

aerospace vehicles with human crews, is much more challenging. The low probability of component and subsystem 

failure, the cost of verification and validation, the difficulty of selecting the most appropriate diagnostic technology 

for a given problem, and the lack of large-scale diagnostic technology demonstrations increase the complexity of 

these applications. To meet these challenges, NASA Ames Research Center has developed the Advanced Diagnostic 

and Prognostic Testbed with the following goals in mind: 

(i) Provide a technology-neutral basis for testing and evaluating diagnostic systems, both software and 

hardware, 

(ii) Provide the capability to perform accelerated testing of diagnostic algorithms by manually or algorithmically 

inserting faults, 

(iii) Provide a real-world physical system such that issues that might be disregarded in smaller-scale experiments 

and simulations are exposed – “the devil is in the details,” 

(iv) Provide a stepping stone between pure research and deployment in aerospace systems, thus create a concrete 

path to maturing diagnostic technologies, and 

(v) Develop analytical methods and software architectures in support of the above goals. 

Section II of this paper describes the testbed – hardware and software architectures, concept of operations, and 

some of the diagnostic challenges the testbed presents. Section III describes Virtual ADAPT, a simulation facility 

that can augment the functionality of the hardware testbed in areas such as fault injection, the topic of the Section 

IV. Section V provides examples of several test articles – diagnostic algorithms and applications that are currently 

being studied for use in higher-level applications. Two higher-level applications, Advanced Caution and Warning 

and Contingency Planning are described in Section VI, in particular, their roles in the characterization of the test 

articles. The final sections discuss the challenges of performance assessment of the diagnostic techniques and 

summarize conclusions to date. 

II. Testbed Description 

 The ADAPT lab is shown in Figure 1. The equipment racks can generate, store, distribute, and monitor electrical 

power. The initial testbed configuration functionally represents an exploration vehicle’s Electrical Power System 

(EPS). The EPS can deliver AC (Alternating Current) and DC (Direct Current) power to loads, which in an 

aerospace vehicle would include subsystems such as the avionics, propulsion, life support, and thermal management 

systems. A data acquisition and control system sends commands to and receives data from the EPS. The testbed 

operator stations are integrated into a software architecture that allows for nominal and faulty operations of the EPS, 

and includes a system for logging all relevant data to assess the performance of the health management applications. 

The following sections describe the testbed hardware, diagnostic challenges, concept of operations, and software. 

A. Hardware Subsystems 
Figure 2 depicts ADAPT’s major system components and their interconnections. Three power generation 

sources are connected to three sets of batteries, which in turn supply two load banks. Each load bank has provisions 

for 6 AC loads and 2 DC loads.  
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Figure 1.  Advanced Diagnostics and Prognostics Testbed. 

 

 

 
 

Figure 2.  Testbed components and interconnections. 

 

Power Generation. The three sources of power generation include two battery chargers and a photovoltaic 

module. The battery chargers are connected to appropriate wall outlets through relays. Two metal halide lamps 

supply the light energy for the photovoltaic module. The three power generation sources can be interchangeably 

connected to the three batteries. Hardware relay logic prevents connecting one charge source to more than one 

battery at the same time, and from connecting one charging circuit to another charging circuit. 
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Power Storage. Three sets of batteries are used to store energy for operation of the loads. Each “battery” 

consists of two 12-volt sealed lead acid batteries connected in series to produce a 24-volt output. Two battery sets 

are rated at 100 amp-hrs and the third set is rated at 50 amp-hrs. The batteries and the main circuit breakers are 

placed in a ventilated cabinet that is physically separated from the equipment racks; however, the switches for 

connecting the batteries to the upstream chargers or downstream loads are located in the equipment racks.  

Power Distribution. Electromechanical relays are used to route the power from the sources to the batteries, and 

from the batteries to the AC and DC loads. All relays are the normally-open type. An inverter converts the 24-volt 

DC battery input to a 120-volt rms AC output. Circuit breakers are located at various points in the distribution 

network to prevent overcurrents from causing unintended damage to the system components. 

Control and Monitoring. Testbed data acquisition and control use National Instrument’s LabVIEW software 

and CompactFieldPoint (cFP) hardware. Table 1 lists the modules that are inserted into the two identical backplanes. 

The instrumentation allows for monitoring of voltages, currents, temperatures, switch positions, light intensities, and 

AC frequencies, as listed in Table 2. 

B. Diagnosis Challenges 
The ADAPT testbed offers a number of challenges to health management applications. The electrical power 

system shown in Figure 2 is a hybrid system with multiple system configurations made possible by switching among 

the generation, storage, and distribution units. Timing considerations and transient behavior must be taken into 

account when designing diagnosis algorithms. When power is input to the inverter there is a delay of a few seconds 

before power is available at the output. For some loads, there is a large current transient when the device is turned 

on. As shown in Figure 3, system voltages and currents depend on the loads attached, and noise in the sensor data 

becomes more pronounced as more loads are added. Due to the low probabilities of failure, seeding/inserting faults 

is needed. Through an antagonist function described in the next section, it is possible to inject multiple faults into the 

testbed. 

 

Table 1.  Testbed backplane modules. 

Module Description Channels 

cFP-2000 Real-time Ethernet Module NA 

cFP-DI-301 Digital Input Module 16 (x2) 

cFP-DO-401 Digital Output Module 16 (x2) 

cFP-AI-100 Analog Input Module  8 

cFP-AI-102 Analog Input Module 8 (x2) 

cFP-RTD-122 RTD Input Module 8 

 

Table 2.  Testbed instrumentation. 

Sensed Variable Number of 

Sensors 

Voltage 22 

Current 12 

Temperature 15 

Relay Position 41 

Circuit Breaker Position 17 

Light Intensity 3 

AC Frequency 2 
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Figure 3.  Sample testbed voltages (top) and currents (bottom) for battery discharging to loads. 

C. Concept of Operations 
Unlike many other testbeds, the primary articles under test in ADAPT are the health management systems, not 

the physical devices of the testbed. To operate the testbed in a way that facilitates studying the performance of the 

health management technologies, the following operator roles are defined: 

• User – who simulates the role of a crew member or pilot operating and maintaining the testbed subsystems.  

• Antagonist – who injects faults into the subsystem either manually, remotely through the Antagonist console, 
or automatically through software scripts.  

• Observer – who records the experiment data and notes how the User responds to the faults injected by the 
Antagonist. The Observer also serves as the safety officer during all tests and can initiate an emergency stop 
(E-stop).  

During an experiment the User is responsible for controlling and monitoring the EPS and any attached loads that 

are required to accomplish a mission. The Antagonist disrupts system operations by injecting one or more faults 

unbeknownst to the User. The User may use output from a health management application (test article) to determine 

the state of the system and choose an appropriate recovery action. The Observer records the interactions and 

measures the effectiveness of the test article.  

The testbed has two primary goals: (i) performance analysis of, and comparisons among, different test articles, 

and (ii) running of system studies. With the hardware and the supporting software infrastructure described in a 

subsequent section, experiments may be conducted using a variety of test articles to evaluate different health 

management technologies. The test articles may be connected to different interface concepts for presenting health 

management information to the human User, to study how the person performs in managing system operations. We 

describe one such investigation of health management and system technologies in Section VI. 

D. Software 
The testbed software model supports the concept of operations that includes the previously-mentioned 

operational roles of the User (USR), Antagonist (ANT), Observer (OBS), and Test Article (TA), along with the 

Logger (LOG) and the Data Acquisition (DAQ) roles. The Logger collects and saves all communication between the 

various components. The DAQ computer interfaces with the National Instruments data acquisition and control 

system. It sends command data to the testbed via the appropriate backplane modules and receives testbed sensor data 

from other modules.  

The underlying data communication is implemented using a publish/subscribe model in which data from 

publishers are routed to all subscribers registering an interest in a data topic. To enforce testing protocols and ensure 
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the integrity of the data, filters based on role and location limit the topics for which data can be produced or 

consumed. Table 3 lists the message topics and the topic publishers and subscribers. 
 

Table 3.  Publish/subscribe topics. 

