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Abstract—Wireless Networked Control Systems (NCS) are
increasingly deployed to monitor and control Cyber-Physical
Systems (CPS). To achieve and maintain a desirable level of
performance, NCS face significant challenges posed by the
scarce wireless resource and network dynamics. In this paper,
we consider NCS consisting of multiple physical plant and
digital controller pairs communicating over a multi-hop wireless
network. The control objective is that the plants follow the
reference trajectories provided by the controllers. This paper
presents a novel optimization formulation for minimizing the
tracking error due to (1) discretization and (2) packet delay and
loss. The optimization problem maximizes a utility function that
characterizes the relationship between the sampling rate and the
capability of disturbance rejection of the control system. The
constraints come from the wireless network capacity and the
delay requirement of the control system. The solution leads to a
joint design of sampling rate adaptation and network scheduling,
which can be naturally deployed over existing networking systems
which have a layered architecture. Based on a passivity-based
control framework, we show that the proposed cross-layer design
can achieve both stability and performance optimality. Simula-
tion studies conducted in an integrated simulation environment
consisting of Matlab/Simulink and ns-2 demonstrate that our
algorithm is able to provide agile and stable sampling rate
adaptation and achieve optimal NCS performance.

Index Terms—wireless networked control system; cross-layer
design; sampling rate adaptation; network scheduling

I. INTRODUCTION

The integration of physical systems through computing and
networking has become a trend, known as Cyber-Physical
Systems (CPS). Many real-world CPS such as automotive
vehicles and distributed robotics, are monitored and controlled
by Networked Control Systems (NCS), where information
among sensors, controllers and actuators is exchanged via a
communication network. NCS are increasingly deployed over
wireless networks, as they provide great convenience in terms
of deployment and mobility support [1], [2]. However the
stability and the performance of the control system are greatly
affected by the limited and dynamic resource availability of
the wireless networking environment.

Three major approaches have been investigated in the litera-
ture to address the challenges in designing wireless NCS. The
first approach, independent of the network protocol design,
investigates the design of the control layer with a goal of
achieving the desired performance despite of the underly-
ing network uncertainties (e.g., [1], [3]). Alternatively, the
network-centric approach focuses on reliable and timely packet
deliveries, independent of the control system. Yet without
the knowledge and support from the other components of

the NCS, these approaches can hardly achieve both stability
and optimal performance simultaneously (e.g., [4], [5]). To
ensure the stability and optimize the performance of NCS,
co-design of the control system and the networking system
has been investigated. However, existing work ([6], [7], [8])
either makes simplifying assumptions on the network models
or involves too many interactions between the control and the
networking systems, which prevents efficient layer abstraction
and encapsulation, hindering broader adoption for real-world
deployment.

In this paper, we consider NCS consisting of multiple
physical plant and digital controller pairs communicating via a
multi-hop wireless network, where the plants follow the refer-
ence trajectories provided by the controllers. The performance
of the NCS is characterized by the tracking errors of the plants
which are introduced from two sources: (1) discretization of
the controller and the noise disturbance from the operating
environment; (2) packet delay and loss caused by the network
congestion and dynamics. Both sources of error are related
to the sampling rate of the control system. Intuitively, high
sampling rates allow frequent state updates and provide NCS
with better capability to reduce the effect of environmental
disturbances. On the other hand, high sampling rates increase
the network load, which increases the possibility of packet loss
and delay [9].

We transform the NCS performance objective in terms of
tracking error minimization into an optimization problem.
The optimization aims at maximizing a utility function that
characterizes the relationship between the sampling rate and
the capability of disturbance rejection of the control system
(i.e., minimizing the discretization-induced tracking error); and
the constraints of the sampling rate come from the wireless
network capacity and the requirement of sample packet deliv-
ery delay. The solution to this optimization problem leads to a
cross-layer design of control system sampling rate adaptation
and network scheduling, where the sampling rate adaptation
determines the bandwidth demands of the network and the
scheduling at the media access control layer resolves the
location-dependent interference and determines the available
resource capacity of each wireless link.

This sample rate optimization problem, however, is non-
trivial to solve. The tight coupling of the sampling rate and
the required delay of the control system (i.e., the packet delay
needs to be less than the sampling time) poses a nonlinear
constraint, which has never been addressed in the existing rate
optimization solutions ([10], [11]). To solve this problem, we



present a embedded-loop approach. In the inner loop, a relaxed
problem, where the delay bound is fixed and independent
of the sampling rate, is solved via dual decomposition. In
particular, a double-price scheme is employed to regulate the
demand from the sampling rate traffic and the supply of
wireless capacity. The capacity price regulates the resource
usage at the wireless link level, and the delay price regulates
the relationship between the packet delay experienced and
the required delay bound at the end-to-end flow level. The
control system then adapts its sampling rate based on its
utility function so that its net profit, which is the difference
between the utility and the cost (product of price and rate),
is maximized. The outer loop determines the optimal delay
bounds iteratively based on the converged sampling rate from
the inner loop. The proposed algorithm naturally leads to a
distributed cross-layer implementation.

The main contributions of this paper are summarized as
follows. First, we present a new formulation for NCS per-
formance optimization by decoupling its performance metric
(tracking error) into two parts – discretization and network
effect, which are formulated into the objective and the con-
straints of an optimization problem respectively. This formu-
lation leads to a cross-layer joint design of sampling rate
adaptation and network scheduling which can be easily de-
ployed on existing control systems and networks. We employ
a control design approach based on passivity. We formally
prove that the stability and the performance optimality of
NCS can be simultaneously achieved. Second, we present a
distributed algorithm that solves the NCS performance opti-
mization problem and resolves the complex interdependency
between the delay and the sampling rate. By introducing a
novel Virtual Link Capacity Margin (VLCM) parameter that
can be adjusted to control the delay and the rate over a wireless
link, our solution does not depend on a specific model of
packet arrival process and is suitable for NCS systems where
the packet arrivals are not characterized by Poisson process,
an assumption routinely made in network delay analysis.
Third, our solution is evaluated in an integrated simulation
environment that consists of Matlab and ns-2 [12]. Using ns-
2 – a packet-level network simulator that implements all the
details of the network protocol stack, allows highly accurate
evaluation of the network effects on the NCS performance,
which is impossible by using Matlab/Simulink alone.

