
780 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 4, JULY 2009

A Qualitative Event-Based Approach to Continuous
Systems Diagnosis

Matthew J. Daigle, Member, IEEE, Xenofon D. Koutsoukos, Senior Member, IEEE, and
Gautam Biswas, Senior Member, IEEE

Abstract—Fault diagnosis is crucial for ensuring the safe oper-
ation of complex engineering systems. Although discrete-event di-
agnosis methods are used extensively, they do not easily address
parametric fault isolation in systems with complex continuous dy-
namics. This paper presents a novel event-based approach for diag-
nosis of abrupt parametric faults in continuous systems, based on
a qualitative abstraction of measurement deviations from the nom-
inal behavior. From a continuous model of the system, we system-
atically derive dynamic fault signatures expressed as event-based
fault models, which are used, in turn, for designing an event-based
diagnoser of the system and determining system diagnosability.
The proposed approach is applied to a subset of the Advanced
Diagnostics and Prognostics Testbed, which is representative of a
spacecraft’s electrical power system. We present experimental re-
sults from the actual testbed, as well as detailed simulation exper-
iments that examine the performance of our diagnosis algorithms
under different fault magnitudes and noise levels.

Index Terms—Discrete-event system (DES), electrical power sys-
tems, model-based diagnosis.

I. INTRODUCTION

F AULT diagnosis is crucial for ensuring the safe operation
of complex engineering systems. Faults and degradations

need to be quickly identified so corrective actions can be taken
and catastrophic situations avoided. Diagnosis approaches can
be categorized along several dimensions, such as model-based
vs. signal-driven, online vs. offline, and continuous versus dis-
crete. Discrete-event system (DES) methods are an important
framework for event-driven diagnosis in safety-critical systems,
since they comprise a well-developed theory that allows for sys-
tematic construction of computationally efficient online diag-
nosers.

Existing DES diagnosers [1]–[4] are designed as extended
observers that estimate the system state under nominal and
faulty conditions. Although these methods have been used in
many practical diagnosis applications [1], [5]–[7], they are
very hard to develop for systems with complex continuous
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dynamics. Quantizing the continuous behavior using a finite set
of states and events results in large, nondeterministic models
that degrade the performance and increase the computational
requirements of the diagnosis algorithms [8]–[10]. In the
presence of faults, these models become increasingly complex,
and deriving such models for different fault magnitudes may
become computationally intractable.

In contrast to traditional DES approaches, this paper presents
a novel approach to constructing DES diagnosers for isolating
single, abrupt faults in continuous systems, based on a quali-
tative abstraction of the measurement deviations from the nom-
inal behavior. The approach extends TRANSCEND [11], a model-
based methodology for fault diagnosis in continuous systems,
based on fault signatures, a qualitative representation of fault
transients. We enhance TRANSCEND by incorporating temporal
orderings of measurement deviations as diagnostic information,
known as relative measurement orderings, which increases the
discriminatory power of the measurements, allowing for faster,
more efficient fault isolation [12]. Measurement orderings pro-
vide advantages for many classes of systems, including elec-
trical systems where an accurate dynamical model can be de-
veloped, distributed mechanical systems such as formations of
robots [12], and chemical and biological processes with slow
dynamics [13]. Further, we formalize the diagnostic informa-
tion into an event-based framework to enable systematic diag-
nosability analysis and diagnoser design. We extend prelimi-
nary results reported in [14] by developing the diagnoser de-
sign through a formal composition operator, introducing diag-
nosability and showing its relation to the event-based diagnoser,
and including a comprehensive case study.

We demonstrate and experimentally verify our diagnosis ap-
proach on the Advanced Diagnostics and Prognostics Testbed
(ADAPT) [15], deployed at NASA Ames Research Center.
ADAPT represents the functionality of a spacecraft’s electrical
power system, which exhibits complex nonlinear behaviors and
is prone to many different faults. Therefore, ADAPT serves
as a challenging testbed to verify diagnosis methodologies
for electrical power systems. To experimentally validate our
approach, we consider a subset of ADAPT that includes a
single battery discharging to two dc loads.

The contributions of the paper center on: 1) a method for
systematically constructing event-based fault models, using,
for each fault, a finite automaton that captures all possible se-
quences of measurement deviations; 2) diagnosability analysis
of systems and design of event-based diagnosers; 3) a spectrum
of diagnoser implementations that trade off space and time
efficiency; 4) experimental results on the ADAPT testbed; and
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5) detailed simulation experiments investigating the effects of
sensor noise and different fault magnitudes on our diagnosis
scheme.

The paper is organized as follows. Section II describes
related work in event-based diagnosis. Section III overviews
our diagnosis approach. Section IV presents the formulation
of our qualitative fault isolation methodology. Section V
develops the event-based fault models and formalizes diagnos-
ability. Section VI discusses the event-based diagnoser and its
construction, and Section VII describes the spectrum of imple-
mentations. Section VIII presents the case study. Section IX
concludes this paper.

II. RELATED WORK

We formulate our approach to diagnosis of continuous sys-
tems in a DES framework. DES diagnosis methods are based
on observing system events and making inferences about the
system state. Ideally, a sequence of observable events can be
mapped back to a single consistent fault. Most DES approaches
construct diagnosers from the system model, which function as
extended observers that provide estimates of the system state
under both nonfaulty and faulty conditions [1], [3], [4]. Our di-
agnoser is a special case of traditional DES diagnosers, in that it
does not track nominal system behavior, but is focused on iso-
lating faulty conditions by tracking system behavior after fault
detection. More importantly, the diagnoser, in contrast to most
DES approaches where the event-based models are hand-cre-
ated, is systematically generated from the continuous model of
the system, which greatly reduces the burden of the modeling
task.

