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Abstract— Fault diagnosis is crucial for ensuring the safe
operation of complex engineering systems. Although discrete-
event diagnosis methods are used extensively, they do not easily
apply to parametric fault isolation in systems with complex
continuous dynamics. This paper presents a novel discrete-
event system diagnosis approach for abrupt parametric faults
in continuous systems that is based on a qualitative abstraction
of measurement deviations from the nominal behavior. Our
approach systematically generates a diagnosis model from bond
graphs that is used to analyze system diagnosability and derive
the discrete-event diagnoser. The proposed approach is applied
to an electrical power system diagnostic testbed.

I. INTRODUCTION

Fault diagnosis is crucial for ensuring the safe operation of
complex engineering systems. Faults and degradations need
to be quickly identified so corrective actions can be taken
and catastrophic situations avoided. Discrete-event system
(DES) methods are an important framework for event-driven
diagnosis in safety-critical systems, since they comprise a
well-developed theory that allows for systematic construction
of computationally efficient online diagnosers.

Existing DES diagnosers [1], [2] are designed as extended
observers that estimate the system state under nominal and
faulty conditions. Although these methods have produced
many practical diagnosis applications [1], [3]–[5], they are
not suitable for systems with complex continuous dynamics.
Quantizing the continuous behavior using a finite set of states
and events results in large, nondeterministic models [6], [7]
that degrade the performance and increase the computational
requirements of the diagnosis algorithms. In the presence
of faults, these models become increasingly complex, and
deriving these models for different fault magnitudes is com-
putationally inefficient.

This paper presents a novel approach to constructing DES
diagnosers for isolating single, abrupt faults in continuous
systems, based on a qualitative abstraction of the measure-
ment deviations from the nominal behavior. The approach is
derived from TRANSCEND [8], a model-based methodology
for qualitative fault diagnosis in continuous systems. We
derive qualitative fault signatures, which capture fault effects
on measurements, and relative measurement orderings, which
specify the temporal order of measurement deviations, from
the system model.

Event-based diagnosis of continuous systems is also inves-
tigated in [9], [10], using temporal orders of measurement

deviations to help isolate faults. These approaches, based on
analytical redundancy relations, are difficult to develop for
nonlinear systems and multiplicative faults. The approach
does not specify how to obtain the ordering information to
construct event-based diagnosers, whereas in our approach,
they are derived systematically from the continuous models.

Compared to previous quantization approaches, we pro-
pose a more compact qualitative abstraction on the mea-
surement space. Three qualitative states are defined for
each measurement: above nominal, at nominal, and below
nominal. Measurement deviations indicate fault occurrences
and form the event set of our approach. System tracking and
fault isolation are separated, so the diagnoser tracks faulty
behaviors that manifest as measurement deviations. An ob-
server using a continuous model of the system tracks nominal
behavior [8]. The fault signatures and relative measurement
orderings are translated into the discrete-event model of the
system that represents only faulty behavior. This greatly
reduces the burden of the modeling task, and provides a
systematic framework for deriving the faulty behavior.

The contribution of the paper centers on: (i) a method
for systematically constructing a labeled transition system
that captures the fault language, which, for each fault,
describes all possible sequences of measurement deviations,
(ii) diagnosability analysis of the system and design of an
event-based diagnoser, (iii) a spectrum of diagnoser imple-
mentations that trade off space and time efficiency, and (iv) a
demonstration of the approach on an electrical power system
diagnostic testbed.

II. QUALITATIVE FAULT ISOLATION

TRANSCEND [8] is designed for isolation of single, abrupt,
persistent faults in continuous systems. We model the system
using bond graphs [11], with faults represented as abrupt
parameter value changes in the model [8]. The diagnosis
model, the temporal causal graph (TCG), derived from the
bond graph models of the system [8], captures effects of
faults on measurements.

Abrupt faults generate transients in the dynamic system
behavior. Assuming that the system output is continuous
and continuously differentiable except at the points of fault
occurrence, the transient response after fault occurrence
can be approximated by a Taylor series expansion [12].
Measurement transients are described using the magnitude



and the derivative values of the residual signal [8]. This is
the basis for establishing a signature for a fault transient.
TRANSCEND abstracts these signatures using the qualitative
values +, -, and 0, which imply an increase, decrease, or no
change from the nominal behavior, respectively.

