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Abstract: Surveillance and convoy tracking applications often require groups of networked agents for redundancy and
better coverage. An important goal upon deployment is to establish a formation around a target. Although there
exist distributed algorithms using only local communication that achieve this goal, they typically ignore desta-
bilizing effects resulting from implementation uncertainties, such as network delays and data loss. This paper
resolves these issues by introducing a discrete-time distributed design framework that uses a compositional,
passivity-based approach to ensurelm2 -stability regardless of overlay network topology, in the presence of net-
work delays and data loss. For the restricted case of a uniform node degree in the overlay network topology,
the paper shows that asymptotic formation establishment isachieved. Finally, simulations of velocity-limited
unmanned air vehicles (UAVs) are presented that demonstrate the robustness of the network architecture to
network delays and data loss.

1 INTRODUCTION

Modern surveillance and convoy tracking applica-
tions often require deploying groups of unmanned
aerial vehicles (UAVs). The benefit of using multi-
ple UAVs is redundancy, which reduces the likelihood
of missing interesting events on the ground, in the
presence of obstructions caused by nonuniform ter-
rain, vegetation, or man-made structures. Further, the
additional UAVs provide greater breadth of coverage.
A central task for such multi-agent systems is to es-
tablish a formation around an area of interest. For
example, ann-gon with a target as its center, at the
appropriate radius, may simultaneously provide sig-
nificant redundancy and breadth of coverage.

Performing coordinated tasks in multi-agent sys-
tems using only local information has been studied
extensively over the past decade (Olfati-Saber et al.,
2007), (Ren et al., 2005), (Olfati-Saber, 2006). Typ-
ically, in group coordination the desired formation
emerges from the design of the control law. In (Fax
and Murray, 2004), the so-called information filter is
used for formation stability of LTI systems. For co-
ordination of nonlinear systems, contraction theory

with wave variable communication (Wang and Slo-
tine, 2006), explicit design of Lyapunov vector fields
(Lawrence et al., 2008), and passivity (Arcak, 2007),
(Ihle et al., 2007), (Bai et al., 2008), (Igarashi et al.,
2008), have been used successfully.

Much of the above work - especially the passivity-
based methods - has considered continuous-time sys-
tems; however, for implementation discrete-time de-
sign is needed. In addition, implementation uncer-
tainties such as network delays and data loss must
be taken into consideration. This paper focuses on
decoupling the control design and discrete-time im-
plementation by using a passivity-based framework
inspired by work in telemanipulation (Chopra et al.,
2008), port-Hamiltonian systems (Stramigioli et al.,
2005), and network control (Kottenstette et al., 2009).

The unifying concept in the aforementioned work
is the scattering formalism, which has traditionally
been applied to power variables (effort and flow)
while closing the loop on velocity. In this work, the
scattering formalism is used abstractly (without the
physical interpretation) to close the loop on position.

The contributions of this paper are three-fold.
First, we introduce a compositional network control



system (NCS) design approach that guarantees pas-
sivity of the networked system. Secondly, we show
that the coupled multi-agent network islm2 -stable for
any bidirectional overlay network with asymmetric
delays whenever the input-output mapping of each
agent is strictly-output passive. The stability re-
sult holds for packet-switched networks using easily
enforced constraints. Thirdly, for the single-input,
single-output (SISO) case, we perform steady-state
analysis and we show that the multi-agent network
can establish ann-gon upon deployment. Finally, we
provide simulations using Simulink/TrueTime to il-
lustrate the approach for controlling velocity-limited
quadrotor UAVs. Simulink is a graphical user envi-
ronment (GUI) used for the modeling, simulation, and
analysis of dynamical systems (MathWorks, 2008).
TrueTime extends Simulink with platform related
modeling concepts (i.e., networks, clocks, schedulers)
and supports simulation of networked and embedded
control systems with implementation effects (Ohlin
et al., 2007).

The rest of the paper is organized as follows: Sec-
tion 2 provides the formal problem statement and
other preliminaries. The distributed NCS design
framework is introduced in Section 3. The main the-
oretical results are detailed in Section 4. Section 5
presents simulations in Simulink/TrueTime illustrat-
ing our results. Finally, Section 6 provides concluding
remarks and future work.