Applying traditional DES approaches to continuous systems
requires abstraction of the continuous dynamics. Timed DES
methods [8], [9], [16]–[18] typically employ a quantization
of the continuous state-space to produce a DES model of the
system. This form of quantization often results in state explo-
sion, and the resulting model is inherently nondeterministic. As
a result, the diagnosis algorithms are more complex and less
efficient. We propose a qualitative abstraction approach that
abstracts the measurements with respect to nominal behavior.
Three qualitative states are defined for each measurement:
above nominal, at nominal, and below nominal. These states
are further refined into magnitude and slope deviations to cap-
ture the dynamics of system behavior. Measurement deviations
imply the presence of a fault and form the observable event set
for our approach.

The proposed abstraction method uses a robust observer
based on the continuous model of the system to track nominal
behavior [11]. System tracking and fault isolation are separated,
so the diagnoser tracks only the faulty behavior as given by
the measurement deviations. Therefore, faults can be detected
very quickly, unlike in quantization approaches, where the fault
detection time will depend on the level of quantization.

Timed event traces in systems can also be modeled using
chronicles, which are patterns of event traces that include tem-
poral constraints and represent the possible timed evolutions
of the system behaviors. Chronicles capture direct symptom to
fault knowledge, so they are very efficient for online diagnosis
[19], [20]. As events occur in the system, they are matched

against known chronicles to determine which faults are present.
From our diagnosis model, we derive fault signatures and mea-
surement orderings. We extract from this information an event-
based model of the system that represents only faulty behavior.
Like chronicles, the event-based fault models represent direct
symptom to fault knowledge. Modeling the timed event traces
that result from faults, however, is infeasible for continuous
systems with varying fault magnitudes because the number of
traces explodes. Using qualitative orderings of measurement de-
viations avoids this problem.

Using temporal orders of measurement deviations is also
investigated in [21]–[24], where either time bounds or quali-
tative orderings for symptom appearance are utilized. These
approaches are based on analytical redundancy relations
(ARRs), which are difficult to develop for multiplicative faults
and nonlinear systems. Our approach can handle both additive
and multiplicative faults, but ARR approaches can decouple
unknown inputs and disturbances to be robust to their effects
[25]. The ARR-based approaches do not address how to obtain
the temporal orders, whereas in our approach, the temporal
orders are derived systematically from the continuous model.
Alternatively, temporal event sequences using qualitative devi-
ational models are developed using process algebras in [26], but
a systematic approach to generating the event-based component
models or the construction of a diagnoser is not provided.

III. DIAGNOSIS APPROACH

Our method for diagnosis of single, abrupt, persistent faults
in continuous systems extends TRANSCEND [11]. We model
systems as bond graphs [27], from which we derive the diag-
nosis model, the temporal causal graph (TCG). When faults
occur, they produce transients that manifest as deviations
in measurements from their expected values. These devia-
tions are abstracted to events. The TCG is used to predict
possible sequences of measurement deviations that are then
matched against observed deviation sequences to isolate faults.
Throughout the paper, we illustrate the diagnosis methodology
with a circuit example. The schematic, bond graph model, and
TCG are shown in Figs. 1(a)–(c), respectively.

Bond graphs define a domain-independent, energy-based,
topological modeling scheme for dynamic systems. They are
particularly suitable for diagnosis because they incorporate
causal and temporal information required for deriving and
analyzing fault transients. Their properties have been exploited
in both TCG-based diagnosis [11] and ARR-based approaches
[28], [29]. In this paper, we use bond graphs to model electrical
systems as equivalent circuits, however, bond graphs, and,
therefore, our diagnosis approach, can be employed in many
other domains [27].

In bond graphs, vertices represent components. Bonds, drawn
as half arrows, represent ideal energy connections between the
components. Associated with each bond are two variables: effort
and flow, denoted by and , respectively, where is the bond
number, and the product defines the rate of energy transfer
through the bond. In the electrical domain, these variables map
to voltage and current, respectively. 1-junctions represent series
connections (where all are equal and ), and 0-junc-
tions represent parallel connections (where all are equal and
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Fig. 1. Circuit example. (a) Schematic. (b) Bond graph. (c) Temporal causal graph.

Fig. 2. Diagnosis architecture.

). Other bond graph elements model energy dissipa-
tion as resistances ( , where ), energy storage as
capacitances ( : , where ) and inductances ( : ,
where ), and energy sources as sources of flow (Sf:

, where ) and effort (Se: , where ). The con-
stituent equations of the bond graph elements form a system of
equations that describe the continuous behavior of the system,
and can be combined into a state-space representation.

Abrupt parametric faults are changes in component parameter
values that occur much faster than the time scale of observation
[11]. Therefore, they manifest as discontinuities, and we define
them as a step change in the parameter value. In the circuit ex-
ample, faults include increase and decrease in resistance ( ,

, , and ), capacitance ( and ), and inductance
( and ) values, where the superscript indicates the direc-
tion of change in the parameter value.

For both nominal and faulty cases, our model must satisfy
conditions for existence and uniqueness of solutions. In bond
graphs, the system equations can be computed systematically
using causality, i.e., the input-output relations on effort and
flow variables imposed by the bond graph elements. If the
bond graph model has a unique causality assignment, where all
energy storage elements can be placed in their integral form,
then we obtain a set of ordinary differential equations (ODEs)
if the nonlinear functions do not introduce algebraic loops
[27]. If the nonlinear functions are smooth, then the ODEs will
satisfy the standard Lipschitz conditions from which existence
and uniqueness of solutions follow [30]. If causality cannot be
assigned uniquely or algebraic loops arise from nonlinear func-
tions, then we obtain a set of differential-algebraic equations,
and we assume that they satisfy the corresponding conditions
for existence and uniqueness of solutions [31].