The remainder of this paper is organized as follows. Sec. II
briefly reviews the related works. In Sec. III, we present the
control system model and the wireless network model. In
Sec. IV and V, we formulate the problem of optimal rate
allocation and present our sampling rate adaptation algorithm.
We evaluate the algorithm using the Networked Control Sys-
tem Wind Tunnel (NCSWT) simulation tool in Sec. VI, and
conclude the paper in Sec. VII.

II. RELATED WORK

There are several existing works on control system sam-
pling rate optimization [10], [11], [13], [14], [8]. This paper

considers the interaction of the sampling rate and the end-to-
end delay experienced by the control systems, which are not
addressed by these existing works.

Our work is also related to the work of [15], which
compensates for dropout bursts in the network and guarantees
the control system stability by reconfiguring the controller or
the network. In contrast, our approach assumes a passivity-
based control framework which inherently guarantees stability.
We focus on the performance optimization with an integrated
design of the controller and the network. The framework
in [16] obtains the controller’s behavior from the aggregate
computation of different nodes in the network. As thus, it
presents a new NCS paradigm, which is different from the
classical NCS model considered in our work. The optimal sam-
pling rate solution presented in [17] focuses on WirelessHart
network, which is different from the wireless network model
considered in our work.

Utility function has also been used in [18] to capture the re-
lationship between the sampling rate and control performance.
However, the optimization formulation in this work leads
to an offline solution which can only deal with computing
resources with fixed capacity. In comparison, our solution is
fully distributed and can handle dynamic wireless resource.

III. PROBLEM DESCRIPTION

Fig. 1. NCS over multi-hop wireless networks

We consider NCS consisting of multiple plants and digital
controllers communicating via a multi-hop wireless network,
as shown in Fig. 1. The objective of the control system is
that the plants follow the reference trajectories provided by
the controllers to complete certain tasks. For example, in a
manufacturing factory, a group of robotic operators perform
the task of moving objects from one place to another. The
network controllers receive desired reference trajectory from
the operators and are responsible for ensuring the movement
of each robot to track the desired trajectory.

A. Control System Model

A continuous-time plant is described by

𝑥̇𝑝(𝑡) = 𝐴𝑝𝑥𝑝(𝑡) +𝐵𝑝𝑢𝑝(𝑡) +𝐵𝑤𝑤(𝑡) (1)

𝑦𝑝(𝑡) = 𝐶𝑝𝑥𝑝(𝑡) (2)



where 𝑥𝑝(𝑡) ∈ ℜ𝑛 denotes the plant state, 𝑢𝑝(𝑡) ∈ ℜ𝑚 denotes
the control input, 𝑤(𝑡) ∈ ℜ𝑚 is the disturbance input, and
𝑦𝑝(𝑡) ∈ ℜ𝑚 is the plant output. 𝐴𝑝, 𝐵𝑝, and 𝐵𝑤 define the
plant state matrices and 𝐶𝑝 defines the plant output matrix.

The state-space representation of the continuous-time con-
troller is

𝑥̇𝑐(𝑡) = 𝐴𝑐𝑥𝑐(𝑡) +𝐵𝑐𝑢𝑐(𝑡) (3)

𝑦𝑐(𝑡) = 𝐶𝑐𝑥𝑐(𝑡) +𝐷𝑐𝑢𝑐(𝑡) (4)

where 𝑥𝑐(𝑡) ∈ ℜ𝑛 denotes the controller state, and 𝑢𝑐 ∈ ℜ𝑚

denotes the error signal, or the difference between the plant
output 𝑦𝑝(𝑡) ∈ ℜ𝑚 and the reference signal input 𝑟(𝑡) ∈ ℜ𝑚.
𝐴𝑐 and 𝐵𝑐 define the controller state matrices, while 𝐶𝑐 and
𝐷𝑐 define the controller output matrices. Let the reference
signal denote by 𝑟(𝑡). The tracking error of the system is

𝑒𝑟𝑟(𝑡) = 𝑟(𝑡)− 𝑦𝑝(𝑡) (5)

The controller is implemented as a discrete-time control
system. We consider sampling instants 𝑡𝑘 ∈ ℝ, 𝑘 = 0, 1, ⋅ ⋅ ⋅ ,
with 𝑡𝑘+1 > 𝑡𝑘, 𝑡0 = 0 and we define the sampling interval
as 𝑇𝑘 = 𝑡𝑘+1 − 𝑡𝑘. In order to simplify the notations, let
𝑥(𝑘 + 1) represent 𝑥(𝑡𝑘+1), the signal 𝑥(𝑡) sampled at time
instant 𝑡𝑘+1.

B. Wireless Network Model

We model a multi-hop wireless network as a directed graph
𝐺 = (𝑉, 𝐿), where 𝑉 is the set of wireless nodes in the
network. The nodes communicate with each other via directed
wireless links 𝑙 ∈ 𝐿. Such a network supports a set of control
systems 𝐻 . For each ℎ ∈ 𝐻 , the traffic from the controller
to the plant and the traffic backwards generate two end-to-end
flows denoted as 𝐹 (ℎ). We collect all end-to-end flows in the
network into a set 𝐹 . An end-to-end flow 𝑓 may go through
multiple hops in the network and traverse a sequence of links
defined by the routing policy. We use set 𝐿(𝑓) to represent all
the links along the route of flow 𝑓 and 𝐹 (𝑙) to denote all the
flows that traverse link 𝑙.

C. NCS Performance Optimization

Fig. 2. Decompose tracking error based on its source

The NCS performance can be characterized by the tracking
errors of the control systems. The main focus of this paper is
to minimize the tracking error of the NCS deployed over the
multi-hop wireless network while maintaining certain level of
fairness among the plant-controller pairs. As shown in Fig. 2,

there are two main sources of error. When a continuous-
time control system is discretized, its response to environ-
mental disturbances degrades compared to the response of
the idealized continuous system. The level of the degradation
depends on the sampling rate, which determines how well
the digital controller approximates the continuous controller.
High sampling rate allows frequent state updates and thus
provides better capability to reduce the effect of environmental
disturbances and minimize the tracking error. Packet loss and
delay also deteriorate the tracking error. We focus on the
congestion-induced packet loss and delay. Network congestion
appears when the traffic of the NCS overwhelms the network
capacity. While the sampling rate determines the network
traffic demand, the network resource management mechanisms
such as media access control (MAC) scheduling allocate
appropriate capacity to each wireless link.