Topic Publisher Subscriber 

Sensor Data DAQ ANT,OBS,LOG 

Antagonist Data ANT TA,USR,LOG 

User Command USR,TA TA,ANT,OBS,LOG 

Antagonist Command ANT DAQ,OBS,LOG 

User Message USR OBS,LOG,ANT 

Note OBS LOG,ANT 

Fault Data TA USR,OBS,LOG 

Diagnostics TA USR,OBS,LOG 

Experiment Control OBS LOG 

 

The following constraints are enforced on the various system components when they are operating on the 

ADAPT computer network: 

•  The DAQ can read only command data sent by the Antagonist and sends only sensor data which it gets 
directly from the instrumentation I/O subsystem. When no faults are injected, the Antagonist commands are 
the same as the User commands. The DAQ software can run only on the DAQ computer. It is the only 
software that connects directly to the instrumentation I/O subsystem. 

• The Antagonist can read only sensor data sent by the DAQ and command data sent by Test Articles and 
Users. It forwards sensor data, which it may have modified by fault injection. It also sends command data, 
which are read by the DAQ and the Logger. 

• The Test Article and the User cannot see DAQ sensor data. They have access only to Antagonist-generated 
sensor data, which are identical to DAQ sensor data when no faults are injected. The Test Article and User 
cannot read text data (a Note) sent by the Observer. The Test Article can read user commands and antagonist 
data. It can send diagnostics data and User commands. 

• The Observer sends an experiment control record to initiate a testbed experiment. It also sends text data to 
describe observations of the ongoing experiment. The Observer cannot send any data other than control and 
text data.  

•  The Logger reads all data sent over the ADAPT network. The Logger assigns a unique experiment ID for 
each new experiment. 

A test article may be integrated with the testbed by installing the application on one of the ADAPT computers or 

by connecting a computer with the test article application to a preconfigured auxiliary system that acts as a gateway 

to the ADAPT network. 

III. VIRTUAL ADAPT: Simulation Testbed 

We are also developing a high-fidelity simulation testbed that emulates the ADAPT hardware for running offline 

health management experiments. This environment, called VIRTUAL ADAPT, provides identical interfaces to the 

application system modules through wrappers to the ADAPT network. The physical components of the testbed, i.e., 

the chargers, the batteries, relays, and the loads, are replaced by simulation modules that generate the same dynamic 

behaviors as the hardware test bed. Also, like the actual hardware, VIRTUAL ADAPT subscribes to antagonist 

commands and publishes corresponding sensor data. As a result, application systems developed on VIRTUAL 

ADAPT can be run directly on ADAPT, and vice versa. Therefore, applications can be developed and tested using 

VIRTUAL ADAPT, and then run as test articles on the actual system. The simulation environment also provides for 

precise repetition of different operational scenarios, and this allows for more rigorous testing and evaluation of 

different diagnostic and prognostic algorithms.  

In order to mirror the real testbed, we have addressed several issues that include (i) one-to-one component 

modeling, (ii) replicating the dynamic behavior of the hardware components, (iii) matching the possible 

configurations, and (iv) facilitating the running of diagnosis and prognosis experiments. The following sections 

provide a more detailed description of our approach to addressing these issues.  
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A. Component-Oriented Modeling 
Our approach to component-oriented compositional modeling is based on a top-down process, where we first 

capture the structural description of the system in terms of the components and their connectivity. Component 

models replicate the component’s dynamic behaviors for different configurations. The connectivity relations, 

represented by energy and signal links, capture the interaction pathways between the components. Complex systems, 

such as the power distribution system, may operate in multiple configurations. The ability to change from one 

configuration to another is modeled by switching elements. Sets of components can also be grouped together to 

define subsystems. The modeling paradigm is implemented as part of the Fault Adaptive Control Technology 

(FACT) tool suite developed at Vanderbilt University.
1,2
 FACT employs the Generic Modeling Environment 

(GME)
3-5
 to present modelers with a component library organized as hierarchical collection of components and 

subsystems and graphical interface for creating component-oriented system models. The VIRTUAL ADAPT models 

created using FACT capture a number of possible ADAPT testbed configurations. Additional details of the FACT 

tool suite are provided in a later section. 

Each component includes an internal behavior model and an interface through which the component interacts 

with other components and the environment. The interfaces include two kinds of ports: (i) energy ports for energy 

exchange between the component and other components, and (ii) signal ports for input and output of signal values 

from the component. The current VIRTUAL ADAPT testbed component library includes models for the chargers, 

batteries, inverters, loads, relays, circuit breakers, and sensors that exist on the current ADAPT hardware testbed. 

For experimental purposes and “what if” analyses, new components can be added to the library by modifying 

existing component models or by creating new ones. System models are built by creating configurations of 

component models.  

Many ADAPT testbed components are physical processes that exhibit hybrid behaviors, i.e., mixed continuous 

and discrete behaviors. These components are modeled as Hybrid Bond Graph
6
 (HBG) fragments. HBGs extend the 

bond graph modeling language
7
 by introducing junctions that can switch on and off. Bond graphs are a domain-

independent, topological modeling language based on the conservation of energy and continuity of power. Nodes in 

a bond graph model include energy storage elements, called capacitors, C, and inertias, I, energy dissipation 

elements called resistors, R, energy transformation elements called gyrators, GY, and transformers, TF, and, input-

output elements, which are typically sources of effort, Se, and sources of flow, Sf. The connecting edges, called 

bonds, represent the energy exchange pathways between these elements. Each bond is associated with two generic 

variables: effort and flow. The edges of the bond graph, called bonds, represent the energy exchange pathways 

between the connected nodes. Each bond has two associated variables: effort and flow, and the product of effort and 

flow is power, i.e., the rate of energy transfer between the connected elements. The effort and flow variables take on 

particular values in specified domains, e.g., voltage and current in the electrical domain and force and velocity in the 

mechanical domain. Components and subsystems in bond graph models are interconnected through idealized 

lossless 0– and 1–junctions. For a 0–junction, which represents a parallel connection, the effort values of all 

incident bonds are equal, and the sum of the flow values is zero. For a 1–junction, which represents a series 

connection, the flow values are equal and the sum of the effort values is 0. Non-linear system behaviors are modeled 

by making the bond graph element parameters algebraic functions of other system variables. 

 HBGs extend bond graphs using a CSPEC mechanism, which is a two state automata model (the two states are 

ON and OFF) that controls the switching of junctions between on and off. Using switching functions, the modeler 

can capture discrete changes in system configuration, such as the turning on and off of a relay, or the turning on and 

off of a pump. The CSPEC mechanism for switching junctions can be controlled or autonomous. The on-off 

transitions for controlled junctions are determined by external signals, e.g., a controller input, whereas the on-off 

transitions for autonomous junctions depend on system variables. HBGs bridge the gap between topological and 

analytic differential-algebraic equation (DAE) models of physical processes, and, therefore, are very well suited for 

deriving modeling forms for diagnosis, prognosis, and fault-adaptive control.
8-10

 

 Building complete HBG models for a system requires detailed knowledge of the system configuration and 

component behaviors, as well as component parameters. This knowledge is typically obtained by consulting system 

designers and experts, extracting information from device manuals and research papers, and using experimental data 

collected during system operations. When experimental data is used, unknown parameters and functional relations 

associated with the models are estimated using system identification techniques. Often, this is a difficult task that 

requires significant analysis. 

Model validation is performed by comparing simulated behaviors with data collected from experimental runs on 

ADAPT. A number of parameter estimation iterations may be necessary to obtain an accurate model of the system, 

keeping in mind the tradeoff between model accuracy and model complexity. 
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B. Generating Efficient Simulation Models  
VIRTUAL ADAPT models created using the FACT tool suite can be translated into MATLAB Simulink® models 

using a systematic model transformation process
11,12

 that is implemented using GME interpreters. The two-step 

process first transforms the HBG models into an intermediate block diagram representation, and then converts the 

block diagram representation into an executable Simulink model. The use of the intermediate block diagram 

provides the flexibility of generating executable models for other simulation environments with minimal effort. 

