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Abstract

A key challenge for distributed real-time and embedded
(DRE) middleware is maintaining both system reliability
and desired real-time performance in unpredictable envi-
ronments where system workload and resources may fluc-
tuate significantly. This paper presents FC-ORB, a real-
time Object Request Broker (ORB) middleware that em-
ploys end-to-end utilization control to handle fluctuations in
application workload and system resources. The contribu-
tions of this paper are three-fold. First, we present a novel
utilization control service that enforces desired CPU utiliza-
tion bounds on multiple processors by adapting the rates
of end-to-end tasks within user-specified ranges. Second,
we describe a set of middleware-level mechanisms designed
to support end-to-end tasks and distributed multi-processor
utilization control in a real-time ORB. Finally, we present
extensive experimental results on a Linux testbed. Our re-
sults demonstrate that our middleware can maintain desired
utilizations in face of uncertainties and variations in task
execution times, resource contentions from external work-
loads, and permanent processor failure. FC-ORB demon-
strates that the integration of utilization control, end-to-end
scheduling and fault-tolerance mechanisms in DRE middle-
ware is a promising approach for enhancing the robustness
of DRE applications in unpredictable environments.

1 Introduction

Distributed real-time and embedded (DRE) applications
have stringent requirements for end-to-end timeliness and
reliability whose assurance is essential to their proper op-
eration. In recent years, many DRE systems have become
open to unpredictable operating environments where both
system workload and platform may vary significantly at run
time. For example, the execution of data-driven applica-
tions such as autonomous surveillance is heavily influenced
by sensor readings. External events such as detection of an
intruder can trigger sudden increase in system workloads.
Furthermore, many mission-critical applications must con-
tinue to provide real-time services despite hardware fail-

ures, software faults, and cyber attacks.
While DRE middleware has shown promise in improv-

ing the real-time properties of many applications, existing
middleware systems often do not work well in unpredictable
environments due to their dependence on traditional real-
time schedulability analysis. When accurate knowledge
about workloads and platforms is not available, a DRE ap-
plication configured based on schedulability analysis may
suffer deadline misses or even system crash [18]. A critical
challenge faced by application developers is to achievero-
bustguarantees on real-time performance in unpredictable
environments. Since in DRE systems, an end-to-end ap-
plication that violates its real-time properties is equivalent
to (or sometimes even worse than) an application that does
not perform its computation, utilization guarantees affect
directly the availability of the end-to-end application.

This paper presents the design and empirical evaluation
of an adaptive middleware calledFC-ORB(Feedback Con-
trolled ORB) that aims to enhance the robustness of DRE
applications. The novelty of FC-ORB is the integration
of end-to-end scheduling, adaptive QoS control, and fault-
tolerance mechanisms that are optimized for unpredictable
environments. Specifically, this paper makes three contri-
butions.

• End-to-End Real-Time ORB: Our ORB service sup-
ports end-to-end real-time tasks based on the end-to-
end scheduling framework [16]. The FC-ORB ar-
chitecture is designed to facilitate efficient end-to-end
adaptation and fault-tolerance in memory-constrained
DRE systems.

• End-to-End Utilization Control: The utilization con-
trol service enforces desired CPU utilizations in a
DRE system despite significant uncertainties in system
workloads. The core of the utilization control service
is a distributed feedback control loop that coordinates
adaptations on multiple interdependent processors.

• Adaptive Fault Tolerance: FC-ORB handles proces-
sor failures with an adaptive strategy that combines re-
configurable utilization control and task migration. A
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unique feature of our fault tolerance approach is that it
can maintainreal-timeproperties for DRE applications
after a processor failure.

FC-ORB has been implemented and evaluated on a
Linux platform. Our experimental results demonstrate that
FC-ORB can significantly improve the end-to-end real-time
performance of DRE middleware in face of a broad set of
dynamics including uncertainties and fluctuations in task
execution times, resource contention from external work-
loads, and processor failures. FC-ORB demonstrates that
the integration of utilization control, end-to-end schedul-
ing and fault-tolerance mechanisms in DRE middleware is
a promising approach for enhancing the robustness of DRE
applications in unpredictable environments.

The rest of the paper is organized as follows. Section 2
describes the design of the FC-ORB architecture. Section
3 presents the experimental results. Section 4 highlights
the contributions of FC-ORB by comparing it with related
works. Section 5 concludes the paper.

2 Design of the FC-ORB Architecture

In this section, we first introduce the end-to-end task
model and scheduling framework supported by FC-ORB.
We then describe the main components of FC-ORB: the
end-to-end ORB service, the utilization control service, and
the adaptive fault-tolerance mechanisms.