Our diagnosis model, the TCG, is derived from the bond
graph model of the system [11]. The TCG, which is essentially
a signal flow graph with qualitative edge labels, captures the
propagation of qualitative fault effects on the measurements.

The vertices of the TCG are the system variables. The labeled
edges represent the qualitative relationships between the vari-
ables, i.e., equality , direct or inverse proportion-
ality, integration ( , or, in shorthand, simply ), and para-
metric relations (e.g., ). The directionality of these edges
is determined by causality.

The diagnosis architecture is illustrated in Fig. 2. An ob-
server, based on the state-space equations derived from the bond
graph model, computes the expected behavior of the system,
given the inputs and the observed outputs, . We assume
that inputs (which may come from a controller) are known, and
do not consider unexpected and unmeasurable changes in the
inputs. The difference between observed outputs, , and ex-
pected outputs, , defines the residual, . Faults will cause
the residual values to become nonzero. Nonzero residuals that
are statistically significant trigger the fault detector, which sig-
nals a fault. To accommodate sensor noise and model imper-
fections, we employ the Z-test [32] to robustly determine if the
residual is nonzero using a sliding window technique [33]. Other
techniques for fault detection are also applicable [34], [35].

The symbol generator abstracts measurement deviations
from nominal behavior to corresponding events. They are
represented symbolically by qualitative increasing/decreasing
values. Like fault detection, symbol generation is performed
in a robust manner using the Z-test and sliding windows [33].
These events are used in the event-based diagnoser (based on
predictions made from the TCG) to formulate the diagnostic
hypotheses.

IV. QUALITATIVE FAULT ISOLATION

Abrupt faults generate transients in the dynamic system be-
havior. Assuming that the system satisfies the conditions for ex-
istence and uniqueness of solutions for the nominal and faulty
cases, the system output is continuous and continuously
differentiable except at the point of fault occurrence, , so the
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transient response at can be approximated by a Taylor
series expansion [36]

If is bounded, the Taylor series up to the derivative
is a good approximation of the true signal for close to .
The residual can then be approximated by

This is the basis for establishing a signature for a fault tran-
sient, represented using the magnitude and derivative values of
the residual signal. We abstract these magnitude and derivative
values using the qualitative values , , and , which imply an
increase, decrease, or no change from the nominal behavior, re-
spectively.

A fault signature is defined as the qualitative value of ze-
roth- through th-order derivative changes on a residual due
to a fault occurrence. Symbol generation extracts two symbols
from the deviated signal: 1) the observed change at the point
of fault occurrence (discontinuity) and 2) the observed first-
order change. Since higher-order derivatives eventually mani-
fest as first-order changes that can be detected, we condense the
full signatures to the magnitude change and the first nonzero
derivative change to reflect the signatures that will be com-
puted using symbol generation, e.g., a seventh-order signature

becomes , and becomes .
The set of possible measurement deviations is then given by

. The first symbol repre-
sents the direction of abrupt change (the discontinuity at the time
of fault occurrence) and the second symbol represents the slope.
For and , the slope symbol implies that the fault causes
a jump but no subsequent change in the measurement. This oc-
curs, for example, with sensor bias faults. Given a measurement

and deviation , we write the signature as an event using ,
e.g., .

Definition 1: A fault signature for a fault and measurement
is the qualitative magnitude and slope change in caused

by the occurrence of , and is denoted by . We denote all
possible signatures for and as , and denote the set of
all fault signatures for fault as , where .

Because ambiguities may arise in the qualitative arithmetic,
we may obtain a signature containing a , which may manifest
as either , , or . So, in general, may not be unique,
and the set captures each possibility.

In addition to fault signatures, we also capture the temporal
order of measurement deviations, termed relative measurement
orderings [12], [37], which refer to the intuition that fault effects
will manifest in some parts of the system before others. If there
are energy storage elements in the path between two measured
variables, then the energy storage elements impose a delay in the
progression of the transient responses from one measurement
to the other [12]. If there are no energy storage elements, the
relation between the two transients is algebraic and no delay will
be observed. This is based on analysis of the transfer functions
from faults to measurements.

TABLE I
FAULT SIGNATURES AND RELATIVE MEASUREMENT

ORDERINGS FOR THE CIRCUIT

Consider a fault parameter and the variable it immediately
affects . For example, the parameter immediately affects

[see Fig. 1(c)]. Take two measurements and . We are
interested in the paths which produce the first observable effects
on and . This is determined by the paths of minimum
order, i.e., the paths with the minimum number of integrations
in the TCG. To illustrate for linear systems, we can characterize
the discrete-time transfer functions of these paths for to ,

, and for to , . Of these paths, if each of ’s
paths passes through (or a variable algebraically related to

), then we can characterize the transfer function as
, where is strictly proper. Therefore devi-

ates before for . More details can be found in [12].
Definition 2: Consider a fault and measurements and
. If manifests in before then we define a relative

measurement ordering between and for fault , denoted
by . We denote the set of all measurement orderings
for as .

The fault signatures are systematically derived from the TCG
using a forward propagation algorithm to predict qualitative ef-
fects of faults on measurements [11]. An extended version of
this algorithm computes measurement orderings by analyzing
the minimum order paths found during the propagation [38].

We define the set of faults as , and the
set of measurements as . For the cir-
cuit example, . The
measurement set includes the current through , the voltage
across , and the current through , or in
the bond graph model. For these faults and measurements, the
fault signatures and relative measurement orderings for the cir-
cuit system are given in Table I.