A fault signature is defined as the qualitative value of
zeroth- through kth-order derivative changes on a measure-
ment due to the occurrence of a fault. Only magnitude and
slope of a signal can be reliably measured, so we extract two
features of the observed deviations, (i) whether or not a dis-
continuity occurred, and (ii) the observed first-order change.
Therefore, we condense higher order signatures to the magni-
tude change symbol and the first nonzero derivative change,
e.g., 000-+-+ becomes 0-, and +-+-+-+ becomes +-.
Thus, a fault signature for measurement m will be an element
of the set Σm , {m+−,m−+,m0+,m0−,m+0,m−0}.
The superscript indicates the observed deviation. The first
symbol represents the immediate direction of abrupt change
(a discontinuity) and the second symbol represents the slope.
For +0 and -0, the 0 slope symbol implies that the fault will
cause a sharp jump but no subsequent change in the slope.
This will occur for sensor bias and other discrete faults.
We omit signatures of ++ and -- because they represent
physically unstable systems.

Definition 1: A fault signature for a fault f and measure-
ment m is the qualitative effect of the occurrence of f on
m, and is denoted by σf,m ∈ Σf,m, where Σf,m ⊆ Σm. We
denote the set of all fault signatures for fault f as Σf .

The fault signatures are systematically derived from the
TCG using a forward propagation algorithm to predict qual-
itative effects of faults on measurements [8]. Ambiguities
may arise in the qualitative arithmetic, resulting in a signature
containing a ∗, which may manifest as either +, -, or 0. So,
in general, σf,m may not be unique.

In addition to fault signatures, the TCG captures the
temporal order of measurement deviations, defined as relative
measurement orderings [13], [14]. Relative measurement
orderings refer to the intuition that fault effects will manifest
in some parts of the system before others. If there are energy
storage elements in the path between two sensors in the
bond graph, then the path can be characterized by a strictly
proper transfer function, and therefore, the energy storage
element imposes a delay in the transient responses at the two
sensors. If there are no energy storage elements, the relation
is algebraic and no delay will be observed.

Definition 2: Consider a fault f and measurements mi

and mj . If f manifests in mi before mj then we define
a relative measurement ordering between mi and mj for
fault f , denoted by mi ≺f mj . We denote the set of all
measurement orderings for f as Ωf .

Throughout the paper we will illustrate the diagnosis
method using a circuit example, shown in Fig. 1(a). Fig. 1(b)
illustrates its associated bond graph model. We assume that
our input voltage, v(t), is constant and positive. The derived
TCG is given in Fig. 1(c). Relations between system vari-
ables are direct (+1) or inverse (-1) proportionality relations,
component parameter values (e.g., R1), or time-derivative

TABLE I
FAULT SIGNATURES AND RELATIVE MEASUREMENT ORDERINGS FOR

THE CIRCUIT

Fault f2 e5 f6 Measurement Orderings
R+

1 0- 0- 0- f2 ≺ e5, f2 ≺ f6

R−
1 0+ 0+ 0+ f2 ≺ e5, f2 ≺ f6

R+
2 0- 0+ -+ e5 ≺ f2, f6 ≺ f2, f6 ≺ e5

R−
2 0+ 0- +- e5 ≺ f2, f6 ≺ f2, f6 ≺ e5

C+
1 0+ -+ -+ e5 ≺ f2, f6 ≺ f2

C−
1 0- +- +- e5 ≺ f2, f6 ≺ f2

L+
1 -+ 0- 0- f2 ≺ e5, f2 ≺ f6

L−
1 +- 0+ 0+ f2 ≺ e5, f2 ≺ f6

effects (dt). For the circuit, the set of faults is assumed to
be F = {R+

1 , R−1 , R+
2 , R−2 , C+

1 , C−1 , L+
1 , L−1 }, where the

superscript indicates the direction of change of the parameter
value. We define the measurement set as the current through
L1, the voltage across C1, and the current through R2, or
M = {f2, e5, f6} in the bond graph model.

