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Abstract

The multiple fault diagnosis problem is important, since the
single fault assumption can lead to incorrect or failed diag-
noses when multiple faults occur. It is challenging for contin-
uous systems, because faults can mask or compensate each
other’s effects, and the solution space grows exponentially
with the number of possible faults. We present a qualitative
approach to multiple fault isolation in dynamic systems based
on analysis of fault transient behavior. Our approach uses the
observed measurement deviations and their temporal order-
ings to generate multiple fault hypotheses. The approach has
polynomial space requirements and prunes diagnoses, result-
ing in an efficient online fault isolation scheme.

Introduction
Fault isolation is a key component of safety-critical systems.
Quick fault isolation enables timely intervention so catas-
trophic situations can be avoided. In general, complex sys-
tems can fail in many different ways, and the likelihood of
multiple faults occurring increases in harsh operating envi-
ronments. Schemes that do not take into account multiple
faults run the risk of generating incorrect diagnoses or even
failing to find a diagnosis after faults occur.

We focus on multiple fault diagnosis in continuous sys-
tems. Early work (Reiter 1987; de Kleer & Williams 1987)
was limited to static systems. We deal with dynamic sys-
tems with continuous behaviors. The work in (Gertler 1998)
addresses continuous dynamics, but the parity relations ap-
proach is hard to apply to multiplicative faults and nonlinear
systems. Our approach extends the TRANSCEND framework
(Mosterman & Biswas 1999), which employs a qualitative
approach for analysis of fault transient behavior. The diag-
nosis model predicts possible sequences of qualitative mea-
surement deviations due to fault occurrences, and matching
the predictions to observations helps isolate faults.

Multiple fault diagnosis is a difficult problem in dynamic
systems because interactions among fault effects may ob-
scure the resultant fault signatures. In this paper, we pro-
vide a systematic scheme for generation of multiple fault
signatures from the single fault signatures. We treat multiple
fault effects as the union of single fault effects constrained
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by temporal orderings, and therefore, can be computed ef-
ficiently online, eliminating the need for precomputing all
possible multiple fault effects. We define the notion of n-
fault diagnosability, and use this to develop an extension to
the TRANSCEND online fault isolation algorithm to find the
consistent minimal fault sets of size ≤ n. The approach
requires only polynomial space complexity, and increases
runtime efficiency of the multiple fault isolation algorithm
by pruning the diagnoses as new measurements deviate.

Related Work
(Reiter 1987; de Kleer & Williams 1987) developed con-
sistency based multiple fault diagnosis methods that were
applied mostly to static systems. (Subramanian & Mooney
1996) extended the work to continuous systems with fault
modes. The qualitative modeling framework quantizes the
state space and specifies qualitative relations between the
quantized states, which can result in a large number of states.
In contrast, our approach uses a qualitative abstraction of
the deviations in observed behavior from nominal behavior.
Unlike previous work, our methodology also incorporates
temporal information to increase the discriminatory power
of the measurements.

(Puig et al. 2005) also uses temporal information to im-
prove fault isolation, however, the approach is based on ana-
lytical redundancy relations, which are hard to construct for
nonlinear systems and multiplicative faults. It is also devel-
oped only for single faults. In addition, in our approach the
temporal information is generated systematically from the
system model.

Sequential testing approaches have been explored in
(Shakeri et al. 2000), but such strategies can be too slow
for time-constrained diagnosis. In contrast, our approach
is based on online analysis of measurement deviations, not
tests. (Vedam & Venkatasubramanian 1997) presents a
signed digraph (SDG) approach that assumes a limit on the
number of faults, and considers smaller combinations of
faults before larger ones to reduce the computational com-
plexity of the diagnosis algorithm. In continuous systems,
the effects of integration and time delays play a role in the
observed effects, which most SDGs do not account for. Mul-
tiple fault diagnosis has also been investigated using fault
propagation graphs (FGPs) (Tu et al. 2003). FPGs are at a
much higher level of abstraction than our models.