For example, consider . An increase in will cause an
immediate decrease in . Since all subsequent paths from to
any other observed variable in the system contain some edge
with a specifier (implying an integration), then deviations
in these measurements will only be detected after deviates.
The measured variable will deviate next with a first-order in-
crease. The change is opposite to the change in because of the

specifier in the path, which implies an inverse relationship.
The measured variable will deviate next due to the spec-
ifier on the path from to , with a second-order decrease.
This will be eventually detected as a first-order change.

V. EVENT-BASED FAULT MODELING

We combine the notion of fault signatures and relative mea-
surement orderings into an event-based framework, where sig-
nificant measurement deviations are symbolically abstracted to
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Fig. 3. Fault signature finite automaton representation (left) and relative mea-
surement ordering finite automaton representation (right).

events. For a specific fault, the combination of all fault signa-
tures and relative measurement orderings yields all the possible
ways a fault can manifest. Our event set is then the set of possible
measurement deviations. We denote each of these possibilities
as a fault trace.

Definition 3: A fault trace for a fault , denoted by , is a
string of length that includes, for every that will
deviate due to , a fault signature , such that the sequence
of fault signatures satisfies .

Consider . is a valid fault trace, but

is not because the measurement deviation
sequence does not satisfy . Note also that the definition
implies that fault traces are of maximal length, i.e., a fault trace
includes deviations for all measurements affected by the fault.
We group the set of all fault traces into a fault language. The
fault model, defined by a finite automaton, concisely represents
the fault language.

Definition 4: The fault language of a fault with mea-
surement set , denoted by , is the set of all fault traces for

.
Definition 5: The fault model for a fault with mea-

surement set , is the finite automaton that accepts exactly the
language , and is given by , where
is a set of states, is an initial state, is a set of events,

is a transition function, and is a set of
accepting states.

The finite automata representation allows the composition
of the fault signatures and relative measurement orderings into
fault models. The possible fault signatures can be repre-
sented as a finite automaton with event set , shown in Fig. 3
(left), for the case where is a singleton. It consists of only
the single event corresponding to the fault signature. In general,
multiple edges for each are needed going from the
first state of the automaton to the final state. This represents the
constraint that a measurement’s deviation is only observed once.
Also, each relative measurement ordering with asso-
ciated signature sets and , can be represented as an
automaton with event set , shown in Fig. 3 (right),
for the case where and are singletons. The au-
tomaton consists of the associated signatures in the determined
ordering. The following lemma formalizes the composition of
these automata. (Proofs are given in the Appendix.)

Lemma 1: For fault model for fault , , is the synchronous
product of the individual finite automata for all and
all .

Fig. 4 shows the fault models for the circuit example. For
example, take . Its orderings specify that must deviate
before and . Therefore, is first, followed by and

in either order.
Ultimately, we would like to be able to make guarantees about

the isolation of faults using the event-based diagnoser. To do

Fig. 4. Fault models for the faults of the circuit. The fault models for decreases
in the parameter values are the same except for a reversal in the signs.

this, we establish the notions of distinguishability and diagnos-
ability.

Definition 6: A fault is distinguishable from a fault ,
denoted by , if always eventually produces effects on
the measurements that cannot.

Under our framework, one fault will be distinguishable from
another fault if it cannot produce a fault trace that is a prefix1

(denoted by ) of a trace that can be produced by the other fault.
If this is not the case, then when that trace manifests, the first
fault cannot be distinguished from the second.

Lemma 2: A fault is distinguishable from a fault
, if there does not exist a pair of fault traces

and , such that .
If a system is diagnosable, i.e., every pair of faults can be

distinguished, then we can make guarantees about the unique
isolation of every fault in the system. To define this, we first
define a notion of a system in our framework.

Definition 7: A system is tuple , where
is a set of faults, is a

set of measurements, and is the set
of fault languages.

Definition 8: A system is diagnosable if
.

If the system is diagnosable, then every pair of faults is distin-
guishable using the measurements in . So, each sequence of
measurement deviations we observe can be eventually linked to
exactly one fault, if measurement deviation events are generated
correctly. Hence, we can uniquely isolate all faults of interest.
If the fault set is not diagnosable, then ambiguities will remain
after fault isolation, i.e., after all possible measurement devia-
tions have been observed.

VI. EVENT-BASED DIAGNOSER

The goal of the event-based diagnoser is, given a sequence of
events from the symbol generation module, to determine which
faults are consistent with the observed sequence. We define for-
mally a diagnosis and a diagnoser in our framework.

Definition 9: A diagnosis is a set of faults that are
consistent with the observed measurements.

1A fault trace � is a prefix of fault trace � if there is some (possibly empty)
sequence of events � that can extend � , such that � � � � .
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Definition 10: A diagnoser for a fault set is a tuple
, where is a set of states, is an

initial state, is a set of events, is a transition
function, is a set of accepting states, is a set of
diagnoses, and is a diagnosis map.

A diagnoser is a finite automaton extended by a set of diag-
noses and a diagnosis map. A diagnoser takes events as inputs,
which, as with fault models, correspond to measurement devi-
ations. From the current state, a measurement deviation event
causes a transition to a new state. The diagnosis for that new
state represents the set of faults that are consistent with the se-
quence of events seen up to the current point in time. So, like tra-
ditional DES diagnosers, the diagnoser states provide estimates
of the system condition, but only after a fault has occurred. As
discussed, we assume that nominal behavior is tracked in the
continuous domain by an observer.

The accepting states of the diagnoser correspond to a fault
isolation result. We say that a diagnoser isolates a fault if it
accepts all possible valid traces for the fault and the accepting
states map to diagnoses containing the fault.

Definition 11: A diagnoser isolates fault if
accepts all and for each that accepts some ,

.
We also would like to achieve unique isolation of faults,

which corresponds to diagnosability. We say that a diagnoser
uniquely isolates a fault if each accepting state maps to the
single fault.