Optimizing the NCS performance requires the coordination
between the control system and the networking system. The
control system needs to have the capability to adapt its
sampling rate based on the resource utilization information
from the network. The networking system should schedule
its wireless transmission to meet the resource needs from the
control system. This paper studies how to minimize the NCS
tracking error via joint sampling rate adaptation and network
scheduling.1

IV. OPTIMIZATION FRAMEWORK FOR TRACKING ERROR

MINIMIZATION

In this section, we present the control system design and
formulate the problem of NCS tracking error minimization as
a sampling rate optimization problem. We first show that our
passivity-based control system design is able to ensure system
stability with time-varying sampling time. Then we define
the optimization objective through a utility function which
characterizes the relationship between the sampling rate and
the capability of disturbance rejection of the control system
(i.e., minimizing the discretization-induced tracking errors).
The optimization constraints are based on the wireless network
schedulability and the NCS delay requirement.

A. Passivity-based control system – ensuring system stability
with time-varying sampling time

Fig. 3 shows the passivity-based control system architecture.
A passive system is defined as a system with bounded output
energy such that the system does not produce more energy than
what is initially stored. We assume the plant system is passive.
A large class of systems can be “passified” by adding local
control and filter components [19][20]. The controller 𝐺𝑐(𝑠) is
designed so that the plant tracks the reference 𝑟(𝑘) and is also
assumed to be passive. The control architecture uses (1) a dis-
cretization approach defined by the Inner Product Equivalent
Sampling and Hold (IPESH) transform, which is composed
by the Inner Product Equivalent Sampling (IPES) and Zero
Order Hold (ZOH) blocks and (2) a bilinear transform 𝑏 for

1This paper assumes fixed network routing, which is known a priori.



Fig. 3. Passivity Based Control Architecture Over Wireless Networks

converting the control signals into wave variables for commu-
nication over a wireless network. These transformations ensure
that the NCS are passive and stable in the presence of time-
varying delay and packet loss [20], [21]. Next, we show that
the NCS are ensured stable with time varying sampling time,
which allows us to use sampling rate adaptation.

A passive continuous-time linear time invariant (LTI) system
can be converted to a discrete-time passive system at a varying
sampling time, 𝑇𝑘, with the discrete-time state space equations
described as

𝑥(𝑘 + 1) = Φ𝑘𝑥(𝑘) + Γ𝑘𝑢(𝑘) (6)

𝑦(𝑘) = 𝐶𝑑𝑘𝑥(𝑘) +𝐷𝑑𝑘𝑢(𝑘) (7)

In [20][22], it is shown that in order to obtain a passive
discrete-time equivalent of a LTI passive continuous-time
system for a given fixed sampling time 𝑇𝑘, the IPESH is used
to compute the system coefficients, Φ𝑘, Γ𝑘, 𝐶𝑑𝑘 and 𝐷𝑑𝑘 to
preserve passivity.

Discretization with time-varying sampling time can be per-
formed by applying the IPESH for each resulting sampling
time, 𝑇𝑘, hence ensuring passivity of the discretization at each
sampling time and thus the overall passivity of the discrete-
time system for a given time interval. This implies that the new
system coefficients are redefined as Φ𝑘 = Φ(𝑇𝑘), Γ𝑘 = Γ(𝑇𝑘),
𝐶𝑑𝑘 = 𝐶𝑑(𝑇𝑘) and 𝐷𝑑𝑘 = 𝐷𝑑(𝑇𝑘). By ensuring the passivity
of the discrete-time system, the stability is also ensured.

B. Utility function - modeling error from discretization

To characterize the impact of the sampling rate on the
tracking error, we first introduce a utility function which char-
acterizes the disturbance rejection capability of the discrete-
time system compared with its continuous-time counterpart.

1) Continuous-time control system: The covariance matrix
of the zero-mean white noise process of the continuous-time
system can be defined as

𝐸[𝑤(𝑡)𝑤𝑇 (𝑡+ 𝜏)] = 𝑄𝛿(𝜏) (8)

where 𝐸 denotes the expected value and 𝑄 represents the
power spectral density of 𝑤, or the continuous-time noise
covariance matrix. The power spectral density can also be
referred to as the “white noise intensity” or mean-square

spectral density. The continuous-time state covariance matrix
𝑃𝑐 can be described by

𝑃𝑐(𝑡) = 𝐸[𝑥(𝑡)𝑥𝑇 (𝑡)] (9)

Based on the knowledge of 𝑄, the steady state value of the
state covariance can be obtained by [23]

𝐴𝑐𝑙𝑃𝑐 + 𝑃𝑐𝐴𝑐𝑙 +𝐵𝑤𝑐𝑙𝑄𝐵𝑇
𝑤𝑐𝑙 = 0 (10)

where the matrices 𝐴𝑐𝑙 and 𝐵𝑤𝑐𝑙 denote the closed loop
matrices of the continuous-time system, or the coefficients of
𝑥(𝑡) and 𝑤(𝑡) respectively. From the resulting state covariance
matrix, the root mean square of a state can then be determined.
The Root-Mean-Square (RMS) of the plant state is equivalent
to the standard deviation. For example, assuming a system has
only one plant state variable 𝑥𝑝 and its plant state covariance
is 𝑣(𝑥𝑝), the RMS of the plant state is equal to

√
𝑣(𝑥𝑝). If a

plant has several states, we can use one of the states as long as
we compare the same discrete state obtained from the minimal
realization of the discretized continuous system.

2) Discrete-time control system: Based on the knowledge
of the continuous-time noise covariance matrix 𝑄, the discrete-
time noise covariance matrix 𝑄𝑑 can be obtained using the Van
Loan’s algorithm [24] and can be defined as

𝑄𝑑 =

∫ 𝑇𝑓

0

Φ(𝜏)𝐵𝑤𝑐𝑙𝑄𝐵𝑇
𝑤𝑐𝑙Φ

𝑇 (𝜏)𝑑𝜏 (11)

where Φ is the closed loop matrix, or the discrete-time state
coefficient of 𝑥(𝑘), and 𝐵𝑤𝑐𝑙 denote the closed loop matrix
of the continuous-time system, or the coefficient of 𝑥(𝑡).

The steady state discrete-time state covariance matrix can
then be obtained from the following equation

Φ𝑃𝑑Φ
𝑇 +𝑄𝑑 = 𝑃𝑑 (12)

From the resulting state covariance matrix, the discrete RMS
of the plant state can then be determined in a similar way as
the continuous-time case.