Problem Formulation
For multiple fault diagnosis of continuous systems, our goal
is to use system models to find consistent explanations for
observed measurement deviations from nominal behavior.
Given a system model S, we define the faults of interest
as F = {f1, f2, . . . , fF}, and the available measurements
as M = {m1,m2, . . . ,mM}. The measurements are time-
varying signals obtained from the available sensors. One
or more measurements deviating from their predicted nomi-
nal values at time tf indicates fault occurrence. The model
links fault hypotheses to measurement deviations and pre-
dicts fault effects after time tf . The fault isolation proce-
dure compares these predictions to actual system behavior
to produce candidates.
Definition 1 (Candidate). A candidate c ⊆ F is a set of fault
hypotheses. The set of all candidates is denoted as C =
P(F ), the power set of F .

For example, the candidate {f1, f3} implies both f1 and
f3 have occurred. We wish to find candidates that are consis-
tent with all observed deviating measurements. A candidate
is consistent with the observations if its predicted effects (de-
viations) match the observed dynamic behavior after fault
occurrence. A diagnosis is a collection of consistent candi-
dates.
Definition 2 (Diagnosis). A diagnosis d ⊆ C is the set of
candidates consistent with the observations for t ≥ tf .

For example, the diagnosis {{f1}, {f2, f3}} (in short-
hand, {f1, f2f3}) means that the occurrence of either f1 or
both f2 and f3 is consistent with the observations.

In multiple fault diagnosis of continuous systems, estab-
lishing candidates can be difficult, because the effects of a
group of faults can be combined in different ways. Along
with the inherent exponential space of possible diagnoses
and the fact that smaller candidates are more likely, we fo-
cus only on finding minimal diagnoses.
Definition 3 (Minimal Diagnosis). A diagnosis d is minimal
if (∀c ∈ d)¬(∃c′ ∈ d)c′ ⊂ c.

A desirable property of a system is diagnosability. If a
system is diagnosable then we should always obtain a unique
candidate that is consistent with the observations.
Definition 4 (Diagnosability). For a given set of faults and
measurements, a system is diagnosable if, within finite time
after the occurrence of one or more faults, the minimal di-
agnosis contains a single candidate.

Since smaller candidates are more likely than larger can-
didates, and they represent the simplest explanation of the
observed effects, we make a practical assumption and limit
the maximum candidate size to n, i.e., no more than n faults
will occur together in the system. Dropping the n-fault as-
sumption does not limit our method because it is equivalent
to setting n to |F |. These assumptions lead to the following
definition of the multiple fault diagnosis problem.
Problem 1 (Multiple Fault Diagnosis). Given a system
model S with a set of faults, F , a set of measurements, M ,
and a candidate size limit n, the multiple fault diagnosis
problem is to find the diagnosis d such that d is minimal
and (∀c ∈ d)|c| ≤ n.

Background
Our diagnosis approach extends the TRANSCEND methodol-
ogy (Mosterman & Biswas 1999), a model-based approach
to continuous systems diagnosis, to multiple fault diagno-
sis. Faults are represented as persistent, abrupt parameter
changes in the system, modeled as a bond graph (Karnopp,
Margolis, & Rosenberg 2000). When faults occur, they
produce transients causing measurements to deviate in time
from nominal behavior that is defined by the system model.
These deviations are analyzed as they occur to isolate faults
in the system. The diagnosis model, the temporal causal
graph (TCG), is derived from the system model. It captures
the propagation of fault effects on measurements and, there-
fore, is used to compute predicted effects of faults on mea-
surements. By comparing predicted and observed effects on
measurements, we can obtain diagnoses.