Using naïve methods to generate executable hybrid system models requires pre-computation of the model for all 

possible system configurations or modes of operation. This is space-inefficient. The alternative is incremental 

generation of model structure at runtime when mode changes occur, which is time-inefficient.
12
 We have developed 

algorithms that incrementally generate the model structure when mode changes occur, thus reducing excessive space 

and time costs at runtime. These algorithms exploit causality in bond graphs and, in addition to incremental 

generation, can also minimize the use of high-cost fixed point or algebraic loop solvers. Algebraic loop structures 

arise in the Simulink structures to accommodate the switching functions in the HBG models. 

In addition to generating nominal behaviors, the simulation system provides an interface through which sensor, 

actuator, and process faults with different “fault profiles” (e.g., abrupt versus incipient) can be injected into the 

system at specific time points. The Simulink model then generates faulty system behavior, which can form the basis 

for running diagnosis, prognosis, and fault-adaptive control experiments. In general, many different user roles and 

test articles, such as controllers, fault detectors, diagnosers, and interfaces for observing behaviors, can be tested. 

 

                  
Figure 4.  The equivalent electric circuit of the battery (left) and its corresponding hybrid bond graph (right). 

C. Example: Battery Component Modeling 
We demonstrate our modeling approach by developing a model of the batteries on the ADAPT testbed. The 

battery component model is developed from an electrical equivalent circuit model,
13
 shown in Figure 4 (left). The 

model computes the output battery voltage and the current flowing from the battery to a connected load when the 

battery is discharging; or from the charger to the battery, when it is charging. In both situations, some of this current 

goes into charging or discharging the batteries, and the rest is lost to parasitic reactions (e.g., gas production) 

modeled by a resistive element, Rp. The capacitor C0, which has a large capacitance value, models the steady-state 

voltage of the battery. The steady-state voltage of the battery is a linear function of this capacitance value and the 

current amount of charge in the battery. The remaining resistor-capacitor pairs model the internal resistance and 

parasitic capacitance of the battery. All of the parameter values are nonlinear functions of system variables, such as 

state of charge and temperature. The nonlinear charging and discharging of the battery is captured as distinct modes 

of operation. Moreover, the internal battery model components differ for the different modes of operation. For 

example, R3-C3 pair is only active during the charge mode. The two configurations are modeled by a switch in 

Figure 4 (left). Other configuration changes include switching between a load and a charger in the discharge versus 

charge modes. 

Figure 4 (right) shows the HBG model of the equivalent circuit of the battery. The capacitors and resistors are in 

one-to-one correspondence with the electrical circuit elements. The hybrid nature of the battery is modeled by a 

controlled 0-junction, which is switched on and off depending on the direction of current through the battery. Most 

of the parameters in the battery HBG are nonlinear, and these nonlinearities are captured by making the bond graph 

element parameters nonlinear functions of system variables, such as the battery state of charge (SOC) and depth of 

charge (DOC). These two variables are computed in another portion of the model, but it is not shown in Figure 4 

(right). As an example, the resistance of R2 is proportional to the natural logarithm of the DOC. The variable 

parameters are indicated by prefixing their type-name with the letter “M”, e.g., MR.  

We have performed extensive system identification to estimate the parameters of the battery model, and have 

obtained good matches to actual observed behavior. Figure 5 shows a comparison of actual and simulated battery 
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voltage in the battery discharge mode. The battery begins at a steady state, and as soon as a load is attached, it 

begins to discharge. As the battery nears its terminal voltage, the load is taken offline, and the battery begins to 

approach its new steady-state value. A battery charger is then connected, and the charging process generates an 

increase in the observed battery voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Comparison of actual and simulated battery voltages through discharge, no load, and charge 

modes. 

IV. Fault Injection 

ADAPT allows for the repeatable injection of faults into the system. Most of the fault injection is currently 

implemented via software using the Antagonist role described previously. Software fault injection includes one or 

more of the following: 1) sending commands to the testbed that were not initiated by the User; for this case the Test 

Article will not see the spurious command to the testbed, since it was not sent by the User; 2) blocking commands 

sent to the testbed by the User; 3) altering the testbed sensor data; for this case the Test Article and the User will see 

the altered sensor data since these reflect the faulted system. The sensor data can be altered in a number of ways, as 

illustrated in Figure 6. For a static fault, the data are frozen at previous values and remain fixed. An abrupt fault 

applies a constant offset to the true data value. An incipient fault applies an offset that starts at zero and grows 

linearly with time. Excess sensor noise is introduced by adding Gaussian or uniform noise to the measured value. 

Future work will add intermittent data faults, data spikes, and the ability to introduce more than one fault type for a 

given sensor at the same time. By using these three approaches to software fault injection, fault scenarios may be 

constructed that represent diverse component faults. 

In addition to the faults that are injected via software, faults may be physically injected at the testbed hardware. 

A simple example is tripping a circuit breaker using the manual throw bars. Another is using the power toggle 

switch to turn off the inverter. Relays may be failed by short-circuiting the appropriate relay terminals. Wires 

leading to or from sensors may be short-circuited or disconnected. Additional faults include blocking portions of the 

photovoltaic panel and loosening the wire connections in power-bus common blocks. We are also pursuing 

introducing faults in the loads attached to the EPS. For example, one load is a pump that circulates fluid through a 

closed loop with a flow meter and valve. The valve can be closed slightly to vary the back pressure on the pump and 

reduce the flow rate. Table 4 lists the faults that are injected into the testbed.  
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Figure 6.  Example fault types. 

 

Since some fault scenarios may be costly, dangerous, or impossible to introduce in the actual hardware, VIRTUAL 

ADAPT also has fault injection capabilities. For example, degradation in the batteries can be simulated as an 

incipient change in a battery capacitance parameter. Other parametric faults can also be injected and simulated. In 

addition, VIRTUAL ADAPT permits experimentation with fault scenarios that cannot be realized in the hardware, 

such as inverter malfunction. Currently, mostly discrete failures (e.g., relay failures) and sensor errors are introduced 

into ADAPT, so the simulation enables injection of other types of fault scenarios. 

 

Table 4.  Faults injected into the testbed. 

Fault Description Fault Type 

Circuit breaker tripped discrete 

Relay failed open discrete 

Relay failed closed discrete 

Sensor shorted discrete 

Sensor open circuit discrete 

Sensor stuck discrete 

Sensor drift continuous 

Excessive sensor noise continuous 

AC inverter failed discrete 

PV panel blocked continuous 

Loose bus connections continuous 

Battery faults continuous 

Load faults discrete, cont. 

 

V. Test Articles 

The test articles to be evaluated in ADAPT are health management applications from industry, academia, and 

government. The techniques employed may be data-driven, rule-based, model-based, or a combination of different 

approaches. Health management concepts to be investigated include fault detection, diagnosis, recovery, failure 

prediction and mitigation. The following sections discuss some of the model-based technologies that have been or 

are in the process of being integrated into the testbed.    
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In order to provide a level of consistency between the test articles, which should help the reader in understanding 

and comparing them, we offer a simple reference architecture in Figure 7.  

 

Test Article A

Commands c(t)

Health status h(t)

Sensor reading s(t)

Model M

Test Article A

Commands c(t)

Health status h(t)

Sensor reading s(t)

Model M

 
 

Figure 7.  Test article reference architecture. 

 

In this architecture, a Test Article A is characterized by its model M, as well as how the inputs from and outputs 

to the ADAPT testbed are mapped into the constructs used by a particular Test Article A. Test article inputs are of 

two main types, namely:  

• Commands c(t): Commands at time t to the ADAPT testbed from the ADAPT user. Here, t is a counter 

variable representing the t-th invocation of A. This represents constraints on the desired state of ADAPT.  

• Sensor readings s(t): Sensor readings at time t – such as voltage, current, and temperature – from ADAPT. 

Because of sensor failure, some of the readings might be incorrect.  

A test article’s output is an estimate of ADAPT’s health status h(t), which typically includes the health of ADAPT’s 

sensors and the health of ADAPT excluding sensors.  