3) Utility function formulation: We now define the utility
function of a control system as a function of its sampling rate
1/𝑇𝑘 using the ratio of RMS between the discrete-time system
with its continuous-time counterpart. Thus, the utility function
reflects the degradation amount of the system response to the
white noise compared to the continuous closed loop system.

𝑈(1/𝑇𝑘) =
𝑅𝑀𝑆continuous

𝑅𝑀𝑆discrete(𝑇𝑘)
(13)

To demonstrate the definition of our utility function, we con-
sider a single-input-single-output (SISO) LTI system without
loss of generality. As shown in Fig. 4, its utility function is a
strictly concave function of the sampling rate. The concavity of
the utility function reflects the marginal return on the control
performance when its sampling rate increases.
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Fig. 4. Example utility function for the control system where the transfer
function of the plant is 𝐺𝑝(𝑠) = 1

𝐽𝑠
, transfer function of the controller is

𝐺𝑐(𝑠) =
𝐾𝑝+𝐾𝑑𝑠

𝑠
, with 𝐽 = 2.93, 𝐾𝑑 = 32.1 and 𝐾𝑝 = 8.2.

4) Relationship between utility function and tracking error:
In a closed-loop continuous-time system, the system response
of the plant can be described as

𝑥𝑝(𝑡) = 𝑒𝐴𝑐𝑙𝑡𝑥𝑝(0) + 𝑒𝐴𝑐𝑙𝑡

∫ 𝑡

0

𝑒−𝐴𝑐𝑙𝜏𝐵𝑐𝑙𝑟(𝜏)𝑑𝜏

+𝑒𝐴𝑐𝑙𝑡

∫ 𝑡

0

𝑒−𝐴𝑐𝑙𝜏𝐵𝑤𝑐𝑙𝑤(𝜏)𝑑𝜏 (14)

𝑦𝑝(𝑡) = 𝐶𝑐𝑙𝑒
𝐴𝑐𝑙𝑡𝑥𝑝(0) + 𝐶𝑐𝑙𝑒

𝐴𝑐𝑙𝑡

∫ 𝑡

0

𝑒−𝐴𝑐𝑙𝜏𝐵𝑐𝑙𝑟(𝜏)𝑑𝜏

−𝐶𝑐𝑙𝑒
𝐴𝑐𝑙𝑡

∫ 𝑡

0

𝑒−𝐴𝑐𝑙𝜏𝐵𝑤𝑐𝑙𝑤(𝜏)𝑑𝜏 (15)

Recall that the tracking error of the system 𝑒𝑟𝑟(𝑡) =
𝑟(𝑡) − 𝑦𝑝(𝑡). From (15), the output response of the plant
has two main components that contribute towards the tracking
error. The first component is the plant response to the reference
input 𝑟(𝑡), and the other is the plant response to the disturbance
input 𝑤(𝑡). The passive controller is designed to ensure that the
plant’s response to the reference input minimizes the tracking
error. The system achieves a certain level of disturbance
rejection. The contribution of the input disturbance can be
characterized by the covariance of the tracking error.

From (15) and the fact that 𝑟(𝑡) is not stochastic, we
have 𝐸[𝑟(𝑡)𝑦𝑇 (𝑡)] = 𝐸[𝑟𝑇 (𝑡)𝑦(𝑡)] = 𝐸[𝑟(𝑡)𝑟𝑇 (𝑡)] = 0. The
covariance of the tracking error can be described by

𝐶𝑒(𝑡) = 𝐸[𝑒(𝑡)𝑒𝑇 (𝑡)] = 𝐸[𝑦(𝑡)𝑦𝑇 (𝑡)] (16)

This essentially implies that the covariance of the error is equal
to the output covariance. Based on the knowledge of 𝑄, the
steady state value of the output covariance is [23]

𝐶𝑒 = 𝐶𝑐𝑙𝑃𝑐𝐶
𝑇
𝑐𝑙 (17)

C. Capacity and delay constraints – bounding error from
network

1) Capacity constraint: To limit the effect of packet loss
caused by network congestion on the tracking error, we need to
restrain the network load within its capacity. Wireless network
communication is subject to location dependent interference.
Thus the achievable capacity of each wireless link is related to
the scheduling algorithm. We adopt the conflict graph concept
to model wireless interference [25]. Each vertex in the conflict
graph represents a wireless link of the original network and

Fig. 5. Impact of Delay On the NCS Average Tracking Error

there is an edge between two vertices if their corresponding
wireless links interfere with each other. The communications
along wireless links are scheduled on a slotted time basis. In
each time slot, one independent set2 𝐼 of the conflict graph is
selected and only the links corresponding to the vertices in 𝐼
are allowed to transmit because they are interference free. Let
𝑐𝑙 be the channel capacity. A 𝐿-dimension column vector 𝑟𝐼

is used to represent the capacity vector of 𝐼 , where 𝑟𝐼𝑙 = 𝑐𝑙
if 𝑙 ∈ 𝐼 , and 𝑟𝐼𝑙 = 0 otherwise. We adopt the concept of
feasible capacity region Λ to model the feasible link capacity
allocation [26]. The feasible capacity region is a convex
hull, which is defined as Λ :=

∑
𝐼 𝛼𝐼𝑟

𝐼 , where
∑

𝐼 𝛼𝐼 =
1 and 𝛼𝐼 ≥ 0. Scheduling essentially determines the capacity
allocation 𝒄 = (𝑐𝑙, 𝑙 ∈ 𝐿) of the links, where 𝑐𝑙 is the average
capacity over time based on the scheduling. Obviously, 𝒄 ∈ Λ.
To limit the packet congestion loss, the aggregated traffic
load on any wireless link 𝑙 ∈ 𝐿 should be no more than its
achievable capacity 𝑐𝑙.

2) Delay effect on tracking error: To determine the effect
of delay on the tracking error, we perform a set of simulation
studies using NCSWT [12] over NCS with one pair of plant
and controller. Based on the assumption that the discrete
plant/controller systems update and process data received
only at sampling instants, the delay viewed from the control
system’s perspective is integral multiples of the sampling
interval. We vary the sampling time and manually introduce
delays which are integral multiples of the sampling time. Then
we evaluate the average tracking error difference, which is the
difference between the time-averaged tracking error with delay
introduced and the one without any delay.

From the experiment, we observe that when the delay is
within one sampling time, the tracking error difference remains
zero. Fig. 5 shows the effect of delay on the tracking error
difference when it is larger than the sampling time. We observe
that the error increases superlinearly when the delay increases
beyond one sampling time. Based on the observations, we
bound the average end-to-end delay of a control system data
flow to its system sampling time.