Measurement deviations are represented as qualitative ±
values (above, below nominal), and are predicted as fault
signatures using the TCG (Mosterman & Biswas 1999). A
fault signature represents the qualitative value of zeroth-
through kth-order derivative changes on a measurement due
to a fault occurrence. Because only magnitude and slope
can be reliably measured, we condense the signatures to
the magnitude change symbol and the first nonzero deriva-
tive change, e.g., 00-+- becomes 0-, and +-+-+ be-
comes +-. We can do this because higher-order changes
will eventually manifest as first-order changes, and only
the first change on a measurement is useful for diagno-
sis (Mosterman & Biswas 1999). Therefore, we represent
a fault signature for measurement m as an element of the
set Σm , {m+−,m−+,m0+,m0−}1. The superscript indi-
cates the observed deviation. The first symbol represents the
immediate direction of change (a discontinuity) at fault oc-
currence and the second symbol represents the slope of the
change after fault occurrence.
Definition 5 (Fault Signature). A fault signature for a fault
f and measurement m is the qualitative effect of the occur-
rence of f on m, and is denoted by σf,m ∈ Σf,m, where
Σf,m ⊆ Σm. We denote the set of all fault signatures for
fault f as Σf .

Relative measurement orderings define, with respect to a
given fault, a partial order of measurement deviations, and
are based on the intuition that some measurements deviate
before others due to a fault. These are predicted using the
TCG based on common temporal subpaths (Daigle, Kout-
soukos, & Biswas 2005).
Definition 6 (Relative Measurement Ordering). Consider a
fault f and measurements mi and mj . If f manifests in mi

before mj then we define a relative measurement ordering
between mi and mj for fault f , denoted as mi ≺f mj . We
denote the set of all measurement orderings for f as Ωf .

Throughout the paper we will illustrate the diagnosis
methodology with a circuit example. Fig. 1(a) gives the
schematic. The associated bond graph is given in Fig. 1(b).
It models the elements of the circuit and the energy exchange

1In general, σf,m may not be unique if the direction of change
cannot be determined by qualitative propagation.



(a) Schematic. (b) Bond graph.

Figure 1: Circuit example.

Figure 2: Temporal causal graph for the circuit.

between them (Karnopp, Margolis, & Rosenberg 2000). The
derived TCG is given in Fig. 2. Relations between sys-
tem variables are direct (+1) or inverse (-1) proportionality
relations, component parameter values (e.g., R1), or time-
derivative effects (dt). For the circuit, the set of faults is
assumed to be F = {R−1 , R+

2 , C+
1 , L−1 }, where the su-

perscript indicates the direction of change of the parameter
value. We define the measurement set as the current through
L1, the voltage across C1, and the current through R2, or
M = {f2, e5, f6} in the bond graph model.

The fault signatures and relative measurement orderings
for the circuit system are given in Table 1. For example,
consider L−1 . A decrease in L1 will cause an immediate in-
crease in f2, because of the inverse relation implied in the
TCG. Since all subsequent paths from f2 to any other ob-
served variable in the system contain some edge with a dt
specifier (implying an integration), then deviations in these
measurements will only be detected after f2 deviates. Either
e5 or f6 may deviate next. It cannot be determined which
will deviate first because the path from e5 to f6 contains no
integrals. The measurement deviations will not be abrupt
because of the integration in the path from L1 to the mea-
surement, and the direction of change will be opposite that
of f2 because the −1 specifier in the path from f2 to e5 and
f6 indicates an inverse proportionality relationship.

Event-Based Fault Modeling
We combine fault signatures and relative measurement or-
derings into an event-based framework. In this framework,
measurement deviations constitute events. The temporal or-

Fault f2 e5 f6 Measurement Orderings
R−

1 0+ 0+ 0+ f2 ≺ e5, f2 ≺ f6

R+
2 0- 0+ -+ e5 ≺ f2, f6 ≺ f2, f6 ≺ e5

C+
1 0+ -+ -+ e5 ≺ f2, f6 ≺ f2

L−
1 +- 0+ 0+ f2 ≺ e5, f2 ≺ f6

Table 1: Fault signatures and relative measurement order-
ings for the circuit.