2.1 Applications

FC-ORB supports an end-to-end task model [16] em-
ployed by many DRE applications. An application is com-
prised ofm periodic tasks{Ti|1 ≤ i ≤ m} executing onn
processors{Pi|1 ≤ i ≤ n}. TaskTi is composed of a chain
of subtasks{Tij |1 ≤ j ≤ ni} which are implemented as a
sequence of object operations on different processors. The
invocation of a subtaskTij(1 < j ≤ ni) is triggered by its
predecessorTij−1 through a remote operation request. A
non-greedy synchronization protocol called release guard
[31] is used to ensure that the interval between two consec-
utive releases of the same subtask is not less than its period.
Hence, all the subtasks of a periodic task share the same rate
as the first subtask. In FC-ORB, the rate of a task (and all
its subtasks) can be adjusted by changing the rate of its first
subtask. An example DRE application with two end-to-end
tasks running on three processors is shown in Figure 1.

Our application model has two important properties.
First, while each subtaskTij has anestimatedexecution
time cij available at design time, itsactual execution time
may be different from its estimation and may vary at run-
time. Such uncertainty is common for DRE systems op-
erating in unpredictable environments. Second, the rate
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Figure 1. An example DRE application

of a taskTi may be dynamically adjusted within a range
[Rmin,i, Rmax,i]. This assumption is based on the fact that
the task rates in many DRE applications (e.g., digital con-
trol [20][27], sensor update, and multimedia [4]) can be dy-
namically adjusted without causing system failure. A task
running at a higher rate contributes a higher value to the
application at the cost of higher utilization. For instance,
although a digital control system usually has better control
performance when it executes at a higher rate, it can usually
remain stable when executing at a lower rate.

Each taskTi is subject to an end-to-end soft deadline
related to its period. FC-ORB implements the end-to-end
scheduling approach [31] to meet task deadlines. The dead-
line of a task is divided into subdeadlines of its subtasks
[9][22]. The release guard protocol is used to synchro-
nize the execution of subtasks such that each subtask can be
modeled as a periodic task. Hence, the problem of meeting
the deadline is transformed to the problem of meeting the
subdeadline of each subtask. A well known approach for
meeting the subdeadlines on a processor is to ensure that its
utilization remains below its schedulable utilization bound
[13][15]. Therefore the end-to-end scheduling approach en-
ables FC-ORB to meet end-to-end deadlines by controlling
the utilizations of all processors in the system.

2.2 Middleware Support for End-to-End Tasks

In this subsection we first present how FC-ORB im-
plements end-to-end tasks, and then introduce the priority
management strategy.

2.2.1 Implementation of End-to-End Tasks

Figure 2 illustrates the FC-ORB implementation of the ex-
ample DRE application shown in Figure 1. Each subtask is
executed by a separate thread whose priority is decided by
a priority manager. In Figure 2, each dashed box spanning
from the application layer to the ORB core layer represents
a subtask in Figure 1. Every subtask is associated with a
separate Reactor [23] to create timeout events and to man-
age communication connections.

As shown in Figure 2, the first subtask of a task is imple-
mented with a periodic ACE timer, a Reactor and a Connec-
tor [24]. The timer periodically triggers a local operation
(e.g., a method of an object) which implements the func-
tionality of this subtask. Following the execution of this
operation, a one-way remote operation request is pushed
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Figure 2. FC-ORB’s end-to-end architecture

through the Connector to the succeeding subtask that is lo-
cated on another processor. The succeeding subtask em-
ploys an Acceptor [24] to accept the request from its pre-
ceding subtask. Each pair of Connector and Acceptor main-
tains a separate TCP connection to avoid priority inversion
in the communication subsystem. The release guard proto-
col enforces that the interval between two successive invo-
cations of a same subtask is lower bounded by its period.
Earlier research has shown that the release guard protocol
can effectively reduce the end-to-end response time and jit-
ter of tasks in DRE systems [31]. FC-ORB implements the
release guard protocol with a FIFO waiting queue and one-
shot ACE timers. Upon receiving a remote operation re-
quest, a subtask compares the current time with the last in-
vocation time of this operation. Based on the release guard
rules [31], the subtask either immediately invokes the re-
quested operation or enqueues this request to the waiting
queue if the request arrives too early. When the request
is enqueued, a one-shot ACE timer is registered with the
Reactor to trigger the requested operation at the time that
equals the last invocation time plus the task’s period. After
the one-shot timer fires and the enqueued request is served,
a remote operation request is sent to the next subtask in the
end-to-end task chain. An end-to-end real-time task is fin-
ished when the execution of its last subtask is finished.