3) Controlling delay with 𝑉 𝐿𝐶𝑀 : Providing delay assur-
ance is notoriously difficult in wireless networks. The main
difficulty comes from the complex interactions between the

2The independent set of a graph is a set of vertices within which no edge
exists between any two vertices.



traffic arrival and departure, which is shaped by the network
scheduling. Most of the existing works on delay analysis
make explicit assumptions on the packet arrival process (e.g.,
Poisson arrivals) [27], which do not reflect the NCS traffic
characteristics. Here we employ a general method which is
not limited to a predefined packet arrival process. In order
to regulate the maximum allowable rate 𝑚𝑙, we introduce a
parameter Virtual Link Capacity Margin (𝑉 𝐿𝐶𝑀) 𝜎𝑙 of link
𝑙 defined by

𝜎𝑙 = 𝑐𝑙 −𝑚𝑙, with 𝑚𝑙 < 𝑐𝑙, ∀𝑙 ∈ 𝐿 (18)

We regard the link delay (i.e., average packet delay along
the link) as a function of the 𝑉 𝐿𝐶𝑀 𝜑(𝜎𝑙). Then the average
delay of flow 𝑓 is the sum of all link delay along its route.

D. Optimization Framework

Recall that each control system is associated with two flows.
Let 𝑧ℎ =

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
𝑇ℎ

be the traffic rate of one flow for the con-
trol system ℎ, where 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 is the size of the sample and
𝑇ℎ is its sampling time. 𝑇ℎ(𝑓) is the sampling time of control
system ℎ which flow 𝑓 is associated with. Thus, the maximum
allowable rate satisfies 𝑚𝑙 ≥

∑
ℎ∈𝐻:𝑓∈𝐹 (ℎ)&𝑓∈𝐹 (𝑙) 𝑧ℎ. We

overload 𝑈ℎ as a function of traffic rate for control system ℎ, as
defined by Eq. (13). Now we formulate the optimal sampling
rate allocation problem as follows:

𝑊 : max
∑
ℎ∈𝐻

𝑈ℎ(𝑧ℎ) (19)

s.t.
∑

ℎ∈𝐻:𝑓∈𝐹 (ℎ)∩𝐹 (𝑙)

𝑧ℎ ≤ 𝑐𝑙 − 𝜎𝑙, ∀𝑙 ∈ 𝐿 (20)

∑
𝑙∈𝐿(𝑓)

𝜑(𝜎𝑙) ≤ 𝑇ℎ(𝑓), ∀𝑓 ∈ 𝐹 (21)

over 𝒄 ∈ Λ (22)

The objective of this nonlinear problem is to maximize the
aggregate utility of all control systems in the network. This ob-
jective minimizes the tracking error induced by discretization
and maintains certain fairness among all the plant-controller
pairs [28]. Inequality (20) represents the wireless capacity
constraint for each wireless link. Note that the 𝑉 𝐿𝐶𝑀 𝜎𝑙

is introduced here to control the link delay. Inequality (22)
defines the scheduling feasibility. Inequality (21) is the flow
delay constraint where the average flow delay is bounded
by the sampling time of its control system. It is important
to note that there is a possibility that the optimal solution
of the sampling time that minimizes the tracking error may
fall below the delay bound. We choose to incorporate this
delay bound (21) in our problem formulation for two reasons.
First, from Fig. 5, we observe that the tracking error increases
super-linearly with respect to delay when the delay goes
beyond the sampling time; while the utility only increases
sub-linearly with respect to sampling rate. Intuitively, this
implies the marginal benefit of increasing the sampling rate
is overweighed by the marginal penalty of pushing the delay
beyond the sampling time. Based on this intuition, we bound
the average delay by the sampling time. On the other hand,

without this delay bound constraint, providing a formulation
that fully captures the complex interaction among sampling
time/rate, delay, delay-introduced error, and discretization-
introduced error will lead to an intractable optimization prob-
lem, where identifying a distributed solution is even harder.

V. DISTRIBUTED CROSS-LAYER ALGORITHM

A. Solution overview

Problem 𝑊 is non-trivial due to the complicated interactions
between the 𝑉 𝐿𝐶𝑀s, the sampling rate and the end-to-
end delay. The tight coupling of the sampling rate and the
required delay bound of the control system (i.e., the delay
needs to be less than the sampling time) poses a nonlinear
constraint, which has never been addressed in the existing
rate optimization solutions ([10], [11], [29]). To solve this
problem, we first relax the delay constraint and consider the
optimization problem with a fixed delay requirement. Then
we show how to adjust the delay requirement to achieve the
optimal solution of the original problem 𝑊 .

B. Cross-layer algorithm with fixed delay

The optimization framework with a fixed delay requirement
can be written as

𝑊1 : max
∑
ℎ∈𝐻

𝑈ℎ(𝑧ℎ) (23)

s.t.
∑

ℎ∈𝐻:𝑓∈𝐹 (ℎ)∩𝐹 (𝑙)

𝑧ℎ ≤ 𝑐𝑙 − 𝜎𝑙, ∀𝑙 ∈ 𝐿 (24)

∑
𝑙∈𝐿(𝑓)

𝜑(𝜎𝑙) ≤ 𝐷ℎ(𝑓), ∀𝑓 ∈ 𝐹 (25)

over 𝒄 ∈ Λ (26)

where the constraint (21) is replaced by (25), in which 𝐷ℎ(𝑓)

is the delay requirement of control system ℎ.
1) Double-Price Algorithm: Direct solution to 𝑊1 re-

quires global coordination of all network components, such
as flows and links, which is computationally expensive. We
consider its dual decomposition. Let 𝝂 = {𝜈𝑙, 𝑙 ∈ 𝐿} and
𝝁 = {𝜇𝑓 , 𝑓 ∈ 𝐹} be the Lagrange multipliers with respect
to constraints (24) and (25) respectively. The Lagrangian of
𝑊1 is:

ℒ(𝒛,𝝂,𝝈,𝝁, 𝒄)

=
∑
ℎ∈𝐻

𝑈ℎ(𝑧ℎ)−
∑
𝑙∈𝐿

⎛
⎝𝜈𝑙𝜎𝑙 +

∑
𝑓∈𝐹 (𝑙)