Figure 3: Fault signature LTS representation (left) and rela-
tive measurement ordering LTS representation (right).

ders of these deviations are constrained by the relative mea-
surement orderings. For a specific fault, the combination
of all fault signatures and relative measurement orderings
yields all the possible ways a fault can manifest. We denote
each of these possibilities as a fault trace.
Definition 7 (Fault Trace). A fault trace for a fault f , de-
noted by λf , is a string of length ≤ |M | that includes, for
every m ∈ M that will deviate due to f , a fault signature
σf,m, such that the sequence of fault signatures satisfies Ωf .

Consider C+
1 . λC+

1
= e−+

5 f−+
6 f0+

2 is a valid fault trace,

but λC+
1

= f0+
2 e−+

5 f−+
6 is not because the measurement

deviation sequence does not satisfy ΩC+
1

. We group the set
of all fault traces into a fault language, which can be repre-
sented concisely by a labeled transition system (LTS).
Definition 8 (Fault Language). The fault language of a fault
f , denoted by Lf , is the set of all fault traces for f .
Definition 9 (Labeled Transition System). A labeled transi-
tion system is a tuple L = (Q, qo,Σ, δ) such that: Q is a set
of states, qo ∈ Q is an initial state, Σ is a set of labels, and
δ ⊆ Q× Σ×Q is a transition relation.

To systematically construct the LTS representation of a
fault language, called a fault model, we can represent each
fault signature and each relative measurement ordering as an
LTS, and then compose all the information. Each fault sig-
nature σf,m can be represented as an LTS, shown to the left
of Fig. 3. It consists of only the single event correspond-
ing to the fault signature2. Also, each relative measurement
ordering, mi ≺f mj , with associated signatures σf,mi

and
σf,mj

, can be represented as an LTS, shown to the right of
Fig. 3. It consists of the two associated signatures in the
determined ordering.

The following lemma describes how to construct the fault
model for a fault language.
Lemma 1. The fault model of a fault language Lf for fault
f , denoted by Lf , is the synchronous product of the indi-
vidual LTS for all σf,m ∈ Σf and all mi ≺f mj ∈ Ωf ,
where the alphabets for the LTS are taken to be the events
contained in the LTS.

2If σm,f is not unique, multiple edges for each possibility are
needed going from the first state of the LTS to the final state.
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Figure 4: Faulty versus nominal behavior for the circuit
measurements. R+

2 is injected at 5.00 s and R−1 at 5.50 s.

Proof. Since the synchronous product must obey all individ-
ual ordering constraints and includes all measurement devi-
ation events for the fault, it produces all valid measurement
deviation sequences and no others.

Multiple Fault Diagnosis
Multiple fault diagnosis is more complex than single fault
diagnosis due to (i) fault masking and compensation and (ii)
relative time of individual fault occurrences. For example,
say R−1 and R+

2 both occur, and R+
2 happens before R−1 ,

as shown in Fig. 4. This yields the fault trace f−+
6 e0+

5 f0+
2 .

R−1 compensates the effect of R+
2 on f2, which is why f0+

2

manifests and not f0−
2 . However, if R−1 had occurred later in

time, or the selected thresholds were smaller, then the effect
on f2 from R+

2 may be detected first. That is, f−+
6 e0+

5 f0−
2

is also a valid fault trace for {R+
2 R−1 } and {R+

2 }. Which
changes are initially observed depends on masking and com-
pensation characteristics of the faults and when they occur
relative to one another in the system. The resultant diagnosis
can then only be considered as a best effort diagnosis, e.g.,
R+

2 may occur without observing any direct evidence, so it
would not be included in the diagnosis.