2.2.2 Priority Management

The integration of end-to-end scheduling and utilization
control introduces new challenges to the design of schedul-
ing mechanisms in ORB middleware. For instance, the
rate adaptation mechanism adopted by FC-ORB and sev-
eral other projects [18][19] may dynamically change the
rates of end-to-end tasks. This may cause the middleware
to change the priorities of all its subtasks, e.g., when the
Rate Monotonic Scheduling (RMS) policy is used. To sat-
isfy the special requirements posed by rate adaptation and
end-to-end scheduling, our ORB service is configured with
theserver-declared prioritymodel [25] and thethread-per-

subtaskconcurrency architecture.
To support the server-declared priority model, FC-ORB

implements a priority manager on each processor to assign
priorities to local subtasks. The incoming requests from an-
other processor are served by a thread with a real-time pri-
ority dictated by the priority manager located on the host
processor. Currently the priority manager only supports the
RMS policy, although the following discussions are also
applicable to other rate- or deadline-dependent scheduling
policies (note that task deadlines are usually related to their
periods). There are several advantages of using server-
declared priority model in the FC-ORB system. First, each
processor is able to change thread priorities locally, based
on the current rates of the subtasks located on it, so a pro-
cessor only needs to know the local subtasks. This makes
the system more scalable to large applications. Moreover,
the server-declared model has less overhead because it does
not have to adjust a thread’s priority every time the priority
of its predecessor subtask is changed, as it would do with
the client-propagated model.

The thread-per-priority concurrency architecture has
been adopted in existing DRE middleware (e.g., [26]). In
this model,the same thread is responsible for executing all
subtasks with a same priority. This is because the work-
load is assumed to use only a limited number of fixed task
rates. However, this concurrency architecture is not suit-
able for rate adaptation. Due to rate adaptation, the rates
and thus the priorities of subtasks vary dynamically at run-
time. In such situations, the thread-per-priority architecture
would require the ORB to dynamically move a subtask from
one thread to another thread which can introduce significant
overhead.

To avoid this problem FC-ORB implements the thread-
per-subtask architecture that executes each subtask with
a separate thread. FC-ORB adjusts the priorities of the
threads only when theorder of the task rates is changed.
While the task rates may vary at every control period, the
order of task rates often changes at a much lower frequency.
Therefore, the thread-per-subtask architecture enables FC-
ORB to adapt task rates in a more flexible way, with less
overhead.

A potential advantage of the thread-per-priority archi-
tecture is that it may need fewer threads to execute ap-
plications. However, as FC-ORB is targeted at memory-
constrained networked embedded systems that commonly
have limited number of subtasks on a processor, each sub-
task can be easily mapped to a thread with a unique native
thread priority even in a thread-per-subtask architecture.

2.3 End-to-End Utilization Control Service

FC-ORB allows users to specify a set of application pa-
rameters in a configuration file that is used to initialize the

3



middleware when the system is started. Configuration pa-
rameters include the desired CPU utilization on each pro-
cessor, and the allowed range of rate for each real-time task.
The utilization control service dynamically enforces the de-
sired CPU utilizations on all processors by adapting the
rates of real-time tasks within the specified ranges, despite
significant uncertainties and fluctuation in system workload
and platform. Therefore, to guarantee end-to-end deadlines,
the application users only need to specify the utilization ref-
erence of each processor to a value below its schedulable
utilization bound.

In the rest of this subsection we first give an overview of
the feedback control loop of the utilization control service,
and then describe each component of the loop in detail.

2.3.1 Feedback Control Loop

The utilization control service implements the EUCON al-
gorithm [19] as a distributed feedback control loop in the
middleware. As shown in Figure 3, the feedback control
loop is composed of a utilization monitor, a rate modulator
and a priority manager on each processor, and a centralized
controller.

As shown in Figure 3, the three components of the feed-
back control loop on an application processor (i.e., a pro-
cessor executing applications and the ORB) are executed
by a separate thread called thecontrol thread. This control
thread has the highest priority in the middleware system so
that the feedback control loop can be executed in overload
conditions, when it is needed most. The controller is imple-
mented as an independent process that can be deployed on a
separate processor or on an application processor. The con-
troller also serves as a coordinator of the FC-ORB system.
Every application processor in the system tries to connect
with the controller through a TCP connection (calledfeed-
back lane) when the node is started. Once all application
processors are connected to the controller, the whole sys-
tem starts to run the configured application.

The feedback control loop is invoked in the end of every
sampling period. It works as follows: (1) the utilization
monitor on each processor sends its utilization in the last
sampling period to the controller; (2) the controller collects
the utilizations from all processors, computes the new task
rates, and sends the new task rates to the rate modulators
on all processors where the tasks are running; (3) the rate
modulators on processors that host the first subtasks of tasks
change the rates of the first subtasks according to the input
from the controller; and (4) the priority manager on each
processor check and adjust the thread priorities based on
the new task rates if necessary.

2.3.2 Control Components

We now present the details of each utilization control com-
ponent.

• Controller: The controller is implemented as a single-
thread process. It employs a Reactor to interact with all
processors in the system. Each time its periodic timer
fires, it sends utilization requests to all application pro-
cessors through the feedback lanes. The incoming
replies are registered with the Reactor as events to be
handled asynchronously. This enables the controller to
avoid being blocked by an overloaded application pro-
cessor. After it collects the replies from all processors,
it executes aModel Predictive Control(MPC) algo-
rithm proposed in [19] to calculate the new task rates.
Then, for each task whose rate needs to be changed,
the controller sends the task’s new rate to all proces-
sors that host one or more subtasks of the tasks whose
rates have been changed. If a processor does not reply
in an entire control period, its utilization is treated as
100%, as the controller assumes this processor is satu-
rated by its workload.