𝜑(𝜎𝑙)𝜇𝑓

⎞
⎠

−
∑
ℎ∈𝐻

⎛
⎝𝑧ℎ

∑
𝑙∈𝐿(𝑓)&𝑓∈𝐹 (ℎ)

𝜈𝑙

⎞
⎠+

∑
𝑓∈𝐹

𝜇𝑓𝐷ℎ(𝑓) +
∑
𝑙∈𝐿

𝜈𝑙𝑐𝑙

The dual of 𝑊1 is

𝐷̄(𝝂,𝝁) = min
𝝂≥0,𝝁≥0

𝐷(𝝂,𝝁) (27)



where

𝐷(𝝂,𝝁) (28)

= max
𝒛,𝝈,𝒄

𝐿(𝒛,𝝂,𝝈,𝝁, 𝒄)

= max
𝝈

⎧⎨
⎩−

∑
𝑙∈𝐿

⎛
⎝𝜈𝑙𝜎𝑙 +

∑
𝑓∈𝐹 (𝑙)

𝜑(𝜎𝑙)𝜇𝑓

⎞
⎠
⎫⎬
⎭

+max
𝒛

⎧⎨
⎩

∑
ℎ∈𝐻

⎛
⎝𝑈ℎ(𝑧ℎ)− 𝑧ℎ

∑
𝑙∈𝐿(𝑓)&𝑓∈𝐹 (ℎ)

𝜈𝑙

⎞
⎠
⎫⎬
⎭

+max
𝒄

{∑
𝑙∈𝐿

𝜈𝑙𝑐𝑙

}
+

∑
𝑓∈𝐹

𝜇𝑓𝐷ℎ(𝑓)

The solution (𝒛∗,𝝈∗, 𝒄∗) to (28) should satisfy:

𝑧∗ℎ = argmax
𝑧ℎ

⎧⎨
⎩

∑
ℎ∈𝐻

⎛
⎝𝑈ℎ(𝑧ℎ)− 𝑧ℎ

∑
𝑙∈𝐿(𝑓)&𝑓∈𝐹 (ℎ)

𝜈𝑙

⎞
⎠
⎫⎬
⎭
(29)

𝜎∗𝑙 = argmax
𝜎𝑙

⎧⎨
⎩−

∑
𝑙∈𝐿

⎛
⎝𝜈𝑙𝜎𝑙 +

∑
𝑓∈𝐹 (𝑙)

𝜑(𝜎𝑙)𝜇𝑓

⎞
⎠
⎫⎬
⎭ (30)

𝑐∗𝑙 = argmax
𝑐𝑙∈Λ

(
∑
𝑙∈𝐿

𝜈𝑙𝑐𝑙) (31)

Here the multiplier 𝜈𝑙 can be seen as the implicit congestion
price [29] of link 𝑙, which represents the cost of delivering a
unit of data through link 𝑙. The multiplier 𝜇𝑓 can be interpreted
as the implicit delay price of flow 𝑓 , which represents the cost
of imposing a unit of delay on flow 𝑓 . If 𝝂 and 𝝁 are given, we
can obtain the maximizers 𝑧∗ℎ and 𝜎∗𝑙 by taking the derivative
with respect to 𝑧ℎ and 𝜎𝑙 respectively.

𝑧∗ℎ(𝜅ℎ) = 𝑈
′−1
ℎ (𝜅ℎ). 𝜅ℎ =

∑
𝑙∈𝐿(𝑓)&𝑓∈𝐹 (ℎ)

𝜈𝑙, ∀ℎ ∈ 𝐻 (32)

𝜎∗𝑙 (𝜆𝑙, 𝜈𝑙) = 𝜑
′−1
𝑙 (

−𝜈𝑙
𝜆𝑙

). 𝜆𝑙 =
∑

𝑓∈𝐹 (𝑙)

𝜇𝑓 , ∀𝑙 ∈ 𝐿 (33)

(32) implies that the optimal sampling rate of a control system
ℎ is determined by its price 𝜅ℎ, which is the aggregated
price of the links along its flow routes. (33) implies that the
optimal 𝑉 𝐿𝐶𝑀 of a link is relevant to its congestion price 𝜈𝑙
and link margin price 𝜆𝑙. The intuition is: 1) the congestion
price determines the available capacity margin that can be
used for 𝑉 𝐿𝐶𝑀 adjustment; and 2) the link margin price
implicitly reflects the overall delay requirement (from all of
its supporting flow delay requirement) on its 𝑉 𝐿𝐶𝑀 . The
maximizer 𝑐∗𝑙 can be generated from a maximum weight based
scheduling policy.

Now 𝑊1 is converted into three sub-problems: the sampling
rate adaptation problem (29), the VLCM assignment problem
(30) and the scheduling problem (31). The link congestion
price 𝝂 and the flow delay price 𝝁 can be computed iteratively,
from the opposite direction to the gradient ∇(𝐿(𝝂,𝝁)) [30].

This adaptation approach is called double-price scheme.
Based on the information of two price signals, the algorithm
iteratively reaches a global optimum. The property of this
algorithm is formally characterized in Proposition 1 and
Proposition 2.

Proposition 1 There is no duality gap between (23) and
(27). For any (𝝂∗,𝝁∗) that minimizes (28), if (𝒛∗,𝝈∗, 𝒄∗)
solves (29), then (𝒛∗,𝝈∗, 𝒄∗) is the unique maximizer of (19).

Proposition 2 If ∣∣𝜷∣∣2 and ∣∣𝜸∣∣2 are sufficiently small,
starting from any initial values 𝒛(0), 𝝈(0), 𝒄(0) and prices
𝝂(0) ≥ 0, 𝝁(0) ≥ 0, the cross-layer algorithm converges to
the optimal solution (𝒛∗,𝝈∗, 𝒄∗,𝝂∗,𝝁∗). 3

Fig. 6. NCS over multi-hop wireless networks

2) Cross-Layer Rate Allocation Implementation: Our algo-
rithm naturally leads to a cross-layer implementation via joint
VLCM assignment, sampling rate adaptation and scheduling,
as shown in Fig. 6. Scheduling is performed at the MAC layer.
At the network layer, the margin calculation generates the
optimal VLCMs for a wireless interface queue; the congestion
price calculation provides per-hop congestion price, which
reflects the level of congestion at this queue. They can be
implemented as part of the queue management mechanism.
At the application layer, the per-hop congestion price is
aggregated to calculate the sampling rate; the end-to-end delay
is measured to calculate the delay price.