To accommodate all possible effects of multiple faults, we
derive the combined fault signatures as the union of the sin-
gle fault signatures, constrained by relative measurement or-
derings, thus representing all possible physically valid com-
binations of effects. We assume that when multiple faults
occur, they obey the relative measurement orderings of each
of the faults. For example, if both R+

2 and C+
1 occur, we

cannot observe f−+
6 e−+

5 followed by f0−
2 . The reason is

that f0−
2 is consistent with R+

2 , but only if preceded by
e0+
5 . The physical reasoning behind this is that the order-

ing e0+
5 ≺R+

2
f0−
2 implies that the fastest way for R+

2 to
affect f2 is through e5. So if the C+

1 effect reaches e5 first,
it will traverse this same path to f2, and cause f2 to devi-
ate from the effect propagating on this path. Therefore when
the R+

2 effect reaches e5, it cannot propagate to f2 any faster
than the C+

1 effect, so we will not observe its effect on f2 as
the first change on the measurement. By ensuring that we
respect single fault measurement orderings when computing
multiple fault effects, we will not violate this property.

We also assume that (i) a single fault parameter will
change only once and (ii) at most n faults will occur to-
gether in the system. By faults occurring together, we mean
that the measurement deviations caused by the faults will

be interleaved in time. If all measurements deviate due to
one fault before the next fault occurs, diagnosis reduces to
the single fault case (Mosterman & Biswas 1999). The first
assumption implies a candidate cannot have two different
deviations of the same fault parameter. For example, a can-
didate including both R+

1 and R−1 is rejected. The second
assumption implies candidates of larger size are less likely
than candidates of smaller size. We implement this by as-
suming the maximum candidate size is n, and this keeps our
diagnosis procedure efficient.

We introduce the notion of n-fault diagnosability. Our
diagnosis algorithm will always obtain a unique result if the
system is n-fault diagnosable and at most n faults occur.

Definition 10 (n-Fault Diagnosability). For a given set of
faults and measurements, a system is n-fault diagnosable if,
within finite time after the occurrence of at most n faults,
the minimal diagnosis contains a single candidate c such
that |c| ≤ n.

Diagnoser Design
Our diagnoser is designed to trace measurement deviations
and output the diagnosis assuming candidate size limit n.

Definition 11 (Diagnoser). A diagnoser is a tuple D =
(Q, qo,Σ, δ, D, Y ) such that: Q is a set of states, qo ∈ Q
is an initial state, Σ is a set of labels, δ ⊆ Q × Σ × Q is
a transition relation, D ⊆ P(C) is a set of diagnoses, and
Y : Q→ D is a diagnosis map.

A diagnoser is an LTS extended by a set of diagnoses and
a diagnosis map. Similar to a fault model, the labels cor-
respond to measurement deviations. A diagnoser associates
each state with a diagnosis, i.e., the set of candidates consis-
tent with the measurement deviations seen thus far.

The diagnoser construction procedure is shown as Algo-
rithm 1. It is described as combining two diagnosers, but
can be easily be modified to combine k diagnosers simulta-
neously. Diagnosers are constructed by incrementally com-
posing subdiagnosers, i.e., a diagnoser for a set of faults Fi

is composed with a diagnoser for a set of faults Fj to create
a new diagnoser for Fi ∪ Fj . Initially, we begin with diag-
nosers for singleton fault sets. These are constructed using
the individual fault models. For a single fault f , we augment
Lf to form Df by constructing the diagnosis map as map-
ping every state except the initial state to {f}. The initial
state is mapped to the empty diagnosis ∅, because until a
measurement deviation is observed, we assume the system
is operating nominally. The diagnosers corresponding to the
individual faults of the circuit are shown in Fig. 5.

