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Abstract—Unmanned Aerial Vehicles (UAVs) continue to pro-
liferate, revolutionizing tasks such as cargo transport, surveil-
lance, and search and rescue operations. With the discovery of
novel use cases or specialized tasks for aerial vehicles, there is
an increased need for improved design space exploration and
performance estimation techniques for candidate UAV designs.
Typical pipelines for this design process rely on time-consuming
human efforts to identify productive design geometries or ex-
pensive computational approaches for performance analysis to
reconcile aerodynamic, electrical, and physical interactions.

In this work-in-progress paper, we propose the use of a design
process that uses a design grammar for UAV design generation
and a Graph Neural Network (GNN)-based drag surrogate
trained on simulation data for accelerated UAV design space
exploration. We formulate a UAV design grammar and provide
preliminary performance results from the GNN drag surrogate
for randomly generated designs. We expect our approach to
accelerate the exploration of UAV design geometries using a
learned surrogate drag model to circumvent resource-hungry
Computer-aided design (CAD) and simulation routines.

Index Terms—Design Space Exploration, Design Grammar,
Graph Neural Network, Drag Surrogate, Unmanned Aerial
Vehicle

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) continue to revolutionize
areas such as emergency response, shipping, transportation,
and military technology. The market for UAVs is expected
to grow to roughly $78 billion by 2030 [1] and the market
for UAV simulation is expected to grow to $1.5 billion by
2027 [2]. As novel applications for UAVs are identified, the
need for identifying diverse yet feasible and performant design
geometries will increase.

Currently, the development process for UAVs relies heavily
on human designers to draft vehicle geometries (e.g. create
CAD models) based on domain expertise and then iteratively
refine design candidates using simulation-based evaluation
techniques (e.g. flight dynamics) to make small changes to
the overall design geometry. However, human engineering time
is expensive and simulation throughput may be infeasible for
evaluating hundreds or thousands of designs in a time-sensitive
manner. Additionally, bottlenecks exist in CAD modeling
software which must assemble a model from its components
for each design of interest which can be resource-intensive.

There is also a tradeoff between design diversity and fea-
sibility in the design space— it may be desirable to either

(1) alter a known good design (e.g. quadcopter) such that
it remains in a feasibility region for flight stability or (2)
disregard flight feasibility to prioritize novelty of vehicle ge-
ometries. Design space exploration approaches must reconcile
these two conflicting objectives. If flight feasibility is the sole
objective, the space of vehicle geometries when incorporating
current aerodynamics knowledge is relatively rigid and UAV
designs may lack geometric diversity. Conversely, if geometric
novelty is the main objective, there is more legwork for
evaluating the airworthiness of a generated design with novel
geometry since it would likely differ greatly from incumbent
aerial vehicle shapes (e.g. airplane, quadcopter, helicopter,
hexacopter). It is also possible that geometry-based heuristics
such as axial symmetry and vehicle spanning area can help
guide the generation of nearly airworthy designs, for example
in an evolutionary setting.

We aim for a process to address the conflicting geometry
and flight feasibility objectives, ideally with minimal human
intervention for design generation and heuristic evaluation.
There are two main goals to consider. First, we would like
to compactly express the geometry of a UAV design including
its components and how they are connected (e.g. a motor
connected to a propeller). We use the term geometry to refer
to both the overall shape of a UAV including the orientation
and connectivity of its components. Second, we would like to
quickly estimate the performance of a UAV to assess whether
the UAV geometry is airworthy without relying on substantial
computation (e.g. simulation).

In particular, given a UAV design sampled from a design
grammar, we would like a surrogate drag model that provides
a reliable estimate of a vehicle’s drag profile without the use
of a CAD assembly process or CFD simulation, since not
every design that is explored will be worth assembling for
flight simulation. We consider a drag profile to be a real-
valued vector that captures information such as the centers of
drag, the magnitudes of drag forces, or the vehicle area that
is sensitive to drag in the X, y, z directions. Drag is chosen as
the performance heuristic because it is directly related to the
overall geometry of the vehicle and is also indicative of the
performance or efficiency of a design. Patterns learned by the
drag surrogate can then inform updates to the production rules
in the design grammar in order to produce increasingly stable
or feasible designs over time. This approach is summarized in



Figure 1. The contributions of this work are:

e« We formulate a string-based design grammar for Un-
manned Aerial Vehicles (UAVs)

o We produce an initial dataset of randomly generated UAV
designs along with drag profiles from simulation as labels
for estimating UAV design feasibility

o We provide preliminary results from a GNN-based drag
surrogate which predicts the drag profile of a UAV design
from its representative design graph

The remainder of this paper is organized as follows: Sec-

tion II briefly outlines related work, Section III introduces our
proposed methods for rapid generation and exploration of UAV
designs using a design grammar and drag surrogate, Section IV
provides preliminary experimental results, and Section V gives
concluding remarks.