Definition 12: A diagnoser uniquely isolates fault
if accepts all and for each that accepts some

, .
Ultimately, we would like to systematically construct a di-

agnoser for a system that isolates all . Further, we
would like to show that if is diagnosable, then this diagnoser
uniquely isolates all . To do this, we first provide a way
to construct a diagnoser for each fault that isolates . Then,
we provide a composition operator to compose two diagnosers,
such that if each diagnoser isolates its own set of faults, the com-
posed diagnoser will isolate the combined set of faults. We then
compose the individual diagnosers into a global diagnoser that
isolates the complete set of system faults.

First, we construct a diagnoser for each single fault from
. Because the fault model accepts the fault language ,

it is easy to show that this diagnoser isolates . The diagnosers
corresponding to the individual faults of the circuit are shown
in Fig. 5.

Definition 13: Given with , is
defined as , where

otherwise.

Lemma 3: uniquely isolates .
We next define a composition operator, denoted as . An im-

plementation of is presented in [14]. The composition pro-
vides a way to systematically construct the diagnoser for fault
set . It must be defined such that the composed diagnoser cap-
tures all valid fault traces for the considered faults, and maps the
states to correct diagnoses.

Fig. 5. Diagnosers for the individual faults of the circuit. The diagnosers for
decreases in the parameter values are the same except for a reversal in the signs.

Definition 14: Given the diagnoser for a set of faults ,
and the diagnoser for a

set of faults , , the
diagnoser defined by the composition of and is

, where it follows:
• ;
• ;
• ;
• , where

otherwise

otherwise

else

•
•
Theorem 1: If isolates all , and isolates all

, then isolates all faults in .
The composition is defined to be commutative and associa-

tive with respect to isolation, and the theorem shows that this is
true, i.e., preserves the isolation property. The order in which
the diagnosers are composed does not matter, because at each
intermediate step, isolation of the combined fault sets is main-
tained. Therefore, we can define the global diagnoser as a com-
position of the individual diagnosers.

Definition 15: For fault set , is
defined as .

Corollary 1: The diagnoser isolates all .
Because each isolates if constructed from as

described, and since preserves the isolation property, then
as constructed above isolates all . Further, if the fault set
is diagnosable, then this diagnoser guarantees that each fault is
uniquely isolated.

Theorem 2: A system is diagnosable if and
only if uniquely isolates all .

The diagnoser for the circuit example is shown in Fig. 6. We
can see that since all accepting states have singleton diagnoses,
the system is diagnosable. For example, consider the fault trace

. For occurring as the first deviation, only
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Fig. 6. Event-based diagnoser for the circuit.

or could have occurred, given the known fault signatures
and measurement orderings. Therefore, the new diagnosis is

. For occurring next, of our current faults, only
is consistent, therefore, our new diagnosis is the intersection

of and , which is . At this point we ob-
tain a unique fault hypothesis. The only possible measurement
deviation from here is which must still be consistent with

.

VII. EVENT-BASED DIAGNOSER IMPLEMENTATION

The proposed event-based diagnosis framework leads to
three different implementations of the event-based diagnoser
that trade off space and time complexity.

1) Implementation: Performing online diagnosis with
(see Fig. 6) has the best time complexity. At design time,
is computed using repeated application of , as discussed.

At runtime, the diagnoser needs only to wait for measurement
deviations to occur, transition to the next state, and output the as-
sociated diagnosis. Using appropriate data structures, these op-
erations can be achieved in constant time.

With a large number of faults and measurements, however,
may have poor space complexity. Since must contain

all the fault traces for all faults in , it must capture
traces, where is the maximum number of traces per fault. This
is also the design-time complexity of constructing . In the
worst case, a fault may have no measurement orderings, thus
is . Therefore, there would be traces and

states in the worst case. If is truly the worst case,
however, i.e., a fault allows all possible signatures in any se-
quence, then the diagnoser would only have distinct
traces to capture, and thus states. If many temporal or-
derings exist, then the number of possible fault traces reduces
significantly, and will have feasible space requirements.
Also, the diagnoser can always be pruned by recursively re-
moving leaf states that have the same diagnosis as their prede-
cessor states, thereby reducing the space requirements further
[38].

2) Implementation: In the implementation, only
the individual for each (see Fig. 5) are com-
puted at design time, which is less expensive than computing

. Each fault may still have, in the worst case, pos-
sible fault traces. The worst case total space requirement is then

. Again, if many temporal orderings exist, then the
space complexity reduces substantially.

Since the global diagnoser must capture all possible
traces for each fault, it will have less states than the total

number of states combining all the fault models. This occurs
because shared prefixes result in combined states in . The

implementation is more suited to the multiple fault case
where contains extra fault traces [39].

In online diagnosis, each diagnoser is traced simultaneously.
The hypothesis set, , is formed by taking the union of the diag-
noses in each current state. This operation has time complexity

. The current diagnosis is formed as the intersection of
the hypothesis set and the previous diagnosis (except when the
previous diagnosis is ). When a diagnoser becomes blocked,
i.e., there is no available event to take from the current state, then
it is no longer tracked, because it is no longer consistent with the
observed measurement deviations. The current diagnosis can be
obtained by taking the union of the diagnoses for the diagnosers
that are still active.

3) Implementation: If each fault has many
measurement orderings, then using either or the set of

will be both space-efficient and time-efficient. If few
orderings are available, then the diagnosers approach size

, therefore, these approaches may not be feasible given
the space requirements of the system. The third implementation
computes only the fault signatures and relative measurement
orderings for each fault at design time (see Table I), requiring

space. Alternatively, these can be computed online
when a fault is detected, and this operation is polynomial in the
size of the TCG [11], [12].