The construction algorithm operates by tracing paths in
the two given diagnosers. If the same event label is avail-
able in both current states, then we advance in both ma-
chines, i.e., (q1, q2)

σ→ (δ(q1, σ), δ(q2, σ)). Otherwise, we
advance in only one, e.g., if σ can only be taken from q1,
then, (q1, q2)

σ→ (δ(q1, σ), q2). However, if the measure-
ment associated with σ has already deviated along the cur-
rent path (tracked using H), δ((q1, q2), σ) is set to ∅, be-
cause only the initial change in a measurement is used for
isolation. This also occurs if the computed diagnosis for the



Algorithm 1 D ← CreateDiagnoser(D1,D2)
Q ← ∅, δ ← ∅, D ← ∅, Σ ← Σ1 ∪ Σ2, qo ← (qo1, qo2),
Y (qo)← ∅, Qpend ← {qo}
while Qpend 6= ∅ do

(q1, q2)← pop(Qpend)
for all σm ∈ Σ do

if m /∈ H((q1, q2)) then
if δ1(q1, σm) and δ2(q2, σm) then

q′ ← (δ1(q1, σm), δ2(q2, σm))
h← Y (δ1(q1, σm)) ∪ Y (δ2(q2, σm))

else if δ1(q1, σm) then
q′ ← (δ1(q1, σm), q2)
h← Y (δ1(q1, σm))

else if δ2(q2, σm) then
q′ ← (q1, δ2(q2, σm))
h← Y (δ2(q2, σm))

else
q′ ← ∅
h← ∅

if q′ 6= ∅ then
if Y ((q1, q2)) = ∅ then

d← h
else

d← AndDiagnoses(Y ((q1, q2)), h)
if d 6= ∅ then

Q← Q ∪ {q′}
H(q′)← H((q1, q2)) ∪ {m}
δ((q1, q2), σm)← q′

D ← D ∪ {d}
Y (q′)← d
if q′ /∈ Qpend then
push(Qpend, q′)

new state, d, is empty, because this means the current se-
quence of measurement deviations cannot be explained by a
candidate of size ≤ n.

The diagnosis for the new state is formed using Algo-
rithm 2, by combining the current diagnosis with the hy-
pothesis set. The hypothesis set, h, is the set of candidates
consistent with the current event. It is formed as the union
of the diagnoses of the diagnoser states advanced to via σ.
Each candidate of the given diagnosis (the diagnosis of the
previous diagnoser state) is augmented with each candidate
of the hypothesis set. Essentially, this is an and opera-
tion. For example, if the previous diagnosis is {C+

1 , R+
2 }

(meaning that C+
1 or R+

2 occurred), and the hypothesis set
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Figure 5: Diagnosers for the individual faults of the circuit.

Algorithm 2 d′ ← AndDiagnoses(d1, d2)
d′ ← ∅
for all ci ∈ d1 do

for all cj ∈ d2 do
c′ ← ci ∪ cj

d′ ← d′ ∪ c′

for all c ∈ d′ do
if (∃c′ ∈ d′) c′ ⊂ c or |c| > n then

d′ ← d′ − {c}

is {L−1 } (meaning L−1 occurred), then the new diagnosis is
{C+

1 L−1 , R+
2 L−1 } (meaning that either C+

1 and L−1 or R+
2

and L−1 occurred). The second loop of the procedure prunes
the diagnosis by removing supersets and candidates of size
above n. Therefore, the resultant diagnosis is guaranteed to
be minimal.

The diagnoser for candidate sets of size ≤ 2 and the se-
lected fault set is shown in Fig. 6. It illustrates certain prop-
erties of the system. Since not all the leaves have single-
ton diagnoses, then the system is not double-fault diagnos-
able. For example, taking the leftmost path, the diagnosis
is {C+

1 L−1 , L−1 R+
2 }. We will at least know that L−1 has oc-

curred, but will not be able to distinguish whether C+
1 or R+

2
is the second fault that occurred. The system is single-fault
diagnosable, however, because for any fault trace that can be
explained by a single fault, the diagnosis is a singleton.