• Utilization Monitor: The utilization monitor uses the
/proc/stat file in Linux to estimate the CPU utilization
in each sampling period. The /proc/stat file records
the number of jiffies (usually 10ms in Linux) when
the CPU is in user mode, user mode with low priority
(nice), system mode, and when used by the idle task,
since the system starts. At the end of each sampling
period, the utilization monitor reads the counters, and
estimates the CPU utilization as 1 minus the number
of jiffies used by the idle task in the last sampling pe-
riod divided by the total number of jiffies in the same
period.

• Rate Modulator: A Rate Modulator is located on
each processor. It receives the new rates for its re-
mote invocation requests from the controller through
the feedback lane, and resets the timer interval of the
first subtask of each task whose invocation rate has
been changed.

• Priority Manager: All processors in FC-ORB as-
sign priorities to their subtasks based on a real-time
scheduling algorithm (e.g., RMS). It is important to
strictly enforce the scheduling algorithm to achieve de-
sired real-time performance. However, as a result of
rate adaptation, a task with a rate higher than another
task could be assigned a lower rate in the next sampling
period. Consequently, the priority of this task has to
be adjusted at run-time. The priority manager on each
processor checks the rate order of all subtasks on this
processor. If the rate order of two or more subtasks
is reversed, the priority manager reassigns the correct
priorities for the threads of those subtasks.
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Figure 3. The distributed feedback control loop of the utilization control service

2.4 Fault Tolerance

A robust DRE middleware must maintain both reliabil-
ity and real-time properties required by the applications
despite partial system failures. Traditional fault-tolerance
mechanisms usually focus on reliability aspects of the sys-
tem based onentity redundancy. No single point of failure,
transparent failover and transparent redirection and reinvo-
cation are among the requirements of a fault-tolerant ORB
[6]. However, less attention has been paid to maintaining
desired real-time properties in face of faults.

Before describing the fault tolerance techniques in FC-
ORB, we first introduce the fault model. FC-ORB is de-
signed to handle persistent single processor failure. We as-
sume that the communication between the remaining pro-
cessors does not fail and the network is not overloaded.
Our assumption regarding the network is reasonable for a
common class of DRE systems where processors are con-
nected with a switched/fast Ethernet LAN with sufficient
bandwidth.

FC-ORB improves system robustness in terms of both
reliability and real-time properties by integrating three com-
plementary mechanisms. First, FC-ORB provides replica-
tion for subtasks and support transparent failover to backup
subtasks located at different processors in face of proces-
sor failure. Second, after a processor fails, the remaining
processors may experience dramatic workload increase due
to the activation of the backup subtasks, which may cause
them to miss deadlines or fail. A unique feature of FC-ORB
is that it can effectively handle the workload increase via
utilization control so that applications can maintain desired
real-time properties despite processor failure. Finally, the
FC-ORB controller can automatically reconfigure itself at
runtime to rebuild its control model, in order to effectively
control the DRE system whose deployment is changed due
to processor failure.

In our replication mechanism, a subtask may have a
backup subtask located on a different processor. For exam-
ple, the subtaskT13 shown in Figure 1 can have a backup
subtaskT ′13 located on processorP1. As a result, when pro-

cessorP3 fails because of hardware failure, the execution
of subtaskT13 is migrated to processorP1 to continue auto-
matically. Similar to theCOLD PASSIVEreplication style
used in Fault-Tolerant CORBA (FT-CORBA) [6], all sub-
tasks are assumed to be stateless (except the connections
between subsequent subtasks which are maintained by the
middleware) so that the overhead of active state synchro-
nization is avoided.

The failover mechanism works as follows. In the normal
mode, each subtask pushes remote operation requests only
to the primary instance of its successor. As a result, the
backup instance does not receive any requests and its thread
remains idle. After a processor fails, the predecessor of a
subtask located on the failed processor detects the commu-
nication failure based on the underlying socket read/write
errors. The predecessor immediately switches the connec-
tion to the backup instance of its successor and sends the
remote operation requests to it. In the case when the failed
processor hosts the first subtask of a task, the controller acti-
vates the backup instance of the subtask. Consequently, the
execution of the end-to-end tasks is resumed after a tran-
sient interruption.

As a part of the fault-tolerant support, the controller in
the utilization control service has been designed to be self-
configurable. This is important because the control algo-
rithm relies on knowledge about the subtask allocation in
order to compute correct task rates [19]. When the con-
troller detects communication failure with a processor in the
system, it first cancels the periodic timer to pause the feed-
back control loop. In its internal control model, it then re-
moves the failed processor and moves the subtasks located
on the failed processor to the corresponding backup pro-
cessors. After rebuilding the control model, the controller
re-initializes itself and restarts the timer to resume the feed-
back control loop.