Given a current diagnosis and an event occurring, we
can check which faults are consistent with . The hypothesis
set consists of those faults. In the implementation, this
is determined simply by which diagnosers are still tracking cor-
rectly. If , then the new diagnosis is simply . Other-
wise, the new diagnosis must be consistent with and with
the new information, i.e., . Therefore, given

, the new diagnosis can be computed simply as the subset
of faults in consistent with . This corresponds to only
constructing the path of relating to the particular fault trace
we are observing. In , all this work has been done at design
time.

In online diagnosis, we form the hypothesis set corresponding
to the current measurement deviation by looking through the
fault signatures and measurement orderings, and this requires

time. We then compute the new diagnosis, which
is a function of the size of the current diagnosis and the current
hypothesis set. In the worst case the hypothesis set consists of all
faults, so it is in size. A diagnosis can be as large as also.
The intersection of the diagnosis and hypothesis set then takes at
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Fig. 7. Electrical circuit equivalent for the battery system.

worst time. In practice, this time complexity is reduced
because as measurements deviate, fewer fault hypotheses are
being considered.

VIII. CASE STUDY

We demonstrate the proposed diagnosis framework with ex-
periments conducted on the ADAPT [15] deployed at NASA
Ames Research Center. The testbed is functionally representa-
tive of a spacecraft’s electrical power system, and consists of
three subsystems: power generation (battery chargers), power
storage (lead-acid batteries), and power distribution (relays, cir-
cuit breakers, dc to ac converters, dc and ac loads). For our diag-
nosis experiments, we consider a subset of ADAPT that involves
a battery discharging to two parallel dc loads.

The accuracy of our diagnosis approach is critically depen-
dent on the fault detection and symbol generation processes.
Due to model imperfections and sensor noise, the fault de-
tectors have to be tuned to minimize missed detections (false
negatives), and false alarms (false positives). A tradeoff exists
between these two, because a more sensitive fault detector will
get more false positives, but fewer false negatives. Similarly,
a less sensitive fault detector will get more false negatives,
but less false positives. In our experiments, the fault detectors
were empirically tuned to the highest possible sensitivity that
avoided false alarms for the observed levels of noise under
nominal conditions. To study the performance of the diagnosis
algorithms under different fault and noise conditions, we need
to perform a large number of experiments. In addition to exper-
iments from the actual testbed, we ran simulation experiments
on the VIRTUAL ADAPT testbed [15], [40]. Simulation also
allows us to introduce faults that cannot be injected into the
actual system safely.

A. System Modeling

The electrical circuit equivalent of the considered subset of
ADAPT is shown in Fig. 7. The battery model describes an elec-
tric circuit equivalent based on the model presented in [41] and
[42]. The charge-holding capacity of the battery is modeled by a
large capacitance, . The pairs subtract from the voltage
provided by to obtain the actual provided battery voltage.
The resistance parameters , , and , are nonlinear func-
tions, given by

where is the discharge current, is the state of charge,
and is the depth of charge. and are computed
parameters, given by

where is the charge in , and is the battery tempera-
ture, given by

where is the ambient temperature , and is the power
dissipated through the battery resistances. Details of these equa-
tions and their parameters may be found in [41].

The selected measurements were the battery voltage
and the currents through the loads, and . Multi-
plicative faults include parameter changes in the battery and the
loads. Battery faults include loss of capacity to hold charge rep-
resented by a capacitance decrease and an increase in in-
ternal losses . Abrupt battery faults are less likely than in-
cipient faults, but they may produce immediate and significant
changes that must be dealt with quickly. Faults in the system
loads are represented by increases or decreases in their resis-
tance values and . We also consider additive bias
faults in the sensors, which produce abrupt changes in the mea-
sured values. Sensor faults are labeled by the measured quantity
they represent, e.g., represents a bias fault in the battery
voltage sensor.

In our bond graph model, causality can be uniquely assigned
with all energy storage elements in integral causality, and the
nonlinearities (which are smooth functions) do not introduce
any algebraic loops. Thus, the system behavior can be expressed
as a set of ODEs with a unique solution for both the nominal and
faulty cases, so fault signatures and relative measurement order-
ings are well-defined and can be derived using the TCG gener-
ated automatically from the bond graph model. The signatures
and orderings for the considered faults are given in Table II. The
nonlinearities in the battery introduce ambiguity in the quali-
tative signatures, and this is denoted by the symbol. For ex-
ample, a signature of may manifest as or . All possible
effects must be included in the fault models. Also note that since
the sensors are not part of feedback loops in the system, sensor
faults affect only the measurement provided by the sensor. The
other measurements are not affected, and so the corresponding
fault signatures are denoted by 00, indicating no change in the
measurement from expected behavior. If feedback loops are
present, the controller can be kept out of the model if its inputs
to the system are known. Otherwise, our approach can also deal
directly with models that include the controller (e.g., see [12]).

B. Experimental Results

We have performed experiments online on the ADAPT
testbed. The event-based diagnoser contained 45 states and 72
transitions, and its pruned version contained 22 states and 26

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 14, 2009 at 14:00 from IEEE Xplore.  Restrictions apply.



788 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 4, JULY 2009

TABLE II
FAULT SIGNATURES AND RELATIVE MEASUREMENT

ORDERINGS FOR THE BATTERY SYSTEM

Fig. 8. Nominal system operation.

TABLE III
IDENTIFIED SYSTEM PARAMETERS

transitions. In practice, DES diagnosers can easily have thou-
sands of states, which is a main advantage to DES approaches.
Therefore, we feel our approach can scale to the full testbed.