2 PRELIMINARIES

Consider the problem ofn agents establishing a for-
mation around a target inR2. Assume a global inertial
coordinate system and suppose the starting positions
of the agents are arbitrary. The goal is to establish
ann-gon, where then agents tend to the coordinates
of the vertices asymptotically. Formally, we assign a
vertexνi of then-gon to agenti, with positionxi(k),
i = 1,2, . . . ,n. Then we require

lim
k→∞

‖xi(k)−νi‖2 = 0. (1)

We consider a network ofn interacting agents with
communication topology described by a connected
undirected graph,G= (V,E), whereV = {1,2, . . . ,n}
describes the agents andE = {(i, j)} models the bidi-
rectional communication. Additionally, each bidirec-
tional link may have asymmetric, time-varying de-
lays. The delays are denoteddi j (k) for link (i, j) ∈ E.

For the purpose of analysis, it is useful to intro-
duce theadjacency matrix, A = [ai j ], associated with
graphG (Godsil and Royle, 2001). For an undirected

graph, the adjacency matrix is a symmetric matrix
(i.e.,A = AT), and is mathematically defined by

ai j =

{

1 (i, j) ∈ E;
0 (i, j) /∈ E.

(2)

Additionally, we define the set ofneighbors, Ni , of a
nodei as those nodes which send messages toi, given
by Ni = { j ∈V | a ji 6= 0}. Finally, we denote the num-
ber of neighbors by|Ni | = ni.

The agents communicate and process signals in
the extendedl2-space of functions that mapN∪{0}
to R

m, denotedlm2e, which are mapped ontolm2 by the
truncation operator defined by

( f )N =

{

f (k) 0≤ k≤ N−1;
0 otherwise.

(3)

Further, for all f ,g∈ lm2e define

〈 f ,g〉N ,
N−1

∑
k=0

f T(k)g(k). (4)

We use definitions forlm2 -stability and passivity
for discrete-time systems, which are analogous to
the continuous-time counterparts in (van der Schaft,
1999):

Definition 1 Given a discrete-time system defined by
its input-output mapping, G: lm2e → lm2e, the discrete-
time system is lm

2 -stableif

u∈ lm2 =⇒ G(u) ∈ lm2 . (5)

Definition 2 Let G: lm2e → lm2e. Then, for all u∈ lm2e:

1. G is passiveif there exists some constantβ ∈ R

(called the bias) such that

〈G(u),u〉N ≥−β, ∀N ∈ N; (6)

2. G is strictly output passiveif there exists some
constantsβ ∈ R andε > 0 such that

〈G(u),u〉N ≥ ε‖(G(u))N‖2
2−β, ∀N ∈ N. (7)

We assume a synchronous network, with period
T.1 Further, each agent shares information only lo-
cally (no global shared resources). However, the de-
sired setpoints are calculated prior to deployment. Fi-
nally, the agents begin execution at time indexk = 0.

1We assume the agents use a clock synchronization
algorithm prior to deployment to ensure this assumption
holds.



3 NCS DESIGN

This section details the distributed network control
system (NCS) design. The objective is to provide
a passive-by-construction, discrete-time multi-agent
network. In general, the overlay network is bidi-
rectional with asymmetric delays. For simplicity,
consider the three node network shown in Figure 1.
Each node represents a UAV, with each edge model-
ing the communication between UAVs. Realistically,
each link in the network is subject to delay imposed
by packet handling and transmission delays. This
is modeled by the time-varying delays (e.g.,di j (k)),
shown in Figure 1. Theu andv variables in the fig-
ure are power wave variables, which are described in
Section 3.2.

Figure 1: A three node network with time-varying delays in
the communication links.

3.1 Agent Model

The agent model is shown in Figure 2. Each agenti
receives an input reference,r i , which influences the
output,yi , of the agent through the system mapping,
Hi . Hi describes a compensated plant, and is required
to be strictly output passive. The variablesxi and
yi are transformed into the wave domain through the
scattering transformation. The node’s wave variables
uii andvii are coupled to other nodes through a power
junction, PJi , which allows two or more systems to
be connected in a passivity-preserving manner (Kot-
tenstette et al., 2009). The scattering transformation
and power junction are crucial to ensuring passivity
of the networked system and will be described in the
next section.