A disadvantage of the centralized control scheme is that
the controller becomes a single point of failure. To mitigate
this problem, FC-ORB can be easily extended to replicate
the controller as well. In the extension, FC-ORB can ac-
tively maintain the state consistency between the primary
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controller and the backup controller, in a way similar to the
ACTIVEreplication style used in FT-CORBA [6]. When the
controller executes in replicated mode, all processors send
their CPU utilizations to both the primary and the backup
controllers at every sampling instant. The backup controller
performs control computation just like the primary con-
troller. The difference is that the backup controller doesnot
send the resultant new task rates to any processor. Instead,
it uses this method to keep the state variables in the backup
controller consistent with the primary controller. The pri-
mary and backup controllers can exchange heartbeat mes-
sages in every sampling period. Once the backup controller
stops receiving heartbeats from the primary controller, the
backup controller takes over the utilization control service.
This feature will allow FC-ORB to maintain control of the
entire system even after controller failures.

2.5 Implementation

FC-ORB 1.0 has been implemented in C++ using ACE
5.4 on Linux. FC-ORB is based on the FCS/nORB middle-
ware [18] which integrates asingle-processorfeedback con-
trol scheduling service and a light-weight real-time ORB
middleware called nORB [30]. FC-ORB is specialized for
memory-constrained DRE systems by supporting a smaller
set of features than general-purpose DRE middleware such
as TAO. The entire FC-ORB middleware (excluding the
code in ACE library and IDL library) is implemented in
7017 lines of C++ code. The controller is implemented
in 1995 lines of C++ code. FC-ORB currently implements
the control algorithm based on the constrained least square
solver (lsqlin) in MATLAB. The controller process opens a
MATLAB process at start time. In the end of each sampling
period, the controller collects the utilizations from applica-
tion processors and calls the solver in MATLAB with the
utilizations as parameters. The solver computes the control
input and return it to the controller. We choose the MAT-
LAB solver as a proof of concept because it is a highly op-
timized and widely used solver. We plan to replace MAT-
LAB with a native implementation of the solver in the fu-
ture. All the code is open-source and can be downloaded
from http://deuce.doc.wustl.edu/FCSnORB/FC-ORB/.

3 Empirical Evaluation

In this section, we present the results of four sets of ex-
periments run on a distributed testbed with five machines.
Experiments I evaluates FC-ORB’s performance when task
execution times deviate from their estimations. Experiment
II examines FC-ORB’s capability of handling disturbances
from external workloads. Experiment III tests FC-ORB’s
robustness in face of processor failure. Experiment IV com-
pares the code size of FC-ORB with other embedded ORB

middleware systems. Experimental results for varying exe-
cution times and run-time overhead can be found in an ex-
tended version of this paper [32].

3.1 Experimental Setup

All experiments are conducted on a testbed of five ma-
chines. All applications and the ORB service run on
a Linux cluster composed of four Pentium-IV machines:
Ron, Harry, Norbert and Hermione. Ron and Hermione are
2.80GHz and Harry and Norbert are 2.53GHz. All four ma-
chines are equipped with 512KB cache and 512MB RAM,
and run KURT Linux 2.4.22. The controller is located on
another Pentium-IV 2GHz machine with 512KB cache and
256MB RAM. The controller machine runs Windows XP
Professional with MATLAB 6.0. The four machines in the
cluster are connected via an internal switch and communi-
cate with the controller machine through the departmental
100Mbps LAN.

All the experiments run a medium-sized workload that
comprises 12 tasks (with a total of 25 subtasks). The tasks
include 8 end-to-end tasks (tasksT1 toT8) and 4 local tasks.
Figure 4 shows how the 12 tasks are distributed on the 4 ap-
plication processors. A processor failure incident on Nor-
bert is emulated in Experiment III to test FC-ORB’s fault-
tolerance capability. Hence in Figure 4, we also show the
configured backup subtasks for all subtasks on Norbert that
belong to an end-to-end task. There is no backup subtask
for local taskT11,1 as we assume that the local task is spe-
cific to Norbert.

The subtasks on each processor are scheduled by the
RMS algorithm [15]. Each task’s end-to-end deadline is
di = ni/ri(k), whereni is the number of subtasks in task
Ti andri(k) is the current rate ofTi. Each end-to-end dead-
line is evenly divided into subdeadlines for its subtasks. The
resultant subdeadline of each subtaskTij equals its period,
1/ri(k). Hence the schedulable utilization bound of RMS
[15],B = m(21/m−1) is used as the utilization set point on
a processor, wherem is the number of subtasks (including
backup subtasks) on this processor. Specifically, the utiliza-
tion set points for the four experiment processors are: Ron
(72.4%), Harry (72.4%), Norbert (74.3%) and Hermione
(72.4%). All (sub)tasks meet their (sub)deadlines if the de-
sired utilization on every processor is enforced. The sam-
pling period of the utilization control service isTs = 4 sec-
onds.