The fault signatures and relative measurement orderings
for the circuit system are given in Table I. For example,
consider R+

2 . An increase in R2 will cause an immediate
decrease in f6. Since all subsequent paths from f6 to any
other observed variable in the system contain some edge with
a dt specifier (implying an integration), then deviations in
these measurements will only be detected after f6 deviates.
The measured variable e5 will deviate next with a first-order
increase. The change is opposite of f6 because of the −1
specifier in the path, which implies an inverse relationship.
The measured variable f2 will deviate next because of the
dt specifier on the path from e5 to f2, with a second-order
decrease. This will be eventually detected as a first-order
change.

III. EVENT-BASED FAULT MODELING

We combine the notion of fault signatures and rela-
tive measurement orderings into an event-based framework,
where measurement deviations are symbolically abstracted
to events. For a specific fault, the combination of all fault
signatures and relative measurement orderings yields all the
possible ways a fault can manifest. Our event set is then the
set of possible measurement deviations. We denote one of
these possibilities as a fault trace.

Definition 3: A fault trace for a fault f , denoted by λf ,
is a string of length ≤ |M | that includes, for every m ∈M
that will deviate due to f , a fault signature σf,m, such that
the sequence of fault signatures satisfies Ωf .

Consider C+
1 . λC+

1
= e−+

5 f−+
6 f0+

2 is a valid fault trace,
but λC+

1
= f0+

2 e−+
5 f−+

6 is not because the measurement
deviation sequence does not satisfy ΩC+

1
. Note also that the

definition implies that fault traces are of maximal length,
i.e., it includes all measurement fault signatures attributed
to this fault. We group the set of all fault traces into a
fault language, which is represented concisely by a labeled
transition system (LTS).

Definition 4: The fault language of a fault f , denoted by
Lf , is the set of all fault traces for f .



(a) Schematic. (b) Bond graph. (c) Temporal causal graph.

Fig. 1. Circuit example.

Fig. 2. Fault signature LTS representation (left) and relative measurement
ordering LTS representation (right).

Definition 5: A labeled transition system is a tuple L =
(Q, qo,Σ, δ) such that: Q is a set of states, qo ∈ Q is an
initial state, Σ is a set of labels, and δ ⊆ Q × Σ × Q is a
transition relation.

To systematically construct the LTS representation of a
fault language, called the fault model, we can represent each
fault signature and each relative measurement ordering as
a LTS, and then compose all the information. Each fault
signature σf,m can be represented as an LTS, shown to the
left of Fig. 2. It consists of only the single event correspond-
ing to the fault signature1. Also, each relative measurement
ordering, mi ≺f mj , with associated signatures σf,mi

and
σf,mj

, can be represented as an LTS, shown to the right of
Fig. 2. It consists of the two associated signatures in the
determined ordering.

Lemma 1: The LTS representation of a fault language Lf

for fault f , denoted by Lf , is the synchronous product of the
individual LTS for all σf,m ∈ Σf and all mi ≺f mj ∈ Ωf .

Proof: Since the synchronous product must obey all
individual ordering constraints and includes all measurement
deviation events for the fault, it produces all valid measure-
ment deviation sequences and no others.

Definition 6: A fault fi is distinguishable from a fault
fj , denoted by fi � fj , if (∀ λfi

∈ Lfi
, λfj

∈
Lfj

) (¬∃ λ) λfi
λ = λfj

.
Two faults are distinguishable if they always eventually

produce different event sequences. A fault language repre-
sents all possible measurement deviation sequences for a
particular fault, so if one fault can exhibit a trace that is
a substring of one of some other fault’s possible traces, then
the faults cannot be distinguished in finite time since the
fault traces are, by definition, maximal. If this is never the
case, then an event must always occur which distinguishes
the faults.

1If σf,m is not unique, multiple edges for each possibility are needed
going from the first state of the LTS to the final state. This represents the
constraint that a measurement’s deviation is only observed once.

We wish to obtain system diagnosability, based on the
notion of distinguishability, with which we can guarantee
that if measurement deviation events are generated correctly,
all faults of interest can be isolated.

Definition 7: A system is diagnosable if (∀fi, fj ∈
F )fi 6= fj =⇒ fi � fj .