For simplicity, we model the UAVs with a point
mass along two dimensions. We denote the point
mass system,Hp : fI → yI , in which fI ∈ R

2 is the
inertial control force andyI ∈ R

2 is the inertial posi-
tion as depicted in Figure 3. The equations of motion

Figure 2: Node architecture.

are

ẏI (t) = vI (t)

Mv̇I (t) = fI (t).

Using the point mass model for each agenti, we
design an inertial position control system, which we
denoteHI : ei → yI , shown in Figure 3. The inner loop
gain of the compensator isωcM (ωc > 0) and the outer
loop gainωc

2 . The overall equation of motion

ÿI = −ωcẏI −
ω2

c

2
(yI −ei) = −2ζωnẏI −ω2

n(yI −ei)

clearly indicates a stable second order system with
natural frequencyωn = ωc√

2
and damping coefficient

ζ = 1√
2
, whereyI = ei at steady state. It can be shown

that the inertial position control system is inside the
sector [a,1], where a = − 1

2(1+
√

2)
(Zames, 1966),

(Kottenstette and Porter, 2009). Therefore, the system
HI : ei → yI is not strictly output passive; however, by
adding a high-pass filter in parallel, the system may be
rendered strictly output passive, as depicted in Figure
4 (with c = 2). Sinceei = yi = yI at steady state, the
inertial position of the system may be directly con-
trolled. This model is discretized using a bilinear-like
transform, called the inner-product equivalent sam-
ple and hold (IPESH) transform, which preserves the
conic properties of the system (Kottenstette et al.,
2009).

Figure 3: Inertial position control system.



Figure 4: Strictly output passive inertial position control
system.

3.2 Network Model

In distributed control applications the information
transmitted across the network has inherent physical
meaning. It is well known that transforming these
physical variables into the wave domain can preserve
passivity and stability for a single bidirectional con-
nection (Chopra et al., 2008) and for star networks
(Kottenstette et al., 2009). In this paper, we extend
these approaches to distributed networks with arbi-
trary overlay topology. The network model is dis-
tributed in the sense that all nodes in the network com-
municate only locally.

We formally define the scattering transformation
as follows. For eachi ∈V, thescattering transforma-
tion produces power wavesuii (k) andvii (k) defined
by

uii (k) = 1√
2bi

(biyi(k)+xi(k)), (9a)

vii (k) = 1√
2bi

(biyi(k)−xi(k)). (9b)

This definition is similar to the one in (Niemeyer and
Slotine, 2004), with the force and velocity variables
replaced withxi andyi . In general, we place no re-
striction on the physical meaning ofxi andyi ; how-
ever, for our UAV model,xi andyi denote position.
The scattering transformation is treated as a mathe-
matical definition, with the characteristic impedance,
bi , having appropriate units for physical consistency.

Next, we define the power junction, which allows
two or more systems to be connected in the wave do-
main in a passivity-preserving manner.

Definition 3 Fix m, p ∈ N, p ≥ 2. Then, a power
junction is a function f: lmp

2e → lmp
2e , which satisfies

for all ξ ∈ lmp
2e and all k∈ Z

+ the inequality

ξT(k)ξ(k) ≥ f (ξ(k))T f (ξ(k)). (10)

The vectorξ(k) in the definition of the power junc-
tion is formed by concatenating thep inputs inlm2e into
a singlemp-dimensional column vector. For analyz-
ing our network model, it is useful to pair thep in-
puts to their corresponding outputs in the output col-
umn vector,f (ξ(k)), and partition the set of pairs into
two disjoint setsSin andSout. These sets denote the

net flow of power into and out of the power junction,
respectively. Formally, fori ∈ Sin and o ∈ Sout, let
ui ,vo ∈ lm2e denote the inputs andvi ,uo ∈ lm2e denote
the outputs of the power junction. Then (10) may be
rewritten as