II. RELATED WORK
A. Design Grammars

Design grammars are sets of productions rules that define a
valid design in some domain and are powerful tools for both
analyzing existing systems and generating instances of data
that are constrained by a set of production rules. Recently,
efforts such as Zhao et al. [3] have had success in applying
the use of a design grammar, particularly a graph grammar,
to the space of underwater vehicle design. These efforts were
inspired by the work of Sims [4], Zhao et al. [5] and Stockli et
al. [6]. In this work, we develop a design grammar for UAVs.

B. Graph Neural Networks

Graph Neural Networks (GNNs) provide a framework for
learning on structured data represented as nodes connected by
edges. These networks capture latent local and global patterns
in graph data by aggregating neighborhood information and
propagating node and edge level features for tasks such as
graph classification and graph regression [7]. Recently, GNNs
have enabled breakthroughs in areas from protein folding
prediction [8] to social networks analysis [9] to traffic fore-
casting [10]. In this work, we propose the use of GNNs for
predicting the drag profile of a UAV design by leveraging
vehicle connectivity and component information. Although
GNNs have been investigated in the context of coordinating
UAV communication [11], to the best of our knowledge, GNNs
have not previously been studied as drag surrogates to aid in
design space exploration and heuristic evaluation of UAVs.

C. Physics-Guided Learning

Physics-guided learning combines equations that govern
dynamical systems (e.g. the Navier-Stokes equations for fluid
flow) with the power of deep learning to improve the fidelity of
physical simulation especially in areas with high dimension-
ality and uncertainty (e.g. fluid dynamics). Recent work has
examined the use of learning drag coefficients of obstacles
using Multilayer Perceptrons (MLP) [12], estimating drag
force for 2D objects using convolutional networks (CNNs)
[13], and predicting the drag force of particles in moving fluids
[14] or on airfoils [15]. More closely related to our work,

Sanchez-Gonzalez et al. [16] and Ogoke et al. [17] investigate
the prediction of drag force and flow field characteristics using
GNNs but do not focus on vehicles. We focus on the use of
GNNss to predict drag profiles of arbitrary UAV geometries.

III. PROPOSED METHOD

In this section we outline the proposed approach for learning
drag profiles of UAV designs represented as graphs. Because
UAVs capable of stable flight likely occupy only a small
fraction of the UAV design space, there is a need for a pro-
ductive, heuristic-based search strategy. The design space for
UAVs grows rapidly even without considering non-geometric
parameters such as electrical or control parameters. Consider a
vehicle with n parameterized components represented as graph
nodes, and m inter-component connections represented as
graph edges. Assume that each component must be connected
to the vehicle which imposes the requirement of m,,;,, = n—1
edges to represent a valid vehicle, and that a vehicle on
average confains 74, = 20 components. Also, assume that
a vehicle has at most a quarter of the number of possible
edges connecting components Mymaz < Navg(Navg — 1)/8.
The number of possible graphs satisfying these requirements

is given by ((T;Ei)) ~ 9.71** graphs for vehicles with exactly
Naug = 20 components and exactly [nqyg(navg — 1)/8] = 47
edges for component connections. The count of all graphs
containing 74,, components (ignoring isomorphisms) with

connections ranging from M,;, t0 My,q, €dges is given by

Mmax

e ((n(gg)). Clearly, a heuristic search of this space is
necessary to identify feasible designs.

A. Problem Formulation

Given a UAV design geometry represented as a graph
that originates from our design grammar, we aim to train
a GNN model that reliably estimates the drag profile of a
UAV design, a performance heuristic which we hypothesize
correlates strongly with flight stability. We use geometry to
refer to the shape of a UAV including its components and
their connections.

We consider UAV geometries that are produced from a
design grammar over strings whose production rules encode
allowable component types, connections and relative positions
on a UAV. Given a design string generated from the grammar,
we form the corresponding graph by creating nodes for each
of n parameterized (e.g. length) components. The m edges of
the graph indicate which components are connected to which
other components on the UAV.