A system is diagnosable if each possible fault trace is con-
sistent with a unique fault. If two faults are distinguishable,
then they cannot manifest in the same way. Therefore, if all
pairs of faults are distinguishable, then a given fault trace
must match only one fault. If this holds for all faults, the
system is diagnosable.

IV. DIAGNOSER DESIGN

We now describe a method to systematically create such
an event-based diagnoser. If the system is diagnosable, we
can guarantee that the constructed diagnoser can uniquely
diagnose all faults. Otherwise, ambiguities will result in the
fault isolation results. First, we define formally a diagnosis
and a diagnoser in our framework.

Definition 8 (Diagnosis): A diagnosis d ⊆ F is a set of
faults consistent with the observations.

Definition 9 (Diagnoser): A diagnoser is a tuple D =
(Q, qo,Σ, δ, D, Y ) such that: Q is a set of states, qo ∈ Q
is an initial state, Σ is a set of labels, δ ⊆ Q × Σ × Q is
a transition relation, D ⊆ P(F ) is a set of diagnoses, and
Y : Q→ D is a diagnosis map.

A diagnoser is an LTS extended by a set of diagnoses and
a diagnosis map. Similar to the LTS of a fault, the labels
correspond to measurement deviations. Associated with the
states are diagnoses, i.e., the set of possible faults for the
measurement deviations seen thus far. Like traditional DES
diagnosers, diagnoser states provide estimates of the system
condition. Assuming the nominal behavior can be accurately
tracked with a continuous observer, our diagnoser states
provide only the possible sets of faults consistent with the
observed sequence of measurement deviations. That is, our
diagnoser captures only the faulty system behavior.

A. Diagnosis Algorithm

The diagnoser construction procedure is shown as Al-
gorithm 1. It is described as combining two diagnosers,
but can be easily be modified to combine k diagnosers
simultaneously. Diagnosers are constructed by incrementally



Algorithm 1 D ← CreateDiagnoser(D1,D2)
Q← ∅, δ ← ∅, D ← ∅, Σ← Σ1 ∪ Σ2

qo ← (qo1, qo2), Y (qo)← ∅, Qpend ← {qo}
while Qpend 6= ∅ do

(q1, q2)← pop(Qpend)
for all σm ∈ Σ do

if m /∈ H((q1, q2)) then
if δ1(q1, σm) and δ2(q2, σm) then

q′ ← (δ1(q1, σm), δ2(q2, σm))
h← Y (δ1(q1, σm)) ∪ Y (δ2(q2, σm))

else if δ1(q1, σm) then
q′ ← (δ1(q1, σm), q2)
h← Y (δ1(q1, σm))

else if δ2(q2, σm) then
q′ ← (q1, δ2(q2, σm))
h← Y (δ2(q2, σm))

else
q′ ← ∅
h← ∅

if q′ 6= ∅ then
if Y ((q1, q2)) = ∅ then

d← h
else

d← Y ((q1, q2)) ∩ h
if d 6= ∅ then

Q← Q ∪ {q′}
H(q′)← H((q1, q2)) ∪ {m}
δ((q1, q2), σm)← q′

D ← D ∪ {d}
Y (q′)← d
if q′ /∈ Qpend then
push(Qpend, q′)
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Fig. 3. Diagnosers for the individual faults of the circuit. The diagnosers
for decreases in the parameter values are the same except for a reversal in
the signs.

composing subdiagnosers, i.e., a diagnoser for a set of faults
Fi is composed with a diagnoser for a set of faults Fj to
create a new diagnoser for Fi ∪ Fj . Initially, we begin with
diagnosers for singleton fault sets. These are constructed
using the individual fault models. For a single fault f , we
augment Lf to form Df by constructing the diagnosis map as
mapping every state except the initial state to {f}. The initial
state is mapped to the empty diagnosis ∅, because until a
measurement deviation is observed, we assume the system
is operating nominally. The diagnosers corresponding to the
individual faults of the circuit are shown in Fig. 3.