To demonstrate the diagnosis approach, we show the results
obtained for load faults and a sensor fault. In all experiments,
Load 1 is first brought online, followed by Load 2. We inject
the fault in the mode where both loads are online. The measure-
ments were sampled at 2 Hz for all the experiments. The nom-
inal behavior of the system is shown in Fig. 8, and this data was
used for identification of system parameters shown in Table III.
Note that since the circuit representation is an abstraction of ac-
tual battery behavior, the and values do not correspond to
typical values in electric circuits.

For the first experiment, a 33% decrease in the Load 1 resis-
tance, , is manually injected at 653.0 s by abruptly changing

Fig. 9. � fault, where � decreases by 33%.

Fig. 10. Partial diagnoser for isolating the � fault.

the resistance setting on the load. The measured and estimated
outputs are shown in Fig. 9. A partial diagnoser is given in
Fig. 10. The decrease in resistance increases the current drawn
by the load abruptly, and this change is detected at 653.5 s. Since
the slope of the change is not yet known, the possible fault hy-
potheses are . Faults and are not
included, because even though they may cause the current to in-
crease, measurement orderings predict that would have de-
viated first instead. At 655.0 s, a decrease is detected in .
Since cannot affect , it is dropped. is also dropped
because it would have increased, and not decreased, the battery
voltage. Due to the dynamics of Load 2, the change in is
not large enough to cause a change in that can be distin-
guished from the sensor noise. Even though the full signatures
are not known, the partial diagnoser shows that must be the
only fault. Therefore, the true fault is isolated.

For a second scenario, a 100% increase in the Load 1 resis-
tance, , is manually injected at 439.5 s. The measured and
estimated outputs are shown in Figs. 11 and 12, which shows the
signals in more detail around the time of fault occurrence. The
increase in resistance causes a discontinuous drop in the cur-
rent, detected at 440.0 s. Since the slope has not yet been com-
puted, the possible fault candidates are . Again,
faults and are not included, because measurement
orderings predict that would have deviated first instead. At
441.0 s, an increase is detected in . Since cannot affect

, it is dropped. is also dropped because it would have
decreased, and not increased, the battery voltage. Independent
of how deviates, the diagnoser ends up in a state that iso-
lates .

In a third experiment, a positive bias of 0.2 V is injected into
the voltage sensor at 400.0 s by spoofing the real sensor data
in software. The measured and estimated outputs are shown in
Fig. 13. A partial diagnoser is shown in Fig. 14. The fault de-
tector reports an increase in battery voltage at 400.0 s. The fault
candidates generated are , since no other fault can
cause an increase in as the first deviation. At 407.5 s, the
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Fig. 11. � fault, where � increases by 100%.

Fig. 12. Detailed plot of � fault.

Fig. 13. � fault with bias of 0.2.

Fig. 14. Partial diagnoser for isolating the � fault.

slope is computed to be 0, under the assumption that the window
is large enough to distinguish zero from nonzero slopes. So,
the diagnosis remains . Because no further measure-
ments deviate, cannot be eliminated. This is demonstrated
by the partial diagnoser and predicted by diagnosability anal-
ysis. After occurs, the diagnoser is in an accepting state
(because it corresponds to a fault trace of ), and their are mul-
tiple faults remaining. Therefore, if no further measurements de-
viate, the faults cannot be distinguished.

C. Simulation Results

In the following simulation experiments, we considered dif-
ferent fault magnitudes and different levels of sensor noise to in-
vestigate the robustness and sensitivity of our fault detection and
isolation scheme. We used a zero-mean Gaussian noise model,
and the noise level was reflected in the variance. The three noise
levels reflect no noise, the observed noise magni-
tudes of the testbed, and double the observed noise. These values
were selected as 0, , and for the voltage sensor,
and 0, , and for the current sensors.

Due to model imperfections and sensor noise, the fault de-
tectors must be tuned to: 1) minimize missed detections (false
negatives) and 2) minimize false alarms (false positives). Simi-
larly, the symbol generators must be tuned to achieve the same
performance metrics. In our experiments, the fault detectors and
symbol generators were tuned to the highest possible sensitivity
that would avoid false alarms for noise level under nominal
conditions. With the particular noise levels and fault magnitudes
chosen, no false positives or false negatives occurred in the fault
detection. Since the threshold is computed as a function of the
signal variance [33], false alarms are avoided even for higher
levels of noise than expected. Other diagnosis approaches that
transform noisy, continuous signals into some abstraction that
facilitates diagnostic reasoning must tune parameters of those
transformations as well.

The diagnosis results are summarized in Table IV. For the
sensor faults, the magnitude is given as an additive bias in V or
A. For the process faults, the faulty parameter value is given by
its nominal value multiplied by the given factor, e.g., a factor
of 1.10 increases by 10% of its nominal value of .
Ten experiments were performed for each fault, magnitude, and
noise level. The table presents the average results over these
runs. In each of the scenarios, the time of fault injection was
set at 500 s. The times for detection and isolation are denoted
by and , respectively. In some cases the true fault cannot
be uniquely isolated, so represents the time at which the fault
candidate list stopped reducing. We report on the average times
to detect and isolate, the average size of the final fault candidate
list , and the percentage of times the true fault was in .

The results show that the sensor noise and fault magnitude
can have a significant effect on time to fault detection. Fig. 15
shows the average time to detect as a function of the variance
in the sensor noise and the fault magnitude for . For smaller
fault magnitudes and a lower signal to noise ratio, it takes longer
for the effects of the fault to be identified in relation to the noise
band. Therefore, reliable detection takes longer. As shown in
Table IV, faults are detected faster when magnitudes are larger,
because a shorter interval is needed to determine that the mean
of the residual is statistically outside of the computed signal
variance. Fault detection times also improve with lower noise,
because the deviations caused by a fault are more clearly dif-
ferentiated from the noise. Similar results were obtained for the
other faults. For and with a magnitude of , and

with a magnitude of and , the fault is al-
ways detected after one sample (0.5 s) with no noise, but in some
experiments with the noise, the noise worked in favor of fault
detection and detection at the point of fault occurrence was ob-
tained.