Our algorithm implementation only requires the knowledge
of the first order derivative of the link delay with respect to
the capacity margin ∂𝜑(𝜎𝑙)

𝜎𝑙
based on (33), rather than some

statistical characteristics, such as the mean or the variance
of the packet arrival rate. The derivative of link delay can
be profiled online. According to (31), we need to find a
scheduling policy so that the aggregate link weight

∑
𝑙∈𝐿 𝜈𝑙𝑐𝑙

could be maximized. We achieve this by using a maximum
matching based scheduling policy [29].

C. Delay Bound Tuning

After obtaining the optimal sampling rate solution to the
problem 𝑊1 with fixed delay requirement, we now solve the
original optimal problem 𝑊 by determining the optimal delay

3Due to space needed, the proof of these two propositions are provided in
our report [31]



requirements for all NCS. We proceed in two steps. First we
determine the ranges of the delay requirements. Then, we
adjust the delay requirements to find the ones which yield
the optimal sampling rate allocation within the range.

1) Range of delay requirement determination: The lower
bound 𝑫 = (𝐷ℎ, ℎ ∈ 𝐻) of the delay range can be computed
via the optimization problem of

𝑊 : max
∑
ℎ∈𝐻

𝑈ℎ(𝑧ℎ) (34)

s.t.
∑

ℎ∈𝐻:𝑓∈𝐹 (𝑙)&𝑓∈𝐹 (ℎ)

𝑧ℎ ≤ 𝑐𝑙, ∀𝑙 ∈ 𝐿 (35)

over 𝒄 ∈ Λ (36)

This is a simplified form of 𝑊 , with the 𝑉 𝐿𝐶𝑀 𝜎𝑙 = 0 for
all 𝑙 ∈ 𝐿 and without the delay constraints. The solution to
this problem 𝒛 is the maximum achievable sampling rate con-
sidering only the network capacity constraint. This maximum
achievable rate corresponds to the minimum sampling time
of the NCS 𝑇ℎ(𝑧ℎ). As our delay constraint in the original
problem 𝑊 is that the flow delay should not exceed one
sampling time, we can treat the minimum sampling time as
the lower delay bound 𝑫 = (𝑇ℎ(𝑧ℎ), ℎ ∈ 𝐻).

Fixing the sampling rate to 𝒛, we allow the maximum
amount of traffic satisfying only the network capacity con-
straint to be injected into the network. Thus the measured
delay 𝒅 = (𝑑𝑓 , 𝑓 ∈ 𝐹 ) is the upper bound of the end-to-end
delay. If 𝑑𝑓 ≤ 𝑇ℎ(𝑧ℎ), ∀𝑓 ∈ 𝐹 (ℎ), ∀ℎ ∈ 𝐻 , then 𝒛 will also
be the optimal sampling rate for the original problem 𝑊 . If
there exists 𝑑𝑓 > 𝑇ℎ(𝑧ℎ), then we set the upper bound of the
delay requirement to 𝑫̄ = 𝒅.

2) Optimal delay requirement adjustment: Starting from the
lower bound of the delay requirement, we adjust the delay
requirement of each control system based on the algorithm
shown in Table I. In the algorithm, we gradually increase the
delay requirement of each system ℎ from its lower bound until
1) it is smaller than the corresponding optimal sampling time
based on problem 𝑊1 but within a constant bound 𝜖; or 2)
it exceeds the corresponding optimal sampling time. In the
latter case, we restore the delay requirement to its last value
and reduce the adjustment size from 𝑎ℎ/𝑚ℎ to 𝑎ℎ/(𝑚ℎ +1) ,
where 𝑚ℎ is initialized to 1.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our cross-layer sampling rate
adaptation and network scheduling algorithm using an in-
tegrated simulation tool named Networked Control System
Wind-Tunnel (NCSWT) [12]. NCSWT integrates two simula-
tors Matlab and ns-2, which allows us to simulate the control
system models in Matlab/Simlink and the networking systems
in ns-2. Using ns-2, a packet-level network simulator that im-
plements all the details of the network protocol stack, we can
perform highly accurate evaluation of the network effects on
the NCS performance, including queueing delay and network
scheduling, which is impossible by using Matlab/Simulink
alone.

TABLE I
DELAY REQUIREMENT ADJUSTMENT

Adjustment of Delay Requirement 𝐷ℎ

0) initialization
∀ℎ,𝑚ℎ = 1, 𝐷ℎ = 𝐷ℎ
let 𝑎ℎ be the initial adjustment size, 𝜖 be a sufficiently small constant;

1) compute 𝑧ℎ by solving 𝑊1 where the delay requirements are 𝐷ℎ;
derive the corresponding sampling time 𝑇ℎ(𝑧ℎ);
If ∀ℎ, 0 ≤ 𝑇ℎ(𝑧ℎ)−𝐷ℎ ≤ 𝜖, stop;

(𝐷ℎ, ℎ ∈ 𝐻) is the optimal delay requirements.
2) If ∃ℎ,𝐷ℎ < 𝑇ℎ(𝑧ℎ)− 𝜖, increase its delay requirement:

𝐷ℎ = 𝐷ℎ + 𝑎ℎ/𝑚ℎ

3) If ∃ℎ,𝐷ℎ > 𝑇ℎ(𝑧ℎ), decrease the delay requirement:
𝐷ℎ = 𝐷ℎ − 𝑎ℎ/𝑚ℎ

and reduce the adjustment size:
𝑚ℎ = 𝑚ℎ + 1

repeat 1) to 3)

A. Simulation Setup

In our experiments, the NCS consist of three pairs of
plants and controllers. Each of the three plant systems used
in the experiments is the model of a single joint of a robotic
arm. They are described by the continuous time state space
representation as defined in (1) and (2), with the parameters
𝐴𝑝 = 0, 𝐵𝑝 = 1, 𝐶𝑝 = 0.3413. Each of the controllers is
described as in (3) and (4) with 𝐴𝑐 = 0, 𝐵𝑐 = 1, 𝐶𝑐 =
32.1, 𝐷𝑐 = 8.2. The plants and controllers are discretized
based on the sampling time 𝑇ℎ to obtain the discrete time
equivalent. The utility function used in the experiments is the
same as the function presented in Section IV. The objective
is the joint velocity of each robotic arm tracks a sinusoidal
reference input 𝑟[𝑘] = 𝑠𝑖𝑛(𝜔𝑘) for 𝑘 = 0, 1, 2, ⋅ ⋅ ⋅ with
𝜔 = 2𝜋

80 . The disturbance inputs for Plant2 and Plant3 are
white noise with the power spectral density of 1. Plant 1 does
not have any white noise input. In the wireless network, the
interference range and the transmission range are set to 250m.
The capacity of the wireless channel is 2𝑀𝑏𝑝𝑠. The packet
size is 260 bytes. Each simulation runs for 180 seconds.