The construction algorithm operates by tracing paths in
the two given diagnosers. If the same event label is available
in both current states, then we advance in both LTS, i.e.,

(q1, q2)
σ→ (δ(q1, σ), δ(q2, σ)). Otherwise, we advance in

only one, e.g., if σ can only be taken from q1, then (q1, q2)
σ→

(δ(q1, σ), q2). However, if the measurement associated with
σ has already deviated along the current path (tracked
using H), δ((q1, q2), σ) is set to ∅, because measurement
deviations are only detected once per measurement. This
also occurs if the computed diagnosis for the new state,
d, is empty, because this means the current sequence of
measurement deviations is inconsistent with the single fault
assumption.

The diagnosis for the new state is formed by composing
the current diagnosis with the hypothesis set. The hypothesis
set, h, is the set of faults consistent with the current event.
It is formed as the union of the diagnoses of the diagnoser
states advanced to via the event σ. The new diagnosis for the
composed diagnoser state is constructed as the intersection
of the current diagnosis and the hypothesis set. For example,
if {fi, fj} is the current diagnosis and the hypothesis set is
{fi} then the new diagnosis is {fi}, which means that only
fi is consistent with the current event sequence.

The final composed diagnoser for the circuit is illustrated
in Fig. 4. For example, consider the fault trace f−+

6 e0+
5 f0−

2 .
For f−+

6 occurring as the first measurement deviation, only
C+

1 or R+
2 could have occurred, given the known fault

signatures and relative measurement orderings. Therefore,
the new diagnosis is {C+

1 , R+
2 }. For e0+

5 occurring next,
of our current faults, only R+

2 is consistent, therefore our
new diagnosis is the intersection of {C+

1 , R+
2 } and {R+

2 },
which is {R+

2 }. At this point we obtain a unique fault. The
only possible measurement deviation from here is f0−

2 which
must still be consistent with {R+

2 }.
Theorem 1: The diagnoser constructed by Algorithm 1 for

fault sets F1 and F2 represents all valid single fault traces
for the faults in F1 and F2 and associates correct diagnoses
with the states.

Proof: By definition, the diagnoser for a single fault f
is correct because it represents Lf , so represents all possible
fault traces of f , and every state (except the initial state) of
Lf is consistent with f occurring. Assume that diagnosers
D1 and D2 are correct. Then they represent all possible fault
traces for fault sets F1 and F2, respectively. At the initial
state, if an event σ happens which can only happen in one
of the diagnosers, Di, then the diagnosis is Yi(δ(qoi, σ)),
because it must be consistent with faults in Fi that are
consistent with σ. If σ can occur in both diagnosers, then the
diagnosis is Y1(δ1(qo1, σ)) ∪ Y2(δ2(qo2, σ)) because either
a fault in F1 occurred or a fault in F2 occurred, and the
diagnosis must be consistent with any fault in F1 ∪ F2

consistent with σ. Assume that for a given (q1, q2) 6= qo

the diagnoses are correct for the event sequences leading
up to (q1, q2). Then if an event σ happens which can only
happen in one of the diagnosers, Di, then the diagnosis is
Y ((q1, q2)) ∩ Yi(δi(qi, σ)), because it must be consistent
with the previous diagnosis faults in Fi consistent with σ.
If σ can occur in both diagnosers, then the diagnosis is
Y ((q1, q2))∩ (Y1(δ1(q1, σ))∪Y2(δ2(q2, σ))) because it must
be consistent with the previous diagnosis and faults in F1∪F2
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Fig. 4. Single fault diagnoser for the circuit.

consistent with σ. Therefore, for any state q, δ(q, σ) has a
correct diagnosis. So, for any two diagnosers, the resulting
diagnoser is correct.

The diagnoser for the circuit example, shown in Fig. 4,
illustrates certain properties of our approach. Since all the
leaves have diagnoses with a unique single fault, then the
system is diagnosable. All possible sequences of measure-
ment deviations corresponding to single faults occurrences
are captured in the diagnoser, and lead to unique diagnoses,
therefore, the system is diagnosable. We can also see that
a unique diagnosis is obtained after only two of the three
measurements deviate, so one measurement is redundant for
single fault diagnosis of the selected faults.

B. Online Diagnoser Implementation

This event-based diagnosis framework leads to three dif-
ferent implementations of the online diagnosis approach that
trade off space and time complexity.