Online Diagnoser Implementation
Even for a small number of faults, diagnoser size can quickly
grow as n increases. For large numbers of faults and mea-
surements, computing the diagnoser for use in online diag-
nosis is not space-efficient. Alternatively, we could create
single diagnosers for each fault, run them simultaneously,
and combine the diagnoses. Individual diagnosers may be
large, however, if there are few measurement orderings for
the fault. To address the space complexity, we instead store
only the single fault effects, i.e., for each fault we store
its fault signatures and relative measurement orderings (Ta-
ble 1). As measurement deviations occur, we can check con-
sistency using this stored information to generate hypothesis
sets and refine diagnoses.

Given a current diagnosis di−1, and an event σi occurs,
we can check which faults are consistent with σi. Consis-
tent faults will match the measurement deviation encoded
in σi and its temporal order with respect to previous devia-
tions, forming the hypothesis set hi. If i = 1, then the new
diagnosis di is simply hi, otherwise, the new diagnosis must
be consistent with di−1 and with the new information, i.e.,
di = AndDiagnoses(di−1, hi).

Thus, we are only constructing the path of the diagnoser
corresponding to the particular fault trace observed. This is
more space-efficient than using the complete diagnoser for
online diagnosis, which, in the worst case, has O(|M |!) fault
traces and O(|M |!) states. Storing only fault signatures and
relative measurement orderings for single faults, on the other
hand, takes O(|F ||M |2) space. Single fault information is
composed to obtain multiple fault information, so we do not
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Figure 6: Double fault diagnoser for the circuit.

need to precompute all possible fault traces.
Time complexity, however, is in favor of the precom-

puted diagnoser. The diagnoser needs only to wait for mea-
surement deviations to occur, transition to the next state,
and output the current diagnosis associated with the state.
Using appropriate data structures, these operations can be
achieved in constant time. For our online approach, hypoth-
esis sets are formed by looking through the fault signatures
and measurement orderings to find consistent faults, thus
taking O(|F ||M |2) time. Computing the new diagnosis is
a function of the current diagnosis and the current hypothe-
sis set sizes. In the worst case, the hypothesis set consists of
all faults, i.e., it is of size |F |. A diagnosis can be as large
as O(|F |n), accounting for all possible combinations of up
to n faults. The composition of these then takes at worst
O(|F |n+1). In practice, time complexity is much reduced
because diagnoses are pruned to be minimal and candidates
above the size limit are rejected.

As an example, consider the fault trace f−+
6 e0+

5 f0+
2 (see

Fig. 4). The initial diagnosis is ∅. When f−+
6 occurs, the

hypothesis set becomes {C+
1 , R+

2 }, since only those two
faults are consistent with f−+

6 as the first measurement de-
viation. The new diagnosis is, therefore, simply {C+

1 , R+
2 }.

When e0+
5 occurs, the hypothesis set is {R+

2 }. It does not
contain R−1 , because f0+

2 has not yet occurred, and does
not contain L−1 , because f+−

2 has not occurred. The new
diagnosis is then {C+

1 R+
2 , R+

2 }, which is pruned to {R+
2 }.

When f0+
2 occurs, the hypothesis set is {R−1 }. It does not

contain {C+
1 } because neither e−+

5 nor f−+
6 was observed

previously. The new diagnosis is then {R+
2 R−1 }. Therefore,

the diagnosis for this fault trace is returned as {R+
2 R−1 }.

Conclusions
Multiple fault diagnosis in dynamic systems is complex
due to fault masking, compensation, and relative occurrence
times. We have presented a qualitative multiple fault isola-
tion approach as an extension of the TRANSCEND methodol-
ogy, and described a novel formalization of the multiple fault
diagnosis problem based on diagnosing faults from measure-
ment deviations and their temporal orders. We proposed
a method of constructing offline diagnosers using the LTS
formulation to produce minimal diagnoses, and developed
an online implementation with reduced space requirements.
In future work, we will obtain experimental results for the
approach and investigate its application to multiple fault di-
agnosis in hybrid systems.
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