We indicate the i*" UAV design graph with G;(n,m). From
here, we obtain the “ground truth” from the simulation denoted
as f as V; = f(Gi(n,m)) which is a vector d € RS that
represents the drag profile and includes the centers and areas
affected by drag in the z, y and z directions for the vehicle
represented by G;(n, m).

After obtaining a set S = (G;,);) of randomly generated
UAV design graphs (training samples) and their drag profiles
(labels) we train a GNN drag surrogate fs(S) to obtain
drag predictions on new UAV designs. Figure 1 summarizes
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Fig. 1. The proposed approach includes 2 main stages: (1) Design Generation and (2) Heuristic Evaluation. In stage (1) we produce designs from a design
grammar and convert them into graphs to represent vehicle connectivity and component attributes. The assembled design (e.g. CAD model) is then provided
as input to the drag simulation. In stage (2) the drag simulation computes the drag profile for the assembled UAV in the x, y, and z directions. The UAV
design graph is the input sample and the ground truth drag profile is the label for the GNN drag surrogate.
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Fig. 2. EBNF representation of the UAV design string grammar

this process. The GNN approach is detailed further in Sec-
tion III-C.

B. UAV Design Grammar

When exploring a design space, two conflicting objectives
must be addressed: maximizing the proportion of the space
explored containing performant designs and minimizing the
proportion of the space containing non-performant designs.
These two axes are affected by the amount and complexity
of the restrictions on design generation. For the UAV design
space, we select a string grammar to encode UAV designs.

Our string grammar functions by first generating strings
according to the production rules shown in Figure 2. Al-
though one-dimensional, each string is embedded with three
dimensional consideration through the use of framing by non-

terminal tokens and generation by cluster. Clusters are denoted
by brackets, while sub-clusters (necessarily within clusters) are
denoted by parentheses. The dimensions can be considered as
follows: the leftmost cluster of any given string represents the
frontmost cluster in 3D space. Similarly, the rightmost cluster
of any given string represents the rearmost cluster in 3D space.
Within the bounds of a given cluster, the (right)leftmost part of
the cluster in the string represents the (right)leftmost part of the
cluster in 3D space. Sub-clusters are assumed to deviate either
up or down from the cluster they are enclosed by, though the
polarity and magnitude of the deviation is left to be decided
by the interpreter and allows for additional design freedom.

After a string is generated, it is augmented and transformed
into a graph. The interpreter takes in the generated string and
a set of options for each component type (e.g. propeller sizes),
information on connection ports and allowable connections for
each component (e.g. motor connected to propeller). Com-
ponent attributes (e.g. length, width) are used to calculate
bounding boxes and prevent collisions when placing parts
in 3D space. Connection ports and allowable connection
types specify all possible sets of valid connections given the
structure and content of a design string. For example, should
the placements of sub-clusters be above or below their base
cluster, and by how much? Should sub-cluster placement be
grouped or alternating? Other possible parameters could be
whether a design string should be interpreted as having one,
two, or more principal axes for connectors.

Once all the required elements have been provided, the
interpreter places all the elements of the design string into
three dimensional space, creating a graph of nodes consisting
of both parts and connectors, and edges denoting connections
between ports of parts and connectors.



One may ask why we use a string grammar as opposed to
graph grammar. Similar efforts, such as Zhao et al. [3], have
explored the use of graph grammars for designing underwater
vehicles. While there is certainly merit in using a graph
grammar for vehicle design, especially as vehicles are often
most easily represented in detail via graphs due to their ease
of encapsulating parts and their connections, there are some
drawbacks. The most notable being that a graph grammar in
this case would be monolithic, in that the production rules
must encapsulate substantial domain knowledge in order to
appropriately restrict the state space to valid designs. By com-
parison, a string grammar with an interpreter is more modular
allowing for granular changes. While it does increase the steps
required to produce a design, it lends itself to streamlined
adjustments later, for instance using by reinforcement learning
techniques or fitness-based evolutionary methods.

C. Graph Representation Learning

In this section, we describe how we leverage the graph
learning approach to solve this problem. In particular, we
discuss the Deep Graph Convolutional Network (DGCNN)
[18] framework in a graph regression setting as the learned
drag surrogate for UAVs.

The last few years have observed the growing prevalence of
deep learning (DL) methods on various application domains
such as computer vision, natural language processing and
graph representation learning [19]. Because graphs provide
a powerful and general formalism for representing a wide
range of real-world systems, graph representation approaches
have seen a surge in recent years. In particular, Graph Neural
Networks (GNNs) learn graph structure by leveraging both
the topology and node information. GNNs are flexible to
several downstream machine learning tasks such as node
and graph classification, graph regression, link prediction,
and community detection [20], [21]. Since the performance
estimation is a graph regression task, we define it as follows.