1) Implementation as a global LTS: Time complexity is
in favor of the precomputed global diagnoser (Fig. 4). It
needs only to wait for measurement deviations to occur,
transition to the next state, and output the current diagnosis
associated with the state. Using appropriate data structures,
these operations can be achieved in constant time.

The complete diagnoser has, in the worst case, O(|M |!)
possible fault traces, and thus O(|M |!) states. Therefore, this
approach is not space-efficient. If many temporal orderings
exist, then the number of possible fault traces reduces signif-
icantly, and the global diagnoser approach may be feasible.

2) Implementation as an LTS for each fault: In this
approach, we only precompute the individual fault diagnosers
(Fig. 3). Each fault has O(|M |!) possible fault traces, but if
there are many temporal orderings, this may also be reduced
for many faults.

For online diagnosis, each diagnoser is traced simulta-
neously. When a diagnoser becomes blocked, i.e., there is
no available event to to take from the current state, then
it is no longer tracked, because it is no longer consistent
with the observed measurement deviations. The candidate
set is formed by taking the union of the faults in the current
states of each active diagnoser, i.e., those faults that are still
consistent with the observed measurement deviations. This
operation has time complexity O(|F |).

3) Implementation without explicit event fault models:
If faults have few possible traces, then both of the above
approaches should be both space-efficient and time-efficient.
If few orderings are available, then the diagnosers approach
size O(|M |!), therefore, these approaches may not be feasi-
ble given the space requirements of the system. For diagnosis
without using LTS-based diagnosers, we store only the fault
signatures and relative measurement orderings for each fault
(Table I), requiring O(|F ||M |2) space.

Given a current diagnosis of di−1 and an event σi occur-
ring, we can check which faults are consistent with σi. The
hypothesis set hi consists of those faults. If i = 1, then the
new diagnosis di is simply hi. Otherwise, the new diagnosis
must be consistent with di−1 and with the new information,
i.e., di = di−1∩hi. Therefore, given di−1, the new diagnosis
can be computed simply as the subset of faults in di−1

consistent with σi. This corresponds to only constructing the
path of the global diagnoser relating to the particular fault
trace we are observing.

For online diagnosis, we form the hypothesis set corre-
sponding to the current measurement deviation by looking
through the fault signatures and measurement orderings,
thus taking O(|F ||M |2) time. We then compute the new
diagnosis, which is a function of the size of the current
diagnosis and the current hypothesis set. In the worst case
the hypothesis set consists of all faults, so it is |F | in size.
A diagnosis can be as large as |F | also. The intersection of
the diagnosis and hypothesis set then takes at worst O(|F |)
time. In practice, this time complexity is reduced because as
measurements deviate, less faults are being considered.

V. CASE STUDY

We demonstrate the proposed diagnosis framework with
experiments from the Advanced Diagnostics and Prognos-
tics Testbed (ADAPT) [15] deployed at NASA Ames. The
testbed is functionally representative of a spacecraft’s elec-
trical power system, consisting of power generation, storage,
and distribution subsystems. For our diagnosis experiments,
we consider a subset of ADAPT that involves a battery
discharging to two parallel DC loads as shown in Fig. 5.

A. Modeling Faults

The battery model describes an electric circuit equivalent.
The capacitance of the battery is modeled using a large



Fig. 5. Schematic diagram for the battery system.

TABLE II
FAULT SIGNATURES AND RELATIVE MEASUREMENT ORDERINGS FOR

THE BATTERY SYSTEM

Fault VB IL1 IL2 Measurement Orderings
C−

0 +* +* +* ∅
R+

1 0- 0- 0- ∅
R+

L1 0* -+ 0* IL1 ≺ VB , IL1 ≺ IL2

R−
L1 0* +- 0* IL1 ≺ VB , IL1 ≺ IL2

R+
L2A 0* 0* +- IL2 ≺ VB , IL2 ≺ IL1

R−
L2A 0* 0* +- IL2 ≺ VB , IL2 ≺ IL1

V +
B +0 00 00 VB ≺ IL1, VB ≺ IL2

V −
B -0 00 00 VB ≺ IL1, VB ≺ IL2

I+
L1 00 +0 00 IL1 ≺ VB , IL1 ≺ IL2

I−L1 00 -0 00 IL1 ≺ VB , IL1 ≺ IL2

I+
L2 00 00 +0 IL1 ≺ VB , IL2 ≺ IL1

I−L2 00 00 -0 IL1 ≺ VB , IL2 ≺ IL1

capacitance, C0. Other parameters model the nonlinear be-
haviors and dissipative effects (see [16] for details). Battery
faults include loss of charge represented by a capacitance
decrease, C−0 , and internal resistance increase, R+