Sensor noise and fault magnitude can also affect the isola-
tion results. If an incorrect symbol is generated, then the true
fault may be eliminated as a candidate. This situation is shown
well by the experiments with . Fig. 16 shows the isolation
rates for this fault as a function of fault magnitude and sensor
noise. When the fault magnitude was large enough, the sym-
bols were correctly generated and the fault correctly isolated,
even for the highest levels of noise. However, as fault magnitude
decreased and noise increased, the wrong fault was sometimes
isolated. produces a first-order change on the voltage. If this
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TABLE IV
ADAPT EXPERIMENTS WITH DIFFERENT FAULT MAGNITUDES AND NOISE LEVELS

Fig. 15. Average time to detect for � with varying noise variance and fault
magnitude.

change is detected early, then the transient can be observed and
the signature correctly computed as . If the change is detected
after the initial transient, when the voltage has already reached a
steady state, then the slope is observed to be zero, so is com-
puted, thus isolating as the fault. The incorrect signature
was more likely to be computed when the fault magnitude was
low and sensor noise was high, because detection of the change
in is more likely to occur after the transient. Knowledge

of expected fault magnitudes and noise levels can help tune the
fault detector parameters to correctly compute these features.
For the other faults, this problem did not occur except for a few
cases with and when high noise caused the slope com-
putation to be or instead of 0, which can be viewed as a
false alarm in the slope computation. This is also the explana-
tion for the decrease in and the percentages for
some of these scenarios, e.g., the correct fault, , gets elim-
inated from when the slope is incorrectly determined to be

.

IX. CONCLUSION

We have presented an event-based modeling and diagnosis
methodology applied to parametric faults in continuous systems
and demonstrated its application to an electrical power system
testbed. The main issue in applying DES approaches is cre-
ating a system model that captures all relevant system behavior.
Quantization-based abstractions create large, nondeterministic
models. On the other hand, our qualitative abstraction approach
systematically creates event-based models of faulty system be-
havior given a continuous model of the system, which can be
used to develop an event-based diagnoser and determine diag-
nosability of the system. The automatic model construction con-
trasts to most current DES approaches, where models are cre-
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Fig. 16. Isolation rate for� with varying noise variance and fault magnitude.
The fault is considered successfully isolated if it is in the final list of faults
returned by the diagnoser.

ated by hand. The qualitative abstraction enables a diagnosis
approach that applies well to continuous systems. The approach
was applied to ADAPT, which is a complex electrical power
system. Detailed simulation experiments examined the effects
of fault magnitude and sensor noise on the robustness of the
approach. If symbol generation is correct, then the true fault is
always included in the final candidate list. The approach can
easily be coupled with fault identification methods developed
in previous work [33] to complete the diagnosis.

An important practical issue in applying this approach is to
ensure correct detection of the signatures and measurement or-
derings. Measurement orderings are more reliable for systems
with slow dynamics relative to the sampling frequency of the
sensors. Correct detection is also a function of the amount of
sensor noise and the reliability of the fault detectors. The fault
detectors must be tuned to have similar sensitivity relative to
each other, so that deviations are detected in a timely manner and
measurement orderings are not violated. Still, we have demon-
strated the practicality of our approach by applying it to real sys-
tems in the electrical domain, described here, and in the robotics
domain, described in [12]. Additional discussion of practical is-
sues can be found in [38]. In future work, we will develop more
robust solutions using a stochastic framework.

APPENDIX

Proof of Lemma 1: Since the synchronous product must ac-
cept fault traces that obey all individual ordering constraints
and includes all measurement deviation events for the fault,
it accepts all valid measurement deviation sequences, i.e., all

, and no others.
Proof of Lemma 2: Assume is not distinguishable from
, i.e., . Then by definition, there must exist some

maximal sequence of effects on the measurements by that
can also produce. Fault traces capture these effects, and are by
definition maximal. Therefore, there must exist some fault trace
for , i.e., some , and some sequence of measurement
deviations produced by that is not distinct from . Since the
possible sequences of measurement deviations produced by
is , then must be a prefix of some
fault trace . Therefore, if then there exits

some and , such that . By the
contrapositive, if there does not exist and ,
such that , then .

Proof of Lemma 3: extends by defining and .
Therefore, by definition of , must accept all .
By definition of , for all must map to , since

. So, uniquely isolates .
Proof of Theorem 1: Assume isolates all , and

isolates all . Then for some fault with some
trace , must accept , and this corresponds to
some , where . The first event in corre-
sponds to a state in , by definition of , and the state maps to a
diagnosis containing by definition of . For some prefix of

, there is a corresponding state where ,
given that isolates . By the same logic, , cor-
responds to a state , where . If cor-
responds to a state with , then by
definition of , corresponds to a state , and
by definition of , since and

. By induction, corresponds to a state in and
in since is also accepted by , and the corresponding
accepting state contains in its diagnosis. Since was gen-
eral, the composed diagnoser isolates . Since was general,
the diagnoser isolates all . The same reasoning applies
for all . Therefore, isolates all .

Proof of Theorem 2: Assume some with fault trace
. accepts and for corresponding accepting

state , by Corollary 1 and the definition of iso-
lation. Since is diagnosable, there is no with fault
trace , where . Therefore, .
So, and uniquely isolates each . As-
sume that uniquely isolates each . Then each pos-
sible fault trace has an associated accepting state , where

. Thus, there cannot be some for
that can reach , otherwise . Therefore, ,
so is diagnosable. Thus is diagnosable if and only if
uniquely isolates each .
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