A. Testability Engineering and Maintenance System – Real Time (TEAMS-RT) 

Overview: TEAMS-RT is a commercial tool from Qualtech Systems, Inc., that performs on-board diagnosis 

based on directed-graph models developed in the graphical environment, TEAMS Designer. The TEAMS toolset 

implements a model-based reasoning approach, wherein information about failure sources, monitoring and 

observability (the mechanisms by which sensor information is included), redundancy, and system modes are 

captured in colored directed-graph models known as multi-signal models. Initially, the models can be analyzed with 

TEAMS Designer to determine system testability and perform sensor/test optimization. TEAMS-RT monitors the 

health of the system in real-time, using information from data acquisition, filtering, and feature extraction modules 

to compare observed features with reference values to determine the status of the monitoring points, called “tests.” 

Failure-propagation logic contained in the multi-signal models is then used to determine the health of the system. A 

testability analysis of ADAPT is being performed in conjunction with the diagnostic experiments. 

Reasoning Methodology: The process TEAMS-RT uses for reasoning about system health is as follows.
14-16

  

Initially the state of all components is Unknown. On each iteration, the algorithm processes passed tests which 

identifies Good components and then processes failed tests, which identifies Bad and Suspect components. Bad 

components are detected and isolated by tests and Suspect components may be Bad but are not isolated by specific 

tests. The algorithm continuously processes all of the test results from the monitoring points against the relationships 

described in the multi-signal model. 

The production version of TEAMS-RT includes additional capabilities for system mode changes and redundancy 

in system architectures, supporting the update of dependencies between faults and tests in response to mode changes 

and updating dependencies resulting from failures in redundant components. TEAMS-RT also has the capability to 

diagnose intermittent faults and to predict hard failures from such intermittent behavior. It can reason in the presence 

of uncertainty, e.g., tests reporting incorrectly or flip-flopping of test results in the presence of noise.
23
 TEAMS-RT 

can indicate the probability and criticality of the identified failure modes. 

Modeling Methodology: TEAMS Designer is used to model the electrical power system implemented in the 

ADAPT testbed.
30
 To obtain a multi-signal model of the system that is intuitive, is easily modifiable and expandable 

and conforms to diverse criteria (e.g., modes of operation, restrictions on operations) the system was divided in a 

number of subsystems that are modeled in layers consisting of different types of components. In general, the top 

layer of a TEAMS model consists of a number of subsystems, while each subsystem consists of a number of line 
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replaceable units (LRUs) and/or system replaceable units (SRUs). Each LRU consists of a number of SRUs or 

Components, and a fault layer (that houses the fault modes) is placed under each Component (and SRU). A test 

point can be put in any layer of the model; however, it is a common practice to put the test points in the fault layer. 

Switches facilitate fault isolation under different modes of operations. 

At the top level of the model, the ADAPT system is divided into five LRUs, as shown in Figure 8: power 

generation, power storage, power distribution, loads, and control and monitoring. The “Power_Generation” module 

supplies power to the storage devices. The “PowerStorage” module consists of secondary batteries and other 

equipment that facilitates control and safety of the system. The “PowerDistribution” module delivers stored power 

to the loads by converting power according to the loading requirements. The “Loads” module houses the simulated 

electrical loads. The “Monitor_Control” module is not developed in detail at this time and will be expanded in future 

work. 

 
 

Figure 8.  Top-level TEAMS model of ADAPT. 

 

At the next level of detail, the power storage module has three major constituents, rechargeable lead acid 

batteries, “Power_Storage_B1,” “Power_Storage_B2,” and “Power_Storage_B3.” The power distribution module 

consists of three major sections; power distribution, power distribution inverters and power distribution switching 

relays. In this model, the power distribution and the power distribution switching relay module represents groups of 

components that are dedicated for supplying power to the inverter module and to the system loads, respectively. AC 

and DC loads that simulate actual electrical loads constitute the loads module. The module includes two groups of 

DC loads and two groups of AC loads. Altogether, there are twelve AC loads (6 in each group) and four DC loads (2 

in each group) in the system. The structure of TEAMS models generally follows the structure of the system, thereby 

facilitating verification and validation of the model by system experts. 

The testbed has a large number of modes of operations. These modes result from the combinatorial operations of 

the components in the system. Only a subset of the faults might manifest in a specific mode of operation; similarly, 

only a subset of the sensors and tests can be made functional for a specific mode of operation. In addition to modes 

of operation, there exist some restrictions on combinatorial operation of the components (e.g., mutual exclusiveness 

of functionality, dependence of functionality). To implement the modes of operations, and restrictions on operations, 

switches were introduced at various positions (and in multiple layers) of the system. 

A test point is a location within the model where one or more tests are housed. When defining a test, a label can 

be assigned to it. Then, when the testability analysis is performed, it is possible to select a specific category of tests 

and make conclusions based on the outcome. The ADAPT model contains tests which can be divided into seven 

categories: position sensor, temperature sensor, light sensor, voltage sensor, current sensor, panel meter, and 

frequency sensor. Performing the testability analysis using all of the available sensors (thus, tests) and system modes 

gives the results shown in Figure 9. The Testability Figures of Merit (TFOM) describe the generic capability of the 
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instrumentation of the system to perform fault detection and fault isolation for failure modes included in the model. 

The ADAPT testbed is well instrumented, thus the detectability measure is high. Other parameters such as test cost 

and time to detect were not used in this analysis. The chart in Figure 9 summarizes the potential of a diagnostic 

algorithm to determine the root cause of a failure in the system. The ambiguity group size is a measure of the 

number of components that would be implicated for all of the failure modes defined in the system. The low 

percentage of isolation to a single component (38%) is reflected in the ambiguity group size chart as well as the 

TFOM summary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Sample testability results for ADAPT using all available sensors and system modes. 

B. Hybrid Diagnostic Engine (HyDE) 

Overview: HyDE
17
 is a model-based diagnosis tool developed at Ames Research Center. HyDE is a model-based 

reasoning engine that uses discrepancies between model predictions and system sensor observations to diagnose 

failures in hybrid systems. The diagnosis application developer/user is responsible only for building diagnostic 

models and supplying sensor data from the system being monitored. The reasoning engine, which is the same for all 

applications, uses these models and sensor data to determine which of the modeled faults (possibly multiple) might 

have occurred in the system. HyDE produces a ranked set of candidates where each candidate is a set of faults (with 

associated time stamps) that, if assumed to have occurred, would be consistent with the sensor observations. 

Modeling Methodology: The diagnostic models to be used by HyDE can be built in a hierarchical and modular 

fashion. First the models of individual components are built. The interactions between components are modeled as 

connections and components can be composed together to create sub-system and system models. This captures the 

structure of the system. Each component model captures the transition and propagation/simulation behavior of the 

associated component. The transition model describes all operating modes of the component and the conditions for 

transitions between these modes. Faults are modeled as special transitions for which the conditions for transitions 

have to be inferred by the reasoning engine. The propagation model describes the parameters/variables of the 

component and the relations governing the evolution of values for these variables. The relations can be expressed in 

several different ways depending on how the domains of the variables have been modeled. For example, the 

variables can be modeled to take values from a Boolean domain and the relations can be expressed as Boolean 

formulae. Alternately, the variables can be modeled to have real values and the relations can be expressed as 

differential and algebraic equations. If the models include differential equations, an additional integration model has 

to be specified that indicates how variable values propagate across time steps. HyDE’s reasoning also uses a 

dependency model to identify possible causes for any discrepancies between model predictions and system 

observations. In most cases the dependency model can be derived from the propagation and integration models, but 

it is also possible to specify explicitly a dependency model to be used by HyDE. The dependency model captures the 

dependencies between various entities in the above-mentioned models. These include dependencies between 

components, operating modes of components, variables of the components and the relations over the variables.  

Reasoning Methodology: The reasoning approach of HyDE is to maintain a set of candidates that are consistent 

with the all sensor observations seen so far. When new observations become available, the candidates are tested for 

consistency with the new observations. If any candidate becomes inconsistent, it is eliminated from the candidate set 

and new candidates are generated using the inconsistency information. Consistency checking is performed in two 

steps, propagation and comparison. The propagation step uses the propagation model to determine values for 

variables in the model. The comparison step compares the propagated values with the observations to detect 

discrepancies. It is possible to combine the two steps by using the sensor observations in the propagation; this is 
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necessary when the causal relations between variables are not known. The ADAPT application uses this feature. On 

top of all this is the HyDE candidate-management strategy, which uses user preferences to determine how many 

consistent candidates to maintain, the maximum size and minimum probability of candidates to be tested, the 

maximum time to search for candidates, and other configuration parameters. 