Problem 3.1: (Graph Regression) Let G = {G1,...,Gn},
be a set of graphs representing UAVs and Y = {y1,...,y~n}
be their corresponding drag profiles. Given G and ), we aim
to learn a representation vector hg that helps in predicting the
estimation y¢ for an unseen graph G'.

The most common approaches for graph-level learning typ-
ically involve aggregation after extracting node-level features.
However, such aggregation results in significant information
loss, reducing model performance. When dealing with the
graph regression problem, it is critical to keep as much vertex
information as possible. Maintaining such information allow
models to learn both local and global-level information and
thus obtain improved performance. Keeping this in view, the
authors in [18] proposed DGCNN where a new pooling layer
was introduced that arranges node features in a consistent
order to further use convolutional neural networks (CNNs).
Unlike the traditional GNNSs, the architecture of DGCNN also
involves 1D convolutional layers to extract expressive graph-
level representations and has shown outstanding performance.
In this work, we employ DGCNN in our experimental setup

with a slight variation to perform the desired graph regres-
sion task. In the following, we briefly discuss the layer-wise
architecture of the DGCNN model.

D. Graph convolutional Layers

The graph convolution layers usually involve a message
passing mechanism to learn node features. Given the adjacency
matrix A, and feature matrix X, DGCNN considers the
following form of convolution.

H = f(D"'AXW) €]

Where D is a normalized degree matrix, A is the adjacency
matrix with self-loops, and W is the matrix of trainable param-
eters. f can be any nonlinear function. Having the generalized
convolutions similar to GCN [22], DGCNN accommodates a
variety of graph convolution mechanisms.

E. The SortPooling Layer

The main idea behind SortPooling layer is to bring the
node features into a consistent order so that any type of
Neural Networks or CNNs can be applied. To do so, the
author use Weisfeiler Lehman (WL) [23] coloring scheme
to sort node features. Given H' where [ is the last layer of
GNN convolutions, SortPooling first sorts H (row-wise) in
descending order and then sort the vertices in the same order
accordingly. For the scale-invariance, the sorted features are
further trimmed so only & features are chosen. This mechanism
provides scale invariance and allows DGCNNs to impose
ordering in the feature space.

F. Other Layers

DGCNN employs additional CNNs layers after sort pooling
to produce expressive graph representations. It flattens the
feature matrix first, then applies two one-dimensional convo-
lution layers and several MaxPooling layers. Finally, a fully
connected layer with the desired activation function is applied.

We use the same architecture as DGCNN, with the excep-
tion of the base convolution model and the activation function
for the final layers. We use GraphSAGE graph convolution
[24] instead of GCN [22] because it performs better in our
case. We also removed the Softmax from the final layer
because of the regression task.

IV. EXPERIMENTAL EVALUATION

Using DGCNN, we run experiments on our generated
design topologies to estimate performance on different test
designs. In our experimental setup, we use publicly available
DGCNN implementations and the same architecture. Because
of very limited data, we consider quite a slim model to experi-
ment with. For training, we use a 70:30 train-test split ratio and
L1 Loss with a learning rate of 1le~*. We used GraphSAGE
convolution with three layers and 32 hidden channels. The
number of neurons in the final fully connected layers was set
to 416,16, and 1, respectively. We also performed MinMax
normalization on labels and trained the model for 200 epochs.
We show the performance of DGCNN in terms of L1 loss



in Figure 3. The z-axis indicates the number of epochs and
the y-axis shows loss value at each epoch. Our initial results
of decreasing loss on both train and test sets show promise
for our approach of learning drag profiles of UAV geometries
using GNNs.
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Fig. 3. DGCNN loss curve

V. CONCLUDING REMARKS

We investigate the problem of UAV design space explo-
ration for rapid generation and heuristic evaluation of vehicle
geometries. To achieve this, we propose the combination of
a design grammar and a graph neural network-based drag
surrogate for generation and surrogate evaluation of many
UAV designs, respectively, to circumvent expensive CAD
assembly and simulation routines.

There are 3 main next steps for this work: (1) generation
of additional UAV design data, (2) exploration of additional
node attributes such as component locations and centers of
gravity, and (3) refinement of the grammar production rules
for generating increasingly stable UAV designs using insight
from predictions of the learned GNN drag surrogate.
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