To evaluate the robustness of FC-ORB when execution
times deviate from the estimations, the execution time of
each subtaskTij can be changed by tuning a parameter
called theexecution-time factor, etfij(k) = aij(k)/cij ,
whereaij is the actual execution time ofTij . The execu-
tion time factor (etf) represents how much the actual execu-
tion time of a subtask deviates from the estimation. Theetf
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Figure 4. A medium size workload

(and hence the actual execution times) may be kept constant
or changed dynamically in a run. In the following we use
inversed etf(ietf) because DRE systems commonly have
undesired oscillation when execution times are underesti-
mated (i.e.etf > 1). Specifically,ieftij(k) = 1/etfij(k).

We compare FC-ORB against a baseline called OPEN.
In OPEN, the utilization control service of FC-ORB is
turned off and the middleware becomes a representative
real-time ORB without control. OPEN uses a typical open-
loop approach to assign task rates based onestimatedex-
ecution time to achieve the desired utilizations. OPEN re-
sults in desired utilization when estimated execution times
are accurate (i.e., whenietf = 1). However, it causes un-
derutilization when execution times are overestimated (i.e.,
ietf > 1), and over-utilization when execution times are
underestimated (i.e.,ietf < 1). This is a common problem
faced by application developers because it is often difficult
to estimate a tight bound on execution times, especially in
unpredictable environment where execution times are heav-
ily influenced by the value of sensor data or user input.

3.2 Experiment I: Uncertain Execution Times

In this subsection we evaluate FC-ORB’s performance
when task execution times deviate from the estimations.
In each run of this experiment, all subtasks share a fixed
execution-time factor (ietf).

First, we run experiments for OPEN which chooses task
rates based on estimated execution times so that the esti-
mated utilizations of all processors equal their set points.
While the system achieves the desired utilizations in the
ideal case whenietf = 1, all processors freezes when we
set theietf to 0.5. This is not surprising, because the actual
execution time of every subtask in the system istwice its
estimated execution time whenietf = 0.5. Consequently,
the requested utilization on each processor is about 145%
(twice of the desired utilization). Since all FC-ORB threads
run at real-time priorities that are higher than the kernel pri-

ority on Linux, no kernel activities are able to execute caus-
ing the system to crash. This result shows that uncertain-
ties in workloads can significantly degrade the robustness
of applications on DRE middleware. On the other hand, the
utilizations of all processors drop to only around 18% under
OPEN when the actual execution times are only aquarter
of their estimations (ietf = 4). This results in a extremely
underutilized system and unnecessarily low task rates.

In contrast, FC-ORB achieves the desired utilizations on
all processors even when execution times deviate signifi-
cantly from the estimations. Figure 5(a) shows the utiliza-
tions for FC-ORB when the average execution time of ev-
ery subtask is twice its estimation. In the beginning, all
processors are overutilized because of the initial task rates.
The utilization control service quickly decreases the task
rates until the utilizations of all processors converge to the
desired levels in around 400 seconds. Figure 5(b) shows
the utilizations of all processors when the execution time
of every subtask is severely overestimated (ietf = 4). In
this case, all processors are initialized underutilized due to
the low execution times. FC-ORB then increases the task
rates until the utilizations of all processors converge to the
set points roughly at 500 seconds. In this experiment, the
utilization control service successfully prevents the system
from crashing and underutilization via rate adaptation.

To examine FC-ORB ’s performance under different ex-
ecution time factors, we plot the mean and standard de-
viation of utilization on Harry during each run in Figure
6. Every data point is based on the measured utilization
u(k) from time 1200 seconds to 1600 seconds to exclude
the transient response at the beginning of each run. FC-
ORB consistently achieves the desired utilizations for all
tested execution-time factors within theietf range[0.5, 10]
which corresponds to 20 times increase in execution times.
This result shows that FC-ORB can provide robust guaran-
tees on system reliability and real-time performance under
a wide range of operating conditions. Interestingly, when
the ietf is lower or equal to 0.33, the system freezes due
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(a) ietf = 0.5
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(b) ietf = 4

Figure 5. CPU utilizations under FC-ORB when task execution times deviate from estimations
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Figure 6. The average and deviation of CPU
utilization on Harry under different ietf

to the extremely high utilization in the beginning of the run.
Even though the control thread runs at highest real-time pri-
ority, the communication subsystem of Linux runs only at
kernel priority. Therefore, the control thread of FC-ORB
is blocked on communication because the Linux kernel is
preempted by the middleware threads. As a result, the sys-
tem fails to recover promptly from overload when theietf is
equal to or lower than 0.33, even with the help of FC-ORB.
In addition, as observed in [19], the EUCON algorithm can
cause performance oscillation when execution times are un-
derestimated (ietf < 1). Therefore, application developers
should use pessimistic estimations of task execution times
in FC-ORB . A fundamental advantage of FC-ORB is that
it does not cause system underutilization even when task
execution times are severely overestimated.