For the ADAPT application, variables were modeled to take on values from finite (that is, enumeration) domains 

and the relations used were equality and inequality over these variables. No integration model was necessary since 

no differential equations were modeled. Figure 10 shows how the model, containing 86 components, follows system 

structure.  

 

 
Figure 10.  HyDE model of ADAPT. 

 

Each box represents a component; this model contains components representing relays, circuit breakers, voltage 

sensors, switch position sensors, temperature sensors and batteries. The behavior of each component is defined in 

the component model. Finally, the component models are connected to create the overall system model. HyDE uses 

this model to predict the behavior of the overall system.  
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Figure 11.  Relay component model. 

 

The model of a single component can consist of variables, commands (a special kind of Boolean variable), 

locations (operating modes of the component), and transitions between the locations. The relay component model 

shown in Figure 11 contains 3 variables, inputVoltage, outputVoltage, and position. The inputVoltage and 

outputVoltage variables have the domain {on, off}, and the position variable has the domain {open, closed}. The 

relay model also contains two nominal locations, open and closed, and three faulty locations, failedOpen, 

failedClosed, and unknownFault. The large labels with arrows in the above figure were added to illustrate the 

constraints (relations) expressed in each location. For the closed and failedClosed locations, the constraints are that 

the relay position is “closed” and that inputVoltage is equal to outputVoltage. For the open and failedOpen locations, 

the only constraint is that the position is “open.” When the relay is open, there is no constraint between the input and 

output voltages. The unknownFault location contains no constraints; it serves as a catch-all location to handle 

situations in which no fault model can explain the current system behavior. The transitions in the relay model are 

shown by the arrows in the above figure, and the transitions between the open and closed locations are guarded by 

openCommand and closeCommand. Transitions can not occur unless their guard conditions are satisfied. The 

transitions to the fault modes are used by HyDE only when searching for fault candidates, and contain an a priori 

probability of that fault’s occurrence.  

C. Fault Adaptive Control Technology (FACT) 

Overview: FACT is a comprehensive tool-suite, developed at Vanderbilt University, which allows modeling, 

diagnosis, and fault adaptive control for complex systems with hybrid behaviors. The FACT tool set consists of 

three primary components:  

1) A modeling environment for building dynamic models of physical plants, their sensors and actuators using a 

graphical component-oriented model, where components are HBG model fragments,  

2) A simulation environment where simulation models can be derived programmatically from the HBG models, 

and simulation experiments can be executed for both nominal and faulty scenarios. Virtual ADAPT is 

constructed using this tool set, and 

3) A computational environment and run-time support for fault detection, isolation, identification, and fault 

adaptive control. 

Modeling Methodology: As discussed earlier, the FACT modeling environment is built using Generic Modeling 

Environment
3-5
 (GME). Interpreters implemented in GME enable automated generation of the simulation models 

and diagnosis artifacts. Faults are modeled as undesired parameter value changes in the system model. These are 

associated with the bond graph parameters, e.g., resistances and capacitances. For example, a capacitance fault in the 

battery is modeled by a change in C0. In the modeling environment, we set an attribute which identifies this 

parameter as a possible fault candidate, and specify that only decrease in this parameter is considered to be a fault, 

as it is very unlikely that the capacitance of a battery will increase as a result of a fault. 
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To illustrate the FACT modeling paradigm, we use a subset of the HBG model of VIRTUAL ADAPT, shown in 

Figure 12, which includes a battery connected to a resistive load through a relay. Together, these three components 

exemplify many of the modeling concepts described above. The three components are connected through energy 

ports, which allow the connection of bonds across hierarchy. Signal ports allow information transfer across 

hierarchy. The battery component consists of a bond graph fragment that represents the equivalent circuit shown in 

Figure 4. The battery component has been described in detail in Section III.C. Nonlinear parameter values are 

specified through functions that modulate the parameter value. For example, the function R1 Mod computes the 

parameter value for R1. R3 and C3 are only active during charge, therefore the 0-junction labeled v3 turns on or off 

depending on the direction of current through the battery. The relay component, in essence, represents a series 

connection that can be “made” or “broken” based on the control input signal. In the HBG domain, the relay is 

implemented using two controlled junctions which are switched on or off at the same time, depending on whether 

the control input is high or low, respectively. This input signal, generated by an external controller, is accessed by 

the Relay component through the SwitchSignal signal port. The decision function RelayOnOffDF takes the input 

signal and outputs a Boolean signal for controlling the two junctions. The resistive load consists of an R-element 

connected to a 1-junction. Together, Figure 12 depicts a simple subset of the ADAPT system, where the battery is 

discharging through a DC resistance.  

 

 
 

Figure 12.  The GME HBG model of a subset of Virtual ADAPT. 
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Reasoning Methodology: The combined qualitative/quantitative model-based hybrid fault diagnosis engine in 

FACT
9
 extends the TRANSCEND diagnosis methodology for continuous systems.

18
 The FACT diagnosis engine is 

described in greater detail below. 

FACT Diagnosis Engine. The FACT diagnosis engine architecture, illustrated in Figure 13, includes a hybrid 

observer that tracks continuous system behavior and mode changes while taking into account measurement noise 

and modeling errors. When observer output shows statistically significant deviations from behavior predicted by the 

model, the fault detector triggers the fault isolation scheme. The hybrid nature of the system complicates the 

tracking and diagnosis tasks, because mode transitions cause reconfigurations, therefore, model switching, and this 

has to be included in the online behavior tracking and fault isolation algorithms. The three primary components of 

the diagnosis engine for run time analysis are described next. 

 

 
Figure 13.  The FACT Fault Diagnosis Architecture. 

. 

Hybrid Observer. FACT employs an extended Kalman filter (EKF)
19
 combined with a hybrid automaton scheme as 

the observer for tracking nominal system behavior The FACT tool suite supports programmatic derivation of the 

EKF and hybrid automaton from the HBG model of the system.
20
  

 

Fault Detection and Symbol Generation. The fault detector continually monitors the measurement residual, r(k) = 

y(k) −−−− ŷ(k), where y is the measured value, and ŷ is the expected system output, determined by the hybrid observer. 

Since the system measurements are typically noisy (FACT assumes Gaussian noise models with zero mean and 

unknown but constant variance), and the system model (thus the prediction system) is not perfect, the fault detector 

employs a statistical testing scheme based on the Z-test for robust fault detection. The transients in the deviant 

measurements are tracked over time and compared to predicted fault signatures to establish the fault candidates. A 

fault signature is defined in terms of magnitude and higher order derivative changes in a signal.
18
 However, to 

achieve robust and reliable analysis with noisy measurements, we assume that only the signal magnitude and its 

slope can be reliably measured at any time point. Since the fault signatures are qualitative, the symbol generation 

scheme is required to return (i) the magnitude of the residual, i.e., 0 ⇒ at nominal value, + ⇒ above nominal value, 

and − ⇒ below nominal value, and (ii) the slope of the residual, which takes on values, ± ⇒ increasing or 

decreasing, respectively. 

 

Fault isolation. The fault isolation engine uses a temporal causal graph (TCG)
18
 as the diagnosis model. The TCG 

captures the dynamics of the cause-effect relationships between system parameters and observed measurements. All 

parameter changes that can explain the initial measurement deviations are implicated as probable fault candidates. 

Qualitative fault signatures generated using the TCG are used to track further measurement deviations. An 

inconsistency between the fault signature and the observed deviation results in the fault candidate being dropped. As 
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more measurements deviate the set of fault candidates becomes smaller. For hybrid diagnosis the fault isolation 

procedure is extended by two steps: (i) qualitative roll-back, (ii) qualitative roll-forward to accommodate the mode 

changes that may occur during the diagnostic analysis. 