1 . In the
loads, faults affect the resistance values RL1 and RL2A

which can increase or decrease. In the sensors, we consider
bias faults which cause abrupt changes in the measured
values. Sensor faults are labeled by the measured quantity
they represent, e.g. V +

B represents a bias fault in the battery
voltage sensor.

The fault signatures and relative measurement orderings
for nominal discharge operation are given in Table II. Avail-
able measurements include the battery voltage VB(t), and
the load currents, IL1(t) and IL2(t). The fault models for the
selected experiments are given in Fig. 6. The nonlinearities in
the battery introduce ambiguity in the qualitative signatures,
denoted by the * symbol. A signature of +* may manifest
as +- or +0, and a signature of 0* may manifest as 0+ or
0-. In the fault models, all possible effects must be included.
Also note that since the sensors do not feed back into the
system, sensor faults affect only the measurement provided
by the sensor. The other measurements are not affected, and
the corresponding signature is denoted by 00, indicating no
change in the measurement from expected behavior.
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Fig. 6. Fault models for the battery system.
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Fig. 7. Nominal system operation

B. Diagnosis Results

We investigate the diagnosis of a load fault injected in the
hardware, and a sensor fault injected over the real data. A
sampling rate of 2 Hz is used in all the experiments. The
nominal behavior of the system in shown in Fig. 7. The
system starts with both loads disconnected. First Load 1 is
taken online, followed by Load 2. In the following scenarios,
the fault is injected in this system configuration.

A 50% decrease in the Load 1 resistance, R−L1 is injected
at 417 s. The measured and estimated outputs are shown in
Fig. 8. The decrease in resistance increases the current draw
abruptly, and is detected at 417 s. The symbol generator
reports +0. The first order change due to the fault is
compensated for by the battery and not detected. At this
point, the diagnosis is {R−L1, I

+
L1}. At 433 s, the fault detector

observes a decrease in the battery voltage. Since I+
L1 cannot

produce a deviation in this measurement, it is dropped, and
R−L1 is isolated as the true candidate.

A positive bias of 0.5 V is injected into the voltage sensor
at 500 s. The measured and estimated outputs are shown in
Fig. 9. The fault detector reports an abrupt increase in battery
voltage at 500 s. The symbol generator reports +0. The
diagnosis is {V +

B , C−0 }. Because no further measurements
deviate, C−0 cannot be eliminated.
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Fig. 8. R−
L1 fault with magnitude of 50%.
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Fig. 9. V +
B fault with bias of 0.5.

Our diagnosis approach depends critically on the existence
of a robust fault detection scheme. Currently, fault detection
is achieved using an extended Kalman filter and a statis-
tical test for evaluating the residuals [17]. The threshold
parameters for the residual evaluation are manually tuned to
detect substantial abrupt faults while lowering the sensitivity.
Although the current results are promising, evaluating the
performance of the diagnosis approach quantified by the false
alarm rate is a significant issue and we plan to tackle this
problem by performing additional diagnosis experiments in
the experimental testbed.

VI. CONCLUSIONS

We have presented a DES modeling and diagnosis method-
ology applied to parametric faults in continuous-time sys-
tems. The main issue in applying DES approaches is creating
a system model that captures all relevant system behavior.
Quantization-based abstractions create large, nondeterminis-
tic models. On the other hand, our qualitative abstraction
approach systematically creates concise discrete-event mod-
els of faulty system behavior given a continuous model of
the system. In traditional DES methods, such models are
often created by hand. The qualitative abstraction enables
a diagnosis approach that is easily applicable to continuous
systems. Diagnosis results from the electrical power systems
domain demonstrated the promise of the approach.
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