Four aspects of the system are evaluated after the first period
of the reference signal when the adaptation converges: 1)
the average tracking error 𝑒𝑟𝑟, which is the average absolute
difference between the plant output and its reference signal.4;
2) the converged sampling time 𝑇ℎ; 3) the end-to-end delay
of flows associated with system ℎ; 4) the channel utilization,
which is the ratio of the total network load to the channel
capacity.

B. Simulation Results

1) Single-hop Scenario: In the first experiment, there are
six nodes in the wireless network, each hosting either a plant
or a controller. All the nodes are within the transmission range
of each other, forming a single-hop network topology.

Fig. 7 presents the simulation results with the optimal delay
requirement derived from the delay requirement adjustment
algorithm. Fig. 7(a) shows the plant outputs, and Fig. 7(b)

4The results with the optimal delay requirements are presented with the
mean and its range of error based on 7 times of simulation runs.
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Fig. 7. Velocity Outputs with the Optimal Delay Requirement in Single-hop

illustrates the sampling time convergence of the three plant-
controller pairs. The sampling time quickly converges, and the
plant outputs closely follow the reference trajectory. In Plant2
and Plant3, white noise is introduced at a period of 15 seconds,
when the outputs deviate from the reference trajectory. Their
gaps quickly diminish after a short period of time.
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Fig. 8. Velocity Outputs with Different Delay Requirements in Single-hop

TABLE II
PERFORMANCE METRICS FOR DIFFERENT DELAY REQUIREMENTS

Delay Average Sampling Average Channel
Requirements Track Error Time Delay Utilization

Optimal 0.007 ± 0.0043 0.0125 0.0121 50 %
0.05 0.0251 0.0087 0.0481 72 %

0.0085 0.0428 0.2013 0.0087 3 %

Next we compare the performance of the NCS with fixed
delay requirements, which are different from the optimal one
in Tab. II. Fig. 8(a) illustrates the plant outputs using the delay
requirement of 0.05𝑠. Fig. 8(b) demonstrates the plant outputs
using the delay requirement of 0.0085𝑠. We observe that both
outputs are much worse than those in Fig. 7. In addition,
Plant2 and Plant3 suffer from larger oscillations than Plant1,
and cannot track the reference trajectory closely, as shown in
Fig. 8(b). With a larger delay requirement, the control systems
are allowed to send packets with a larger sampling rate, which
increases the traffic load of the networks. The average end-to-
end delay experienced by the control systems is more than 5
times of the sampling time. Thus, the outputs exhibit a lot of
oscillation. On the other hand, a small delay requirement leads
to small sampling rates, which degrade the system capability
of white noise rejection. Thus, the controller cannot be notified
in time about the occurrence of the white noise disturbance.

2) Multi-hop Scenario: Direct communication in wireless
networks requires two nodes within the transmission range of

each other. When they are out of range, intermediate nodes
can provide relays to route packets. We evaluate our solution
over a multi-hop wireless network with 12 nodes organized in
a grid topology. The plants and controllers are deployed on
nodes at the network edges. Plant2 resides in the middle of
the network. The paths of all the control system pairs are set
up using the shortest-path routing algorithm.

TABLE III
PERFORMANCE METRICS WITH OPTIMAL REQUIREMENTS

Delay Average Sampling Average
Requirements Track Error Time Delay

Plant1 0.024 0.0020 ± 5.705e-5 0.026 0.031
Plant2 0.035 0.0186 ± 5.797e-7 0.038 0.048
Plant3 0.024 0.0159 ± 3.549e-4 0.026 0.023

Fig. 9(a) shows the velocity outputs of the three plants
with the optimal delay requirements. Tab. III compares their
performance metrics. Compared with the single hop case, the
plants experience larger oscillation at the beginning of the
simulation. Because it takes longer time to setup the routes
between the plant and controller pairs. Plant1 does not have
white noise disturbance, so after convergence its velocity
output follows the reference signal closely. Although Plant2
and Plant3 have the same amount of white noise input, Plant2
has larger oscillation than Plant3. This is because the flows of
Plant2 experience higher interference than those of Plant3. As
a result, it has a larger sampling time and is more vulnerable
to noise.

TABLE IV
PERFORMANCE METRICS OF THE NCS WITH FIXED RATES

Average Sampling Average
Track Error Time Delay

Plant1 0.0132 0.0117 0.0807
Plant2 0.0223 0.0176 0.2044
Plant3 0.0139 0.0117 0.0519

We further run the experiment with fixed sampling time for
the three control systems. In Tab. IV, we show the average
tracking error with fixed sampling time. Comparing with the
errors under optimal sampling time, we observe that the three
plants experience larger tracking error. Their sampling rates
are about twice of the optimal rates, which leads to much
longer delay in a multi-hop network. When the average delay
exceeds the sampling time by orders of magnitude, the tracking
error increases significantly.
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Fig. 9. Velocity outputs



3) With wireless random packet loss: We now set up a
single-hop wireless network with 10% random packet loss that
may be caused by wireless interference or noise. In Fig. 9(b),
we show the velocity outputs of the three plants with the
optimal delay requirements. Compared with the no loss case,
the plant outputs experience slightly larger oscillation, but still
are able to track the reference closely.

VII. CONCLUSION

This paper investigates the problem of NCS performance
optimization in terms of tracking error minimization. It
presents an optimization formulation where the objective is
to maximize a utility function that characterizes the relation-
ship between the sampling rate and the disturbance rejection
capability of the control system. The constraints come from
the wireless network capacity and the packet delivery delay.
A distributed algorithm is presented to derive the optimal
sampling rate. Our solution has desired properties from both
theoretical and practical aspects. From theoretical perspective,
it is shown to achieve both system stability and performance
optimality. From the view of practice, it can be naturally
deployed over the existing layered networking systems with
well-defined cross-layer interactions. Simulation studies con-
ducted in an integrated simulation environment consisting of
Matlab/Simulink and ns-2 demonstrate that our algorithm is
able to provide agile and stable sampling rate adaptation and
achieve optimal NCS performance.
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