 

Fault identification. FACT uses a parameter estimation scheme for fault identification. A novel mixed simulation-

and-search optimization scheme is applied to estimate parameter deviations in the system model. When more than 

one hypothesis remains in the candidate set, multiple optimizations are run simultaneously, and each one estimates 

one scalar degradation parameter value. The parameter value that produces the least square error is established as the 

true fault candidate. 

D. ADAPT BN Model  
Overview: Bayesian networks (BN) represent probability models as directed acyclic graphs in which the nodes 

represent random variables and the arcs represent conditional dependence among the random variables. A dynamic 

Bayesian network replicates this graph structure at multiple discrete time slices, with conditional dependencies 

across the time slices.  

There are two approaches to Bayesian network inference: interpretation and compilation. In interpretation 

approaches, a Bayesian network is directly used for inference. In compilation approaches, a Bayesian network is 

compiled off line into a secondary data structure, in which the details depend on the approach being used, and this 

secondary data structure is then used for on-line inference. Because of their high level of predictability and fast 

execution times, compilation approaches are especially suitable for resource-bounded reasoning and real-time 

systems.
21
 Our focus here is therefore on compilation approaches, and in particular the tree-clustering (or clique tree, 

or join tree) approach and the arithmetic circuit approach.  
Under the tree-clustering paradigm, a Bayesian network is transformed by compilation into a different 

representation called a join tree.
22,23

 During propagation, evidence is propagated in that join tree, leading to belief 

updating or belief revision computations as appropriate. In practice, tree clustering often performs very well on 

relatively sparse BNs as are often developed by interviewing experts. However, as the ratio of leaf nodes to non-leaf 

nodes increases, the size of the maximal minimal clique and the total clique tree size grow rapidly;
24,25

 thus care is 

needed when Bayesian networks are designed.  

Creation of an arithmetic circuit from a Bayesian network is a second compilation approach.
26-28

 Here, the 

inference is based on an arithmetic circuit compiled from a Bayesian network. This arithmetic circuit has a relatively 

simple structure, but can be used to answer a wide range of probabilistic queries. Compared to tree clustering, the 

arithmetic circuit approach exploits local structure and often has a longer compilation time but a shorter inference 

time.  

Modeling Methodology: We assume a time-sliced Dynamic Bayesian Network (DBN) model M of ADAPT. 

This DBN represents ADAPT’s failure modes, operational modes, and other features of the test bed. A DBN is 

essentially a multi-variate stochastic process, structured as a directed acyclic graph, with discrete time t. Suppose 

that the set of random variables (nodes in the graph) is X(t); these nodes can be partitioned as follows:  
• Health nodes H(t): There are two types of health nodes in the BN model:  

o System health nodes Y(t)  represent the health of ADAPT excluding sensors, both failure modes 

and operational (nominal) modes. 

o Sensor health nodes E(t) represent the health of ADAPT’s sensors, both their failure modes and 

operational (nominal) modes.  

• Command nodes C(t)  represent commands to the ADAPT testbed from the ADAPT user. This represents 

the desired state of ADAPT.  

• Sensor nodes S(t)  represent sensor readings of voltage, current, and temperature from ADAPT. Because of 

sensor failure, some sensor readings might be incorrect.  

• Push nodes P(t) determine whether there are closed paths to batteries, so that electricity can flow from the 

batteries to the loads.  

• Pull nodes U(t)  determine whether there are closed paths to the loads, so that electricity can be pulled by the 

loads from the batteries.  

• Other nodes M(t) reflect the structure of the ADAPT test bed, but do not fit into any of the categories above.  

Information from sensor nodes S(t) and command nodes C(t) is incorporated into the model and reasoning 

process at runtime, thus influencing the status of the health nodes H(t). The BN model can then be used on-line to 

answer a wide range of queries of interest, for example (i) Individual status of  health nodes H(t) – marginals over  

H(t); (ii) Sensor validation - MAP over E(t); (iii) System health only - MAP over Y(t).  
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The health variable nodes H(t) play an important role in the BN model. There is a first time slice H(0), in which 

probabilities are based on prior knowledge from some combination of data sheets and expert estimates. For later 

time slices H(t), where t>0, probabilities are based on information from prior time slices, health variables, other 

variables, evidence, DBN pruning algorithms, and other factors. Key here, though, are the conditional distributions 

for X(t+1) given X(t). In particular, P(H(t+1) | H(t)) determines the evolution of the estimate of ADAPT’s health 

state.  
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Figure 14.  A fragment of the ADAPT Bayesian Net model. 

 

Example: In Figure 14 we show a fragment of the ADAPT BN model M, focusing on a relay, a voltage sensor 

and a current sensor associated with that relay. In terms of our formal framework discussed above, we have H(t) = 

{HealthRelay, HealthVoSe, HealthCuSe}, C(t) = {CmdRelay}, P(t) = {SourcePath}, U(t) = {SinkPath}, M(t) = 

{RelayStatus, Voltage, Current}, and S(t) = {SensorVo, SensorCu}.  

The HealthRelay and CmdRelay nodes determine the RelayStatus of the relay, where RelayStatus is opened or 

closed. The RelayStatus node again influences the SourcePath and SinkPath nodes, which represent whether there 

are one or more open paths to the batteries and the loads respectively. SourcePath and SinkPath also depend on 

other nodes in the BN, beyond the scope of this discussion. The SensorVo node represents the observed voltage of 

the voltage sensor, while HealthVoSe represents its health status. In a similar way, SensorCu represents the observed 

current of the current sensor, and HealthCuSe represents its health status. A crucial difference between voltage and 

current sensors is that the former only depend on the existence of a path to one or more batteries, while the latter 

also depend on the existence of a path to one or more loads. As a consequence, Current has two parents, SinkPath 

and SourcePath, while Voltage has only one parent node, SourcePath. Finally, the sensor observations also depend 

on health nodes HealthVoSe (health of voltage sensor) and HealthCuSe (health of current sensor).  

We now consider diagnostic inference using the ADAPT BN. Suppose that the inputs to the BN are c(t) = 

{Command = close} and s(t) = {SensorVo = high, SensorCu = low}, and suppose for simplicity that there is no other 

evidence set in the BN. In other words, there is an inconsistency between the high voltage reading and the low 

current reading. Suppose that we compute the marginal probabilities or the Maximum a posteriori (MAP) 

probability over H(t);  in this case the BN inference result is h(t) = {HealthVoSe = healthy, HealthRelay = healthy, 

HealthCuSe = stuckLow}. This is reasonable, since it says that the likely cause of the low current reading in s(t) is 

that the current sensor HealthCuSe is stuck low while the two other sensors are healthy. 

The current Bayesian Network model M for ADAPT was developed in collaboration with Mark Chavira and 

Adnan Darwiche of UCLA. For each time slice, the number of BN nodes in the ADAPT model is currently 344. 

Note that the ADAPT BN is not created directly by a system designer. Instead, the designer creates a high-level 
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specification of an ADAPT BN model, and then that specification is translated into a BN which is then compiled, 

using the tree clustering or arithmetic circuit approach, into a structure that is used for diagnosis and sensor 

validation at run time. Using the Hugin
§§
 system with its default settings, the clique (or junction) tree size of the 

ADAPT BN is found to be 4810. Using the Ace
***
 system with its default settings, the ADAPT BN is compiled into 

an arithmetic circuit with 3,832 nodes, 5,624 edges, and 671 variables. For both systems, inference time without 

evidence is less than 50 ms on a 1.83GHz Intel CPU with 1GB of RAM. This is very promising given ADAPT’s 

sampling rate of 2Hz. 

VI. Applications 

ADAPT is being used by two high-level applications to study the process of deploying their specific 

technologies on actual hardware in an operational setting. Development of caution and warning systems for future 

aerospace vehicles is an important area of research to ensure the safe operation of these vehicles. The use of 

automation of the underlying health management functions has the potential to cut operational costs and increase 

safety. The benefits of using some of the same diagnostic models and analysis tools to improve the development of 

contingency management procedures are also evident. These two applications are described in this section. 