3.3 Experiment II: External Disturbances

We now evaluate FC-ORB under resource contention
from external workloads that are not controlled by FC-
ORB. Such external disturbances may be caused by a va-
riety of sources including (i) processing of critical events
that must be executed at the cost of other tasks, (ii) varying
workload from a different subsystem (e.g., legacy software
from a different vendor), and (iii) software faults or adver-
sarial cyber attacks. To stress-test FC-ORB, we emulate the
external disturbances using a high priority real-time process

to compete with FC-ORB for CPU resource. To investi-
gate the robustness of FC-ORB we create both periodic and
aperiodic disturbances. In the first set of runs, the external
processperiodically invokes a function with afixedexecu-
tion time of 100ms every 500ms. In the second set of runs,
the external processaperiodicallyinvokes another function
with a randomexecution time. Both the request interarrival
time and the execution time follow exponential distributions
with mean values of 50ms and 10ms, respectively.

The workload controlled by FC-ORB has anietf = 2.
Here we manually configure the task rates in OPEN such
that the workloads achieve the desired utilizations without
the external disturbances. As shown in Figure 7(a), the sys-
tem does achieve the required performance initially. How-
ever, at time 240sec, 360sec, 480sec and 600sec, the exter-
nal task is activated sequentially on Ron, Harry, Norbert and
Hermione. Consequently, the utilizations of all processors
are raised to 100%. In contrast to OPEN, Figure 7(b) shows
that FC-ORB successfully maintains the desired utilizations
and thus tolerates the external resource contention. Similar
situations occur for aperiodic disturbance, except that in this
case, both OPEN and FC-ORB have higher fluctuation. De-
spite noise introduced by the aperiodic requests, FC-ORB
still successfully maintains the CPU utilization under 80%
most of the time and achieves the desired CPU utilizations
on average.

3.4 Experiment III: Processor Failure

In this experiment we evaluate FC-ORB’s ability to re-
cover from processor failure. At 800 seconds, we emulate
the failure of Norbert by using the Linuxkill command to
eliminate the process which carries FC-ORB and the appli-
cation. The CPU utilization of Norbert immediately drops
to almost zero because no other application is running on
Norbert. All subtasks on Norbert have backup subtasks lo-
cated on other processors as shown in Figure 4, except the
local taskT11,1. Their preceding subtasks on other proces-
sors detect the communication failure with Norbert and then
redirect the remote operation requests to the backup sub-
tasks. Hence, the load of Norbert is distributed to the other
3 processors in the system.

As demonstrated in Figure 8, the CPU utilizations of the
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(a) OPEN with periodic disturbance
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(b) FC-ORB with periodic disturbance
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(c) OPEN with aperiodic disturbance
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(d) FC-ORB with aperiodic disturbance

Figure 7. CPU utilizations of all processors under external disturbances ( ietf = 2)

other 3 processors increase simultaneously after the fail-
ure of Norbert. At the same time, the controller on the
control processor re-configures itself to rebuild its control
model after it detects the communication failure with Nor-
bert. Thanks to the utilization control service, the high uti-
lizations on the other 3 processors quickly converge to the
desired utilization bounds within 100sec which ensures de-
sired end-to-end real-time performance. Our results demon-
strate that the system successfully recovers from a processor
failure of a processor and the utilization of the remaining
processors converges to a desirable state that ensures the
real-time properties of the end-to-end application.

The fault injection using thekill command allows us to
focus on the robustness of the utilization control service
rather than the error detection method. Error detection is a
complementary problem to the FC-ORB adaptation for er-
ror recovery. Our experimental evaluation of the FC-ORB
robustness can be extended to more realistic processor crash
failures assuming an appropriate error detection method.
The time required for error recovery will include both the
time needed for error detection and the convergence of the
utilization control service. Formally evaluating the avail-
ability of the distributed application requires the definition
of an appropriate benchmark [1][21], and is a subject of fu-
ture work.

3.5 Experiment IV: Code Size

As FC-ORB is targeted at embedded systems, code size
becomes a very important part of the overall memory foot-
print since typically all code of an embedded system is
preloaded into its memory before execution. We com-
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Figure 8. The CPU utilization of all processors
while Norbert has a system failure ( ietf = 2)

pare the code size of FC-ORB with two other real-time
embedded middleware called nORB [30] and FCS/nORB
[18]. nORB is a light-weight real-time ORB based on a
client/server architecture. It does not support end-to-end
tasks. FCS/nORB integrates a feedback control real-time
scheduling service with nORB. Its key difference from FC-
ORB is that its can only control the real-time performance
(utilization or deadline miss ratio) of asingleserver. We
choose nORB and FCS/nORB as baselines for comparison
because they are also specialized for memory-constrained
embedded systems. Earlier results [30] showed that nORB
has significantly smaller code size than general-purpose
DRE middleware such as TAO [26].