∑
i∈Sin

uT

i (k)ui(k)−vT

i (k)vi(k) ≥

∑
o∈Sout

uT

o (k)uo(k)−vT

o (k)vo(k).
(11)

We implement each node’s power junction as a
linear set of equations. Specifically, we use the fol-
lowing equations. For eachi ∈V, j ∈ Ni , andk∈ Z

+,
the outgoing waves are computed as

ui j (k) = 1√
ni

uii (k), (12a)

vii (k) = 1√
ni ∑

j∈Ni

v ji (k). (12b)

Although the functional form of the power junc-
tion is not constrained to be linear, these equations
simplify the steady state analysis and exhibit a local
averaging behavior in regular networks. This can be
seen as follows. Consider the wave variables that in-
fluence the power junction at a given nodei, shown
in Figure 5, and supposeni = n j ≡ η, ∀i, j ∈ V (i.e.,
a regular network). Then, for eachj ∈ Ni , v ji (k) =
u ji (k−d ji(k)). Thus, an expression forvii (k) is given
by

vii (k) = 1√η ∑
j∈Ni

v ji (k)

= 1√
η ∑

j∈Ni

u ji (k−d ji (k))

= 1√η ∑
j∈Ni

1√η u j j (k−d ji(k))

= 1
η ∑

j∈Ni

u j j (k−d ji(k)).

Therefore, in regular networks, the input wave vari-
able,vii (k), is the average of its neighbors’ delayed
output wave variables,u j j (k−d ji(k)), j ∈ Ni .

Due to the presence of delays and data loss some
(or all) of the v ji (k) may not be received at time
k, in which casev ji (k) , 0. Handling delayed and
dropped packets as null packets satisfies the syn-
chronous assumption and preserves passivity (Chopra
et al., 2008). Before proceeding to describe the con-
straints on delayed and lost data, we prove our claim
that the implementation given by (12) satisfies the
definition of a power junction.

Lemma 1 The implementation defined by (12) satis-
fies the power junction constraint.

Proof: From the remarks following the power
junction definition, it is sufficient to show that (12)



Figure 5: The neighbors of a node, showing the wave vari-
ables influencing the node through the power junction.

satisfy (11). Clearly, a sufficient condition for satis-
fying (11) is to enforce the following constraints for
each componentl = 1,2, . . . ,m,

∑
j∈Ni

u2
i j l

(k) ≤ u2
ii l

(k), (13a)

v2
ii l

(k) ≤ ∑
j∈Ni

v2
ji l

(k), (13b)

whereSin = {ii} andSout = {i j | j ∈Ni}. To show that
(13a) is satisfied, we use (12a), which yields

∑
j∈Ni

u2
i j l (k) = ∑

j∈Ni

1
ni

u2
ii l (k) = u2

ii l (k).

For (13b) we combine (12b) with the Cauchy-
Schwartz inequality to get

v2
ii l (k) = 1

ni
( ∑

j∈Ni

v ji l (k))
2 ≤ ∑

j∈Ni

v2
ji l (k).

2

Finally, we constrain the network model by pre-
venting retransmission of data for each agent. Also,
as mentioned above, whenever receiver’s buffers are
empty, we process null packets. Based on these as-
sumptions, each channel(i, j) ∈ E satisfies the fol-
lowing inequality regardless of time-varying delays
and data loss (Chopra et al., 2008),

‖(vi j )N‖2
2 ≤ ‖(ui j )N‖2

2, holds∀N ∈ N. (14)

This inequality states that each channel, viewed as the
input-output mapping shown in Figure 6, is passive.

Figure 6: A point-to-point connection using the scattering
formalism to ensure passivity of the bidirectional connec-
tion subject to asymmetric time-varying delays, shown in-
side the dashed box.

4 ANALYSIS

4.1 Passivity of the Networked System

In this section we first prove that the network model
is passive and then show that the input-output map-
ping describing the networked system is strictly out-
put passive. Figure 7 shows the passive network. The
following lemma proves that the portion inside the
dashed box of Figure 7 is passive.

Figure 7: A three node network illustrating the passive net-
work, shown inside the dashed box.