A. Advanced Caution and Warning System (ACAWS)  

Most health monitoring on current aerospace vehicles results in caution and warning (C&W) signals that are 

issued when logical rules are violated. The inputs to the rules are typically sensor values and contextual information, 

such as the mission mode. When failures occur, in many cases a cascade of C&W alarms may be triggered. It is 

necessary for the user to process the alarms and assess the situation in order to take appropriate corrective and safety 

actions. Assistance is often required from expert operators. Many of the C&W alarms are daughter faults stemming 

from a root cause and consequently are considered to be nuisance alarms. The introduction of more sophisticated 

health management techniques has the potential to avoid the proliferation of messages by diagnosing the root cause, 

thereby simplifying situational assessment and reducing the dependence on a large team of subsystem experts to 

analyze the alarms.  

But certain issues will need to be addressed before intelligent health management technologies become widely 

adopted. An advantage of logical rules is that they are relatively easy to understand, implement, and test. For 

reasoning algorithms that produce failure candidates, users will likely want to know whether and why those 

candidates are valid. Additional questions arise when there are multiple candidates that seem to describe the current 

system observations. If the actions to be taken are the same for all of the hypothesized failures, then the issue is 

moot. However, if the actions taken for an assumed fault exacerbate the situation, when another fault in the 

candidate list is the true cause, one might need to further disambiguate the failure candidates. In current systems, 

C&W alarms are mapped to pre-defined procedures that the crew is expected to follow. Implicit in the mapping is 

knowledge of the affected system functions. With advanced health management techniques this mapping from faults 

to affected functions to recovery/mitigation/safing actions will have to be thoroughly reexamined.  

To investigate concepts for advanced caution and warning systems, ADAPT has been connected to the 

Intelligent Spacecraft Interface Systems (ISIS) at Ames. ISIS uses eye-tracking and a variety of human performance 

measurement tools to assess the effectiveness of human-computer interactions. Graphical displays in ISIS present 

data from ADAPT. Faults are injected in ADAPT and presented to the crew member with and without advanced 

health management and display techniques. The goal is to determine the best way to integrate these technologies 

into a fault management support system that assists the crew in all aspects of real-time fault management, from fault 

detection and crew alerting through fault isolation and recovery activities. 

To this end, we will be conducting a human-in-the-loop, hardware-in-the-loop experiment that will compare two 

competing cockpit interface designs for a spacecraft fault management support system: Elsie and Besi. The design of 

Elsie mimics a redesigned but never-implemented avionics interface for the Space Shuttle. The Cockpit Avionics 

Upgrade (CAU) team was able to significantly improve the display of relevant information by reorganizing the data 

based on a task analysis and presenting a graphical layout of components rather than only textual data. Elsie 

provides the crewmember a schematic view of ADAPT, a more detailed, Shuttle-like textual display, and separate 

displays for software commandable switch panels. Moreover, Elsie uses bounds checking for its C&W system in 

which each out-of-limit condition is separately annunciated, without regard to its relationship to the fault. In 

contrast, Besi extends the design philosophy of CAU displays by further increasing the use of graphics and analog 
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representations of data and decreasing textual, digital representations of data. It also combines information display 

with switch commanding onto a single schematic representation of ADAPT, enabling the crewmember to visualize 

and reconfigure the system from a single display. Besi uses the HyDE diagnosis system described previously to 

determine the root cause fault. It presents only this root cause fault to the crewmember and suppresses any 

propagated faults. 

In the first phase of the upcoming experiment, eight instrument-rated general aviation pilots will be tasked to 

perform sixteen trials (runs) designed to evaluate the benefits and drawbacks of Elsie and Besi. Each trial will begin 

with the same hardware configuration: battery A connected to load bus A and battery B connected to load bus B. 

Both load buses will power two critical systems and two non-critical systems. In the experiment, these systems 

represent Environmental Control and Life Support systems, although in reality they are lights and pumps. 

Additionally, load bus A will have distinct but functionally-equivalent systems as the two critical systems connected 

to load bus B and vice versa. In the initial configuration, these backup systems will be connected but not powered. 

Each trial will introduce either one or two faults into this initial configuration, repeated once with the pilot using 

Elsie as the interface to the fault management system and again with the pilot using Besi. The trials are counter-

balanced and the fault scenarios are designed to decrease learning-effect as much as possible. The complete 

experiment design details are outside the scope of this paper but are available on request. 

The eight fault scenarios to be tested in the trials are shown in Table 5. In brief, the scenarios include either a 

single fault or two faults injected serially after a delay, and span a range of complexity. Our goal is to determine not 

only whether one interface is overall faster or preferred by pilots, but also under what conditions any benefits and 

drawbacks arise. We aim to accomplish this by using techniques that assess performance at several levels of 

behavioral specificity and temporal granularity, from performance across an entire trial, through performance on 

distinct phases within a trail (e.g., detecting a problem, diagnosing the cause, selecting a recovery procedure, 

executing the procedure), and finally down to performance on each of the most basic elements of each activity (e.g., 

hear the alarm, find the alarm on the screen, turn off the alarm).  

B. Contingency Analysis 

Some aerospace projects focus development efforts on the normal behavior required of the system to such an 

extent that consideration of failure scenarios is deferred until after design implementation. A contingency is an 

anomaly that must be handled during operations. Fault protection systems in spacecraft are an example of 

contingency handling software, automating the response of a spacecraft control system to anomalies during 

operation. Contingency handling defines requirements for detecting, identifying, and responding to anomalous 

events. A process for contingency analysis during design has been developed
29
 and is being implemented in the 

ADAPT domain. The approach involves two steps: (1) to integrate in a single model the representation of the 

contingencies and of the data signals and software monitors required to identify those contingencies and (2) to use 

tool-supported verification of the diagnostics design to identify gaps in coverage of the contingencies. 

Building the system model with faults integrated into it, rather than later composing a system model with a 

separately-developed fault model, simplifies designing for contingencies. System modeling using TEAMS Designer 

integrates in one model the identified contingencies and the signals and monitors needed to identify those 

contingencies. The modeling in TEAMS consists of the following tasks:  

(1) Identify the system’s architectural components and connectors associated with the system’s key 

functionality. The connectors show the data signals that modules can use to identify whether contingencies 

have occurred. Note that the links along which data signals propagate also trace the dependencies among the 

modules.  

(2) For each module, identify the contingencies (anomalous events or states) that can obstruct the system from 

achieving its goal.  

(3) Identify the checks or monitors, called tests in TEAMS, by which the contingencies of concern can be 

detected. Requirements on the ordering of the tests can be modeled in TEAMS by specifying the level of 

each test. This is especially useful for ensuring that the most-likely diagnoses will be examined first. 

Recovery actions to handle identified contingencies can also be represented in TEAMS.  

(4) Identify the architectural test-points for each of these monitors. These test-points are placed in the model at 

the positions where checks can be run to detect failures or other contingencies. 

The ADAPT model under development for the performance assessment of diagnostic approaches is being used 

in this analysis of contingency handling design. The “Monitor_Control” block shown in Figure 8 will be expanded 

so that more of the system control aspects can be included in this analysis. Currently, that block contains only the 

monitoring points organized by the backplanes enumerated in Table 1. At this level, contingencies resulting from the 
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failure of data acquisition hardware (a module or backplane) can be studied and a system design developed so that 

system reconfiguration strategies include the assignment of critical functions to multiple modules. 

 

Table 5.  ACAWS fault scenarios. 

Scenario 

Number 

Scenario Description  
(serial faults are designated as (a) then (b)) 

Scenario Explanation 

& Evaluation Objective 

1 Switch to a critical load (i.e., sensor on ECLSS 

component) fails open (either the switch fails or 

the switch sensor fails) 

We are deliberately providing an incomplete 

model to HyDE to prevent it from correctly 

diagnosing the false alarm. Whether the switch or 

the sensor fails, HyDE will deduce that the switch 

failed. Evaluating performance on an actual 

failure and a false alarm allows us to determine 

whether pilots will implicitly trust the automation 

or will verify its diagnoses. 

2 (a) Connection to a load bus fails open (false 

alarm), then (b) a critical load-level sensor fails 

(either actually or false alarm) on the other load 

bus. 