Figure 9 shows the code size of a same application im-
plemented on different middleware. To have a fair compar-
ison, we measure the average code size of the client and
server for nORB and FCS/nORB. For FC-ORB , we mea-
sure the average code size on the four machines used in our
experiments. Interestingly, Figure 9 shows that FC-ORB
has the minimum code size, despite the fact that it provides
more sophisticated services (e.g., release guard and end-to-
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Figure 9. Code size comparison with other
embedded middleware

end control) than nORB and FCS/nORB. The reduction in
code size is attributed to simplification of the ORB imple-
mentation. For example, in FCS/nORB, each subtask is ex-
ecuted by a pair of threads connected through a FIFO queue.
The thread pair design enables FCS/nORB to support multi-
client connection and to separate its application logics from
the underlying network communication. In contrast, FC-
ORB only uses a single thread to execute a subtask and han-
dle the connections because FC-ORB is implemented as a
peer-to-peer architecture with the assumption that network
is not a major problem.

4 Related Work

Adaptive middleware is emerging as a core building
block for DRE systems. For example, TAO [26], dynam-
icTAO [11], ZEN [10], and nORB [30] are adaptive mid-
dleware frameworks that can (re)configure various proper-
ties of ORB middleware at design- and run-time. Higher-
level adaptive resource management frameworks, such as
QuO [34], Kokyu [5] and RT-ARM [8], leverage lower-level
mechanisms provided by ORB middleware to (re)configure
scheduling, dispatching, and other QoS mechanisms in
higher-level middleware. ORB services such as the TAO
Real-Time Event Service [7] and TAO Scheduling Ser-
vice [5] offer high-level services for managing reliability
and real-time properties of interactions between application
components. FC-ORB has several important features that
distinguishes itself from earlier work on adaptive middle-
ware. First, FC-ORB integrates the end-to-end schedul-
ing service with a utilization control service. This inte-
grated approach enables the middleware to meet end-to-end
deadlines by dynamically controlling the utilizations on in-
dividual processors. Second, in contrast to earlier works
that rely on heuristics-based adaptive techniques, FC-ORB
implements control algorithms that has been rigorously de-
signed and analyzed based on a control-theoretic approach.
Finally, FC-ORB enhances traditional fault-tolerance mech-
anisms with utilization control techniques to handle proces-
sor failures.

Agilos [14] and ControlWare [33] were two earlier
control-based middleware framework for QoS adaptation.
However, they are targeted at multimedia and Internet

servers instead of DRE applications.
Several other projects also applied control theoretic ap-

proaches to real-time systems. For example, Steere, et al.,
developed a feedback based CPU scheduler [29] that coor-
dinated allocation of CPU cycles to consumer and supplier
threads in a modified Linux kernel. Abeni, et al., presented
analysis of a reservation-based feedback scheduler in [3].
Authors of [17] proposed a set of feedback control real-time
scheduling algorithms that provide deadline miss ratio and
utilization guarantees for single-processor systems. Feed-
back control real-time scheduling has also been extended to
handle distributed systems [19][28]. For systems requiring
discrete control adaptation strategies, hybrid control theory
has been adopted to control state transitions among different
system configurations [2][12]. A key difference between
the work presented in this paper and the related work is that
we describe the design and evaluation of a utilization con-
trol service in an ORB middleware, while the related work
is based either on simulations or kernel implementations.
ORB middleware is a particularly suitable layer for man-
agingend-to-endadaptation in distributed systems since it
operates at a broader (distributed) scope than stand-alone
operating systems.

In our earlier work we studied EUCON only through
control-theoretic analysis and simulation results. FC-ORB
implements and empirically evaluates the end-to-end uti-
lization service on an ORB middleware and a physical
testbed. Furthermore, we also extend the EUCON algo-
rithm with controller reconfiguration and replication tech-
niques for handling processor failures.

5 Conclusions

In summary, we have designed and implemented FC-
ORB, a real-time ORB middleware with a novel end-to-end
utilization control service. Our experiments on a physical
testbed has shown that (1) FC-ORB can enforce desired uti-
lizations on all processors in a DRE system, even when task
execution times deviate significantly from their estimated
values or vary significantly at run-time; (2) FC-ORB can
survive considerable resource contention imposed by exter-
nal disturbances; (3) FC-ORB enhances the robustness of
real-time properties to processor failures; (4) the middle-
ware layer instantiation of the end-to-end utilization control
service only introduces a small amount of processing and
memory overhead. These results demonstrate that the in-
tegration of end-to-end utilization control, fault-tolerance
mechanisms, and end-to-end scheduling in ORB middle-
ware is a promising approach to achieve robust real-time
performance guarantees for DRE applications. In the future,
we plan to enhance FC-ORB to incorporate other adaptation
mechanisms such as admission control and task realloca-
tion so that FC-ORB can be applied to a broader class of
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applications. An important research direction is to integrate
FC-ORB with advanced error detection and fault tolerance
techniques in order to handle more complex fault models.
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