Lemma 2 Consider a network of n interacting dy-
namic systems constrained to the design framework
described in Section 3. Then, the global energy con-
straint

n

∑
i=1

{‖(uii )N‖2
2−‖(vii )N‖2

2} ≥ 0 (15)

is satisfied for all N∈ N, regardless of time-varying
delays and data loss.

Proof: Sum the power constraints (11) of each node
i, with Sini = {ii} andSouti = {i j | j ∈ Ni}, from time
k = 0 to k = N−1 and sum the resulting inequalities
over all nodes (rearranging the terms in the sums ap-



propriately). Then, invoke (14) to obtain
n

∑
i=1

{‖(uii )N‖2
2−‖(vii )N‖2

2}

≥
n

∑
i=1

∑
j∈Ni

ai j {‖(ui j )N‖2
2−‖(vi j )N‖2

2}

≥ 0.

2

The energy constraint of (15) also implies that
collectively, the mapping from thexi to the yi , i =
1, . . . ,n, is passive (see Figure 2). To show this, con-
sider the following power constraint, which may eas-
ily be derived from (9a) and (9b)

1
2(uT

ii (k)uii (k)−vT

ii (k)vii (k)) = yT

i (k)xi(k). (16)

Substitute (16) into (15) to obtain
n

∑
i=1

〈yi ,xi〉N ≥ 0. (17)

Define x(k) and y(k) as thenm× 1 column vectors
formed by concatenating thexi(k) andyi(k), respec-
tively, of each node. Then, it follows that

〈y,x〉N ≥ 0,

which satisfies the definition of passivity (6), withβ =
0.

We conclude the section by proving that the entire
networked system (e.g., the three node system in Fig-
ure 7) is strictly output passive for arbitrary network
topologies.
Theorem 1 Consider a network of n interacting dy-
namic systems constrained to the design framework
described in Section 3. Define r(k) and y(k) as the
nm×1 column vectors formed by concatenating the
r i(k) and yi(k), respectively, of each node. Finally,
define the input-output mapping H: lnm

2e → lnm
2e such

that H(r(k)) = y(k). Then, H is strictly output pas-
sive.

Proof: Since eachHi is strictly output passive,
there existsεi > 0 andβi, for all i ∈V, such that

〈yi ,ei〉N ≥ εi‖(yi)N‖2
2−βi. (18)

Making the substitution,xi(k) = r i(k)−ei(k) into (17)
and using the linearity of the inner-product, gives

n

∑
i=1

〈yi , r i〉N ≥
n

∑
i=1

〈yi ,ei〉N. (19)

Substituting (18) into (19) yields
n

∑
i=1

〈yi , r i〉N ≥ ε
n

∑
i=1

‖(yi)N‖2
2−β, (20)

where ε = mini{εi} and β = ∑n
i=1 βi . Finally, we

rewrite (20) as

〈y, r〉N ≥ ε‖(y)N‖2
2−β. (21)

2

4.2 Stability

The previous result shows that the networked system
defined by the mappingH is strictly output passive. It
then follows thatH is lm2 -stable.

Theorem 2 The mapping H(r(k)) = y(k) defined in
Theorem 1 is lm2 -stable.

Proof: We begin with the notion of finitelm2 -gain.
The mapG has finitelm2 -gain if there exists finite con-
stantsγ,β such that for allN ∈ N

‖(G(u))N‖2 ≤ γ‖(u)N‖2 + β, ∀u∈ lm2e. (22)

It is well known in continuous-time (van der Schaft,
1999) and has been shown for discrete-time (Kotten-
stette and Antsaklis, 2007) that a sufficient condition
for a system to have finitelm2 -gain is for the system to
be strictly output passive. Therefore, by Theorem 1,
H has finitelm2 -gain.

Now supposeu ∈ lm2 (i.e., ‖u‖2 < ∞). Then take
N → ∞ in (22). This leads to

‖G(u)‖2 ≤ γ‖u‖2+ β < ∞, ∀u∈ lm2 .

Therefore,H(u)∈ lm2 . By Definition 1,H is lm2 -stable.
2

From the proof of Theorem 2, we see that any
system that is