Similar to scenario 1, but the first annunciated 

fault increases workload. This allows us to 

determine whether the benefits of an interface 

increase with workload increase. 

3 Connection between battery & load fails open 

transiently (it can be restored with a switch 

recycle). 

Allows us to evaluate the interfaces in a simple, 

perhaps typical, fault environment (single fault, 

low workload). 

4 (a) Battery voltage fails low, then (b) one of the 

switches that connects that battery to a load fails 

open. 

The second fault is irrelevant to the recovery 

process; the switch state is irrelevant because the 

first fault made that battery unusable. This helps 

us determine how pilots will treat faults of 

irrelevant components.  

5 An inverter fails off. Critical loads will be lost on the affected load bus. 

This helps us determine the benefits of an 

interface under a high time criticality condition. 

6 (a) One of the redundant sensors on a critical AC 

load fails low, then (b) the inverter on the other 

load bus fails off. 

The first fault is much lower priority than the 

second fault. This helps us determine any 

associated benefits of an interface for assisting 

with assessment and management of priorities.  

7 (a) An inverter fails off, then (b) the circuit 

breaker to the critical load on the DC bus fails 

open. 

Both faults are equally critical. This helps us 

determine the effectiveness of an interface in 

helping pilots deal with equal priority faults. 

8 (a) Connected battery (either battery A or B) 

voltage fails low, then while the recovery 

procedure (connect the affected load to the spare 

battery) is being implemented (b) the spare 

battery (battery C) voltage fails low. 

The initial recovery procedure will not restore 

necessary functionality and the pilot will need to 

determine a new course of action. (In this case, 

rather than switching to the spare battery, they 

would need to turn on the backups for the critical 

systems attached to the remaining battery (battery 

B or battery A).) This helps us determine the 

effectiveness of an interface in helping pilots 

adjust mitigation tactics.  

 

Identifying undetectable contingencies  

 TEAMS Designer models a system as a directed graph and internally runs a reachability analysis to determine 

which faults (or other contingencies) can be detected at each test point.
†††
 An example of this analysis for ACAWS 

fault scenario 3 is shown in Figure 15. A testability analysis is performed on the ADAPT model and the fault mode 

representative of scenario 3 is selected. The model is then highlighted (indicated by a blue box) to show the 

monitoring points that are active in isolating that failure model. To achieve this, TEAMS builds a dependency 

                                                           
†††
 Qualtech Systems, Inc., http://www.teamqsi.com/ 
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matrix in which each row represents a fault source (e.g., a component that can fail) and each column represents a test 

(e.g., a software diagnostic check). Thus, if fault i can be detected by test j, the cell (i,j) is non-empty. If row i has no 

entries in it, it means that the fault represented by row i cannot be detected by any available test.  

 

  

 
Figure 15.  Testability analysis results indicated graphically in TEAMS Designer for ACAWS scenario 3. 

 

 For the purposes of this study, if the dependency matrix for ADAPT has rows that have no entries, it means that 

we have modeled a contingency that is undetectable in the current system as modeled. Obviously, detectability is a 

prerequisite to autonomous detection and if the failure data are not available, the software cannot monitor them. 

Identifying indistinguishable contingencies 

If there is a set of two or more rows in the dependency matrix with identical entries, then currently no test can 

distinguish the fault in the first of those rows from the fault in the other row(s) in the set. That means that the 

software checks do not adequately isolate the source of the fault. The effect is that the contingency cannot be 

uniquely identified during operations in the as-modeled design. Contingencies that thus cannot be disambiguated are 

termed “ambiguity groups” in TEAMS. In such cases, the remedy is to add software diagnostic checks that can 

distinguish among the contingencies listed in the ambiguity group and re-run the automated analysis to verify the 

adequacy of the change. 

One implication of a failure-to-isolate for autonomous contingency handling is that the autonomous software 

response may, as a consequence, be needlessly coarse grained. Since the precise source of the problem cannot be 

isolated, the software may do more than is needed (reconfigure more than is needed) so as to cover multiple possible 

failure sources. The reconfiguration may address the problematic behavior, but can also have unwanted side-effects 

(since components not at fault may also be reconfigured) and unnecessary expenditure of resources (e.g., power, 

memory, cycles). It is thus important to isolate, as much as possible, the problem to its source. 
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Identifying redundant diagnostic checks 

The TEAMS tool also detects cases in which redundant tests exist for a single contingency. This may indicate 

inefficiency in the contingency detection software or it may indicate that the intent differs from the actual system. Of 

course, the model could also be wrong, so iterative review by project experts is a key step in the process. 

ADAPT is being used to study this process for contingency verification using the model developed for the 

diagnostic application. The troubleshooting tree will be generated and the ACAWS scenarios will serve as a baseline 

set of actions that should be taken when those specific faults occur. The model will be augmented with steps in the 

recovery plans and the automatically-generated tree will be compared to the manually generated procedures. This 

application will serve to evaluate the process on a larger system than that which was used during the development of 

the process. 

VII. Performance Assessment 

The purpose and scope of assessments and experiments as they relate to diagnostic and prognostic techniques 

and systems can vary significantly. We now identify a few different classes of assessments.  

I.  Platform assessment: Processors (CPUs) and operating systems may react differently to different diagnostic 

workloads. Therefore, it can be of interest to test an implementation on different computational platforms.  

II. Implementation assessment: The programming language and the data structures can have a substantial 

impact on performance; hence it may be of interest to compare different implementations of the same 

algorithm.  

III. Algorithm assessment: Different algorithms may solve the same computational problem. For instance, the 

problem of computing marginals in Bayesian networks can be solved using clique tree clustering or other 

approaches. Typically, this type of assessment involves the use of problem instances.
24
 

IV. Technique assessment: The problem of electric power system diagnosis can be addressed using, for 

example, Bayesian networks or artificial neural networks. This is discussed in Section V. 

V. System assessment: Overall system performance may also depend on the human(s) in the loop, and how they 

use and interact with different automated diagnostics systems. This is discussed in Section VI. 

Initial efforts will focus on classes III, IV, and V. The assessment of different diagnostic algorithms will consist 

of metrics determined from the compilation of several test runs, which include nominal and faulty behavior. For a 

single test run, it will be classified as a false alarm if a fault was not injected during the run but the test article 

reported one or if the test article reported a fault before it was injected. If the test article does not report a fault when 

one was injected, it will be classified as a missed alarm. The correctness and precision of fault isolation will also be 

determined for each run. By combining the results over several runs, false alarm rates, missed alarm rates, and 

isolation rates for the test article will be measured. Additional metrics include fault detection and isolation times. 

Not all of the metrics will apply to each test article. For example, a particular technique may only perform fault 

detection without isolating the cause of the fault. 

The eight scenarios described in Table 5 were selected for the first set of analysis runs. These scenarios are not 

particularly difficult for the diagnostic reasoners but will provide a standard set of faults and system responses for 

experimenting with the parameters of the reasoning algorithms. Each reasoning approach will be studied in detail; it 

is important not only to get the correct diagnosis – the intermediate steps taken by each algorithm will be studied in 

detail. Later runs will include input data variations such as limited sensor inputs, i.e., only data from voltage sensors 

will be available or some data that is available intermittently. Consistency will be maintained as much as possible 

across the test articles. 

VIII. Conclusion 

This paper describes a testbed at NASA Ames Research Center for evaluating and maturing diagnostic and 

prognostic concepts and technologies. The electrical power system hardware together with the software architecture 

and unique concept of operations offers many challenges to diagnostic applications such as a multitude of system 

modes, transient behavior after switching actions, multiple faults, and load-dependent noise. A simulation model is 

available to facilitate the development and testing of health management applications. Future work will include the 

integration of more test articles, loads, faults, operational scenarios, and evaluation techniques. In meeting the five 

goals of the testbed listed in Section I, much greater knowledge of the trade-offs among diagnostic technologies will 

be available to system designers for future programs. Many current technology assessments have relied upon trade 

literature or technical publications of an algorithm’s definition and performance. ADAPT provides a technology-

neutral basis for the comparison of various techniques and a highly configurable operational environment for the 

evaluation of an algorithm’s performance under specific operational requirements and fault conditions. 
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