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and Xenofon Koutsoukos , Fellow, IEEE

Abstract—In this letter, we study the maximum edge
augmentation problem in directed Laplacian networks to
improve their robustness while preserving lower bounds on
their strong structural controllability (SSC). Since adding
edges could adversely impact network controllability, the
main objective is to maximally densify a given network by
selectively adding missing edges while ensuring that SSC
of the network does not deteriorate beyond certain lev-
els specified by the SSC bounds. We consider two widely
used bounds: first is based on the notion of zero forcing
(ZF), and the second relies on the distances between nodes
in a graph. We provide an edge augmentation algorithm
that adds the maximum number of edges in a graph while
preserving the ZF-based bound, and also derive a closed-
form expression for the exact number of edges added to
the graph. Then, we examine the edge augmentation while
preserving the distance-based bound and present a ran-
domized algorithm that guarantees an α–approximate solu-
tion with high probability. Finally, we numerically evaluate
and compare these edge augmentation solutions.

Index Terms—Edge augmentation, structural controlla-
bility, zero forcing, graph distances.

I. INTRODUCTION

IN A NETWORKED multi-agent system, a frequent
approach to improve network connectivity is to sys-

tematically increase interconnections between agents. On
the one hand, edge augmentation is useful for improving
network connectivity, robustness and resilience, but on the
other hand, adding edges could adversely impact network
controllability [1]–[4]. In this letter, we study the problem of
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maximum edge augmentation in a directed network of agents
with Laplacian dynamics while preserving the controllability
specification. We consider the network’s strong structural con-
trollability (SSC), which depends (apart from the set of input
nodes) only on the structure of the underlying graph defined
by the edge set of the graph. To measure how much of the
network is strong structurally controllable with a given set of
leader (input) nodes, the concept of the dimension of strong
structurally controllable subspace (SSCS) is typically used
(Section II-A). The exact computation of the dimension of
SSCS is a hard task, so various graph-theoretic bounds on
the dimension of SSCS have been proposed in the litera-
ture. We utilize two widely used bounds that are based on
the ideas of Zero Forcing (ZF) [5]–[7] and distances between
nodes in graphs [8], [9]. We discuss these bounds in detail
in Sections III-A and IV-A, respectively. Our main objective
is to add the maximum number of edges in a given directed
graph while preserving the lower bound (ZF-based or distance-
based) on the dimension of SSCS. Our contributions are listed
below.

1) We present an optimal edge augmentation algorithm for
adding the maximum number of edges in a directed graph
while preserving the ZF-based bound on the dimension of
SSCS. We analyze the algorithm and provide a closed-form
expression for the number of edges added in the graph.

2) We also discuss edge augmentation in graphs that pre-
serves the distance-based bound on the dimension of SSCS.
For a given node pair (u, v) in a directed graph, we char-
acterize the optimal solution of the distance preserving edge
augmentation problem in which the objective is to add max-
imum edges in a graph without changing the distance from
node u to node v.

3) We then provide a randomized algorithm that adds
maximal edges in a directed graph while preserving the
distance-based bound on the dimension of SSCS. We also
analyze the approximation ratio of the algorithm.

We studied the edge augmentation problem while preserving
the distance-based bound on SSC in undirected networks
in [4]. In this letter, we focus on directed networks and
consider both the ZF-based bound and the distance-based
bound on the dimension of SSCS. It is worth emphasiz-
ing that the edge augmentation problem differs significantly
between directed and undirected networks. This work is also
related to [2], which only considers directed networks that
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are strong structurally controllable and studies the problem
of adding edges while retaining their SSC. Here, we also
consider directed networks that are not necessarily strong
structurally controllable. We note that such a setup is very rel-
evant to the notion of target controllability in linear networks,
where the goal is to control only a subset of agents (tar-
gets) instead of the entire network. Since controlling the entire
network might not be required in certain applications and
could be costly, it is desired to control only target nodes (for
instance, [6], [10], [11]).

II. PRELIMINARIES AND PROBLEM DESCRIPTION

We consider a network of agents modeled by a directed
graph G = (V, E), where V is the set of agents and E is the
set of directed edges. An edge from node u to v is denoted by
(u, v), and u is the in-neighbor, or simply the neighbor of v.
We use the terms node and agent interchangeably. The set of
all neighbors of u, denoted by Nu, is called the neighborhood
of u. The distance from u to v in G, denoted by dG(u, v), is
the number of edges in the shortest directed path from u to
v. Accordingly, dG(u, u) = 0 and dG(u, v) = ∞ if there is
no directed path from u to v. We may ignore the subscript G
when it is clear from the context. The union of G = (V, E)

and G′ = (V ′, E′) is G∪G′ = (V ∪V ′, E∪E′). The edges in a
graph are assigned positive weights by some weight function:

w : E→ R
+, (1)

where R
+ is the set of positive real numbers. Each agent u

in the network has a state xu ∈ R, and the overall state of the
network is x ∈ R

n, where n = |V|. The network dynamics are
given by the following equation:

ẋ = −Lwx+ Bu, (2)

where Lw is the weighted Laplacian matrix of G and defined as
Lw = (Deg−Aw). Here, Aw ∈ R

n×n is the weighted adjacency
matrix of G whose uvth entry is

[Aw]u,v =
{

w(u, v) if u �= v, and (u, v) ∈ E
0 otherwise,

(3)

and Deg ∈ R
n×n is the degree matrix, such that [Deg]u,v =∑n

k=1 [Aw]u,k, if u = v, and 0 otherwise. In (2), B ∈
R

n×m is the input matrix, where m is the number of inputs,
which is equal to the number of leader nodes. If V� =
{�1, �2, . . . , �m} ⊆ V is the set of leader nodes, then [B]u,v = 1
if node u is also a leader, and 0 otherwise.

A. Strong Structural Controllability (SSC)

A state x′ ∈ R
n is reachable if there is an input u that

can drive the network in (2) from origin (initial state) to x′
in a finite amount of time. A network G = (V, E) with edge
weights defined by w and leader set V� is completely control-
lable, that is every point in R

n is reachable, if and only if the
following controllability matrix is full rank.

�(Lw, V�) =
[

B (−Lw)B (−Lw)2B · · · (−Lw)n−1B
]
.

The rank of �(Lw, V�) defines the dimension of the
controllable subspace consisting of all the reachable states.
A Laplacian network G = (V, E) with a given set of leader

nodes is called strong structurally controllable (SSC) if it is
completely controllable for any choice of w as in (1). At the
same time, the dimension of strong structurally controllable
subspace (SSCS), denoted by γ (G, V�), is the minimum rank
of the controllablility matrix �(Lw, B) over all feasible w (edge
weights), i.e., γ (G, V�) = minw rank(�(Lw, V�)).

B. Problem Formulation

The main objective in this letter is to identify the maxi-
mum number of missing edges in a given network such that
the dimension of SSCS of the network is preserved even after
adding those edges. Since computing the dimension of SSCS
is computationally challenging, we consider its lower bounds,
including the zero forcing (ZF) and distance-based bounds
(explained in Sections III and IV, respectively). These bounds
are tight and have numerous applications [9]. If δ is a (ZF-
based or distance-based) lower bound on the dimension of
SSCS of the network, then the goal is to maximally densify
the graph while maintaining the dimension of SSCS to be at
least δ. Formally, we state the problem below.

Problem: Let G = (V, E) be a directed network of agents
with a leader set V� ⊆ V and the network dynamics as in (2).
Let the dimension of SSCS of the network be at least δ. Then,
find the maximum size edge set E′ such that E ⊆ E′ and the
dimension of SSCS of the network G′ = (V, E′) with the same
set of leaders V� is also at least δ, i.e., δ ≤ γ (G′, V�).

III. ADDING EDGES THROUGH ZERO FORCING BOUND

In this section, we present an edge augmentation algorithm
that optimally adds edges in a network while preserving the
zero forcing-based bound on the dimension of SSCS.

A. Zero Forcing (ZF) Bound for SSC

First, we explain the notion of Zero Forcing process and its
relation to the dimension of SSCS [5]–[7].

Definition 1 (Zero Forcing Process): Consider a directed
graph G = (V, E) such that each node v ∈ V is initially
assigned either a white or black color. The following coloring
defines the zero forcing process: if a black colored node v ∈ V
has exactly one white in-neighbor u, then change the color of
u to black. We say that v infected u.1

Definition 2 (Derived Set): Consider a directed graph G =
(V, E) where V ′ ⊆ V is an initial set of black nodes (also
called the input set), and apply the zero forcing process until
no further color changes are possible. The resulting set of
black nodes is the derived set, denoted by dset(G, V ′) ⊆ V .
For a given set of input nodes, the derived set is unique [12].
Moreover, an input set V ′ is called a zero forcing set (ZFS) if
dset(G, V ′) = V .

The cardinality of the derived set is significant as it provides
a lower bound on the dimension of SSCS, as stated below.

Theorem 1 [6]: For any network G = (V, E) with the lead-
ers V� ⊆ V , we have ζ(G, V�) ≤ γ (G, V�), where ζ(G, V�) =

1Since an edge (u, v) indicates that the state of node u is influenced by the
state of v in our system model (as in (2) and (3)), we use in-neighbors in the
ZF process for consistency. If an edge (u, v) indicates that node u influences
node v’s state, then out-neighbors should be used in the ZF process, as done
in some other works.
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Algorithm 1 ZF-Based Edge Augmentation
Given G = (V, E), V� � V� is a leader set.
Initialize G′ = (V, E′), E′ ← E
For all v ∈ V , COLOR(v)←WHITE
For all v ∈ V�, COLOR(v)← BLACK
while ∃u a BLACK node with a single WHITE in-neighbor v do

COLOR(v)← BLACK
For all w ∈ V , with COLOR(w) = BLACK,
set E′ ← E′ ∪ {(w, u)} � Add edges from all BLACK nodes

to u.
end while
For all nodes u not considered in the loop above,
set E′ ← E′ ∪ {(w, u):w ∈ V} � Add edges to u from all nodes.
return G′ = (V, E′).

|dset(G, V�)| is the size of the derived set corresponding to
the input set V�.

B. Edge Augmentation Algorithm Using ZF

We provide an algorithm to add edges in a directed graph
while ensuring that the derived set of the graph remains the
same after adding edges, thus, preserving the ZF-based bound
on the dimension of SSCS. The proposed algorithm is a modi-
fication of the ZF process. In summary, we look for a BLACK
node with a single WHITE in-neighbor, add edges that are
incident to the BLACK node and do not change the size of
the derived set, change the WHITE node’s color, and then
repeat the same procedure until there is no BLACK node with
a single WHITE in-neighbor. When this process concludes,
we add any extra edges that can be added while preserving
the derived set. The algorithm is outlined below. We denote
the color of the node v by COLOR(v).

Next, we show that Algorithm 1 is optimal and adds the
maximum number of edges while preserving the size of the
derived set returned by the ZF process.

Proposition 1: For a directed graph G = (V, E) with a
leader set V� ⊆ V , let G′ = (V, E′) be a graph returned by
Algorithm 1. Then, dset(G, V�) = dset(G′, V�).

Proof: Let � = dset(G, V�). In G′, all leader nodes in V�

are colored BLACK due to the initial condition of the ZF pro-
cess. Consider an arbitrary iteration in the ZF process, where a
BLACK node u colors its only WHITE in-neighbor v BLACK.
Algorithm 1 adds edges in G′ from (currently) BLACK nodes
to u. Since no edge from a currently WHITE node to u is
added, v must be the only WHITE in-neighbor of u in G′ as
well. Thus, the ZF process proceeds by assigning the BLACK
color to node v, which is the only WHITE in-neighbor of the
BLACK node u in G′. This holds for every iteration in the
ZF process. Thus, the ZF process in G and G′ will change the
colors of nodes exactly the same way.

We can count the number of edges in the directed graph
G′ = (V, E′) returned by Algorithm 1 in terms of |V|, |V�|
and the size of the derived set.

Proposition 2: For a graph G′ = (V, E′) returned by
Algorithm 1 with a leader set V� and derived set �,

|E′| ≥ |�|(|�| + 1)

2
− m(m+ 1)

2
+ (m+ n− |�|)n− n,

where n = |V| and m = |V�|.

Proof: In each iteration of the WHILE loop in Algorithm 1,
edges from all BLACK nodes to a fixed node are added. There
are |V�| = m BLACK nodes when the WHILE loop starts, and
this number increases by one in each iteration. Thus, we add
m, m+ 1, . . . , |�| − 1 edges in the WHILE loop. Outside the
loop, we add n− 1 incoming edges for each of the remaining
n− |�| + m nodes. Therefore,

|E′| ≥ (n− 1)(n− |�| + m)+
|�|−1∑
i=m

i

= |�|(|�| + 1)

2
− m(m+ 1)

2
+ (m+ n− |�|)n− n.

Theorem 2: Let G = (V, E) be a directed graph with |V| =
n nodes, leader set V�, where |V�| = m, and derived set � =
dset(G, V�). Then, Algorithm 1 returns a graph G∗ = (V, E∗)
where E∗ ⊇ E and |E∗| is maximum while preserving the size
of the derived set �. Moreover, the number of edges in the
optimal graph is

|�|(|�| + 1)

2
− m(m+ 1)

2
+ (m+ n− |�|)n− n.

Proof: Let G∗ = (V, E∗) be a graph satisfying the con-
ditions stated in the theorem, and G′ = (V, E′) be a graph
returned by Algorithm 1. We will count the number of edges
in G∗ and show that |E∗| is upper bound by the expression
in Proposition 2. Clearly |E′| can not be larger than |E∗|, we
will get the desired result.

Since G∗ preserves the size of the derived set, we should be
able to run |�|−|V�| iterations of the ZF process in some arbi-
trary order. When the ZF process starts, there are m BLACK
nodes and (n − m) WHITE nodes. At this point, there must
exist a BLACK node u which has only one in-coming edge
from a WHITE in-neighbor. Therefore, at least n−m−1 edges
of the form (v, u), where v is a WHITE node, are missing from
G∗. In each iteration, the number of WHITE nodes decreases
by exactly one. This means that in the second iteration, at
least (n−m− 2) edges are missing, and these edges are dis-
tinct from previously counted edges because none of these
involve the node u. Similarly, in iteration i, there are at least
(n − m − i) distinct edges missing. We can upper bound the
number of edges in G∗ by subtarting the minimum number of
missing edges in the graph from the maximum possible n2−n
edges. Thus,

|E∗| ≤ n2 − n−
|�|−m∑

i=1

(n− m− i) = n2 − n−
n−m−1∑
i=n−|�|

i

= n2 − n− (n− m− 1)(n− m)

2
+ (n− |�|)(n− |�| − 1)

2
.

Using Proposition 2, we get |E∗| ≤ |E′|. However, |E∗|
is optimal, which means |E∗| ≥ |E′|. Thus, we deduce that
|E∗| = |E′| and conclude the desired statement.

It can be shown that the time complexity of Algorithm 1 is
�(n2). An important observation here is that the number of
edges that one can add to a directed graph while preserving
the derived set is independent of the topology of the given
graph. Note, however, that the size of the derived set in an
arbitrary graph is not independent of the topology.
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Fig. 1. A network with two leaders, V� = {v1, v2}, and the correspond-
ing distance-to-leaders (DL) vectors.

IV. ADDING EDGES THROUGH DISTANCE-BASED

BOUND

In this section, first, we review a tight lower bound on the
dimension SSCS based on the distances of nodes to leaders in
a graph [8]. Second, we present a method to add edges while
preserving distances between specific node pairs, which also
preserves the bound on the dimension of SSCS. The distance-
based bound on the dimension of SSCS is typically better than
the ZF-based bound, especially when the network is not strong
structurally controllable [9].

A. Distance-Based Bound for SSC

Given a network with m leaders V� = {�1, . . . , �m}, we
define the distance-to-leaders (DL) vector of each vi ∈ V as

Di =
[

d(vi, �1) d(vi, �2) · · · d(vi, �m)
]T ∈ Z

m.

The jth component of Di, denoted by [Di]j, is equal to the
distance of vi to �j. Next, we provide the definition of pseudo-
monotonically increasing sequences of DL vectors.

Definition 3 [Pseudo-monotonically Increasing (PMI)
Sequence]: A sequence of distance-to-leaders vectors D is
PMI if for every ith vector in the sequence, denoted by Di,
there exists some π(i) ∈ {1, 2, . . . , m} such that

[Di]π(i) < [Dj]π(i), ∀j > i. (4)

In other words, (4) needs to be satisfied for all the sub-
sequent distance-to-leader vectors Dj appearing after Di in
the sequence. We say that Di satisfies the PMI property at
coordinate π(i) whenever [Di]π(i) < [Dj]π(i), ∀j > i.

Figure 1 gives an example of DL vectors. A PMI sequence
of length five, D = [D1,D2,D3,D4,D5], is given below.

D =
[[

0
3

]
,

[
1
0

]
,

[
1
4

]
,

[
2
1

]
,

[
2
2

]]
. (5)

Indices of bold values in (5) are the coordinates, π(i), at which
the DL vectors are satisfying the PMI property.

The longest PMI sequence of DL vectors is related to the
dimension of SSCS as stated in the following result.

Theorem 3 [8]: Consider any network G = (V, E) with the
leaders V� ⊆ V . Let δ(G, V�) be the length of the longest PMI
sequence of distance-to-leaders vectors with at least one finite
entry. Then, δ(G, V�) ≤ γ (G, V�).

Remark 1: While the bound in Theorem 3 was presented
for connected undirected graphs in [8, Th. 3.2], it also holds for
any choice of leaders on strongly connected directed graphs as
shown in [8, Remark 3.1]. Such connectivity properties ensure
that all DL vectors have only finite entries. The bound can be

Fig. 2. (a) Directed clique chain and (b) directed modified clique chain.
The node set V is partitioned into four subsets: V0 = {v1}, V1 = {v2},
V2 = {v3, v4} and V3 = {v5}.

extended easily to all directed graphs (without requiring strong
connectivity) as in Theorem 3 by considering only the DL
vectors with at least one finite entry (i.e., excluding followers
with no feasible path to any leader).

B. Adding Edges While Preserving Node Distances

Let G = (V, E) be a graph with a leader set V�, D be a
PMI sequence of length δ, and Ṽ ⊆ V be the set of nodes
whose DL vectors are included in D. If we add edges in G to
obtain a new graph G′ = (V, E′) such that the DL vectors of
nodes in Ṽ remain the same in G′, then D will also be a PMI
sequence of G′ and δ ≤ γ (G′, V�). Therefore, one approach
to augment edges in a graph while preserving a bound on
the dimension of SSCS is to ensure that the distances from
a certain set of nodes to leaders do not change due to edge
additions. In this direction, we first need to study the maximal
edge augmentation in a graph while preserving the distance
from a given node a to another node b.

Definition 4 [Distance Preserving Edge Augmentation
(DPEA) Problem]: Given a directed graph G = (V, E) and
nodes a, b ∈ V such that dG(a, b) = k, find a graph G′(V, E′)
with the (same) node set V and an edge set E′ ⊇ E such that
dG′(a, b) = k and |E′| is maximized.

Next, we characterize optimal solutions of the DPEA
problem for a given node pair (a, b) in G. The optimal solu-
tion belongs to a special class of graphs obtained by the union
of clique chains and modified clique chains described below.

Definition 5 (Directed Clique Chain): A directed graph
Ck = (V, E) is a directed clique chain if the node set V can be
partitioned into sets V0, V1, V2, . . . , Vk, such that there is an
edge from every node in Vi to every node in Vi−1 ∪Vi ∪Vi+1
for all 1 ≤ i ≤ k − 1. Moreover, nodes in each of V0 and Vk
induce cliques.

Definition 6 (Directed Modified Clique Chain): A directed
graph Mk = (V, E) is a directed modified clique chain if
the node set V can be partitioned into sets V0, V1, V2, . . . , Vk,
such that there is an edge from every node in Vi to every node
in Vj for all j ≤ i.

Examples of these graphs are shown in Figure 2.
Theorem 4: Let G = (V, E) be a directed graph and let

a, b be two fixed vertices in G with dG(a, b) = k. Then,
an augmented graph G′ = (V, E′), E′ ⊇ E, that preserves
the distance from a to b, and contains the maximum num-
ber of edges is a union of a directed clique chain Ck and
a directed modified clique chain Mk for some partition
V0 = {a}, V1, V2, . . . , Vk = {b} of the node set V .

Proof: Let dG(a, b) = k. Then, it is clear that for all vertices
v ∈ V , dG′(a, v) ≤ k because otherwise we can add an edge
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Algorithm 2 Distance Preserving Edge Augmentation(DPEA)
1: Given G = (V, E), a, b ∈ V .
2: Initialize E′ ← E, G′ ← (V, E′)
3: While ∃ (u, v) ∈ V × V with dG′ (a, u) ≥ dG′ (a, v)− 1
4: E′ ← E′ ∪ {(u, v)}, G′ ← (V, E′).
5: End While
6: Return G′ = (V, E′)

from an arbitrary node at distance ≤ k − 1 to v. Also, an
arbitrary vertex v in G′ at distance i from a, we may assume
that dG′(v, b) = k − i. Clearly, dG′(v, b) can not be less than
k− i, and if it is more, we can add an edge from v to a vertex
w where dG′(w, b) = k − i − 1. Thus, every vertex in G′ lies
on a shortest path from a to b. Let u, v be two vertices such
that dG′(a, u) = i, and dG′(a, v) = j. We have the following
cases:

1) i = j or i = j− 1: an edge from u to v does not change
the distance from a to b. Thus, we may assume that all
such edges exist in G′.

2) i < j−1: since both of u, v lie on a shortest path from a
to b, we know that dG′(v, b) = k−j. So an edge u, v will
create a path from a to b of distance ≤ j−2+1+k− j =
k−1. This is a contradiction to the fact that G′ preserves
a, b distance. Therefore, G′ doesn’t contain any edge of
the form u, v.

3) i > j: in this case, an edge from u to v doesn’t create any
new shortest paths from a to b. Thus, we may assume
that all such edges exist in G′.

Let us define V0, V1, . . . , Vk a partition of V where Vi = {v ∈
V : dG′(a, v) = i}. It is clear that with this partition, the graph
G is a union of a directed clique chain and a directed mod-
ified clique chain. This provides a complete characterization
of edges in G′ and completes the proof.

From Theorem 4, we obtain a simple way to greedily con-
struct a maximally dense graph that preserves the distance
from node a to node b in a given graph G as follows.

We note that the time complexity of Algorithm 2 is
O(n2 log n), where n = |V|. We can use DPEA to add edges
in a graph G(V, E) with a leader set V� while preserving a
bound on the dimension of SSCS. Let D be a PMI sequence
of length δ and Ṽ ⊆ V be the set of nodes whose DL
vectors are included in D. By solving the DPEA problem
for the node pair (v, l), where v ∈ Ṽ and l ∈ V�, we can
obtain edges, say Ev,l, whose addition to the graph will pre-
serve the distance from node v to leader l. By solving DPEA
problem for all node pairs (v, l), where v ∈ Ṽ and l ∈ V�,
we can obtain edges that are common in all solutions, that is,
Ecomm = ∩v∈Ṽ,l∈V�

Ev,l. By adding these common edges in the
given graph G, we obtain a new graph G′ = (V, E ∪ Ecomm)

such that dG(v, l) = dG′(v, l), ∀v ∈ Ṽ and ∀l ∈ V�.
Consequently, D will also be PMI sequence of G′, which
means that the dimension of SSCS in the augmented graph G′
will also be at least δ. Thus, by solving multiple instances of
DPEA problem, we can determine edges whose addition to the
graph will preserve the distance-based bound on the dimension
of SSCS.

Next, we present an easily implementable randomized edge
augmentation algorithm offering good numerical results.

C. Randomized Edge Augmentation Algorithm
Preserving the Distance-Based Bound

If D is a PMI sequence of length δ containing DL vectors
of nodes Ṽ ⊆ V , then it might be possible to add edges in
G to obtain an augmented graph G′ with the same leader set
V�, such that G′ also has a PMI sequence of length δ even if
dG(v, l) �= dG′(v, l), ∀v ∈ Ṽ,∀l ∈ V�. In particular, for every
node pair (v, l), where v ∈ Ṽ , l ∈ V�, there exists an integer
εv,l ∈ Z such that if εv,l < dG′(v, l) ≤ dG(v, l), then G′ will
have a PMI sequence consisting of DL vectors of nodes in
Ṽ and having a length δ. We will then provide a randomized
edge augmentation algorithm satisfying conditions to preserve
the distance-based bound on the dimension of SSCS. Finally,
we will analyze the performance of the algorithm.

Let Di be the ith vector in the PMI sequence D of the given
graph G. Then by the definition of PMI sequence, for each
element [Di]j, there is an integer, say εi,j, such that [Di]j > εi,j.
We denote the maximum possible value of εi,j by ε∗i,j and
define ε∗i := [ ε∗i,1 ε∗i,2 · · · ε∗i,|V�| ]

T . For instance, consider
the PMI sequence in (5). The vectors ε∗i corresponding to
each Di in the sequence are given below.

ε∗1 =
[−1
−1

]
, ε∗2 =

[
0
−1

]
, ε∗3 =

[
0
0

]
, ε∗4 =

[
1
0

]
, ε∗5 =

[
1
1

]

We can think of ε∗i,j as a strict lower bound on [Di]j. From
a given PMI sequence of length δ, we can always obtain ε∗i
for all i ∈ {1, 2, . . . , δ}.

Observation 1: In a PMI sequence D, if we replace [Di]j
by some integer x, where ε∗i,j < x ≤ [Di]j, then the resulting
sequence will still be a PMI sequence.

For instance, consider the sequence D̄ below, which is
obtained from D in (5) by replacing [D1]2 = 3 and [D3]2 = 4
by [D̄1]2 = 1 and [D̄3]2 = 1, respectively. Since ε∗1,2 = −1
and ε∗3,2 = 0, the resulting sequence D̄ is a PMI sequence.

D̄ =
[[

0
1

]
,

[
1
0

]
,

[
1
1

]
,

[
2
1

]
,

[
2
2

]]
. (6)

Next, we present a randomized algorithm to add edges in
a graph G with a leader set V�. G has a PMI sequence D of
length δ consisting of DL vectors of nodes Ṽ ⊆ V . Moreover,
let S = [ s1 s2 · · · sδ ], where si is the index of the node
whose DL vector is the ith element (vector) in D. For instance,
D in (5) is a PMI sequence of the graph in Figure 1. The
corresponding Ṽ is {v1, v2, . . . , v5} and S is [ 1 2 3 4 5 ].
For every ith vector in the sequence, the algorithm first com-
putes the corresponding vector ε∗i , which basically provides
minimum distances that need to be maintained from node
vsi to all leaders during the edge augmentation. The algo-
rithm then selects a missing edge randomly and augments it
to the graph if its addition does not violate distance conditions
(line 8 in Algorithm 3), otherwise discards it. This process is
repeated until all missing edges from the original graph are
either added to the graph, or discarded. The details are outlined
in Algorithm 3.

We note that the distance-based bound on the dimension
of SSCS is typically better than the ZF-based bound, espe-
cially when the graph is not SSC [9]. Thus, edge augmentation
using Algorithm 3 allows to add edges while preserving a
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Algorithm 3 Randomized Algorithm for the Distance-Based
Edge Augmentation

1: Given G = (V, E), V� = {�1, . . . , �m}, D, S.
2: Initialize E′ ← E
3: Compute ε∗i,j for each element [Di]j in D.
4: Compute Ec (set of all missing edges).
5: While Ec �= ∅
6: Randomly select e ∈ Ec, and obtain H = (V, E′ ∪ {e}).
7: Compute dH(vsi , �j) for all j ∈ {1, . . . , m} and for all i ∈
{1, . . . , |S|}.

8: If (ε∗i,j < dH(vsi , �j) ≤ [Di]j for all j ∈ {1, . . . , m} and for all
i ∈ {1, . . . , |S|}, then E′ ← E′ ∪ {e}.

9: Update Ec ← Ec \ {e}.
10: End While
11: Return E′

Fig. 3. (a) Lower bounds on the dimension of SSCS. (b) Number of
edges added by ZF-based and distance-based augmentation algorithms
while preserving their respective bounds. (c) Number of edges added by
Algorithms 1 and 3 while preserving the same (ZF-based) bound.

better bound on the dimension of SSCS. Next, we analyze the
performance of Algorithm 3 by the following result.

Proposition 3: If we repeat Algorithm 3 a constant c num-
ber of times and then return the best graph among these
iterations, then the returned graph is an α–approximation with

probability at least 1−e−c( OPT
β

)α×OPT
, where OPT is the optimal

number of edges and β is the number of edges that can each
be added without changing the PMI.

We omit the proof of this proposition, because it follows
the same arguments given in [4, Proposition 4.2] for a similar
result on the undirected graphs.

V. NUMERICAL EVALUATION

We illustrate and compare the ZF-based and the distance-
based edge augmentation algorithms on random directed
networks with n = 100 nodes in which edge (i, j) exists
with probability p = 0.075, ∀i �= j. Each point in plots is an
average of 30 randomly generated instances. In Figure 3(a),
we plot ZF-based and distance-based bounds on the dimen-
sion of SSCS as a function of number of leaders, which are
chosen randomly. The distance-based bound is better than the
ZF-based, especially for a smaller number of leaders (as dis-
cussed in [9]). Figure 3(b) plots the number of edges added in
graphs as a function of number of (randomly selected) lead-
ers. We note that Algorithms 1 and 3 augment edges while
preserving the ZF-based and distance-based bounds on the
dimension of SSCS, respectively. For the same number of
leaders, the number of edges augmented by Algorithm 1 is
greater than the Algorithm 3 because the controllability bound
preserved by the ZF-based augmentation (Algorithm 1) is

smaller than the distance-based augmentation. The number of
edges in the original graphs are also shown. Figure 3(c) illus-
trates the result when we augment edges using Algorithms 1
and 3 while preserving the same (ZF-based) controllability
bound.

VI. CONCLUSION

In this letter, we presented edge augmentation algorithms
to add the maximum number of edges in a network while
preserving the ZF-based and the distance-based bounds on
the dimension of SSCS. When the bound on the dimen-
sion of SSCS to be preserved is smaller, a large number of
edges can be augmented. Though we considered networks with
Laplacian dynamics (2), both the distance-based and the ZF-
based methods are applicable to more generalized dynamics
in the form ẋ = Px + Bu (e.g., [5], [10]). In particular, the
ZF-based bound holds for any such linear dynamics on a
network where an edge (vi, vj) denotes that the correspond-
ing entry in the system matrix is non-zero. In comparison,
the distance-based method requires the system matrix P to
be in a class of matrices called the distance-information-
preserving matrices (as explained in [10]), which contain
the graph Laplacian as a special case. We aim to further
explore the relation between network controllability and edge
density to co-optimize robustness and controllability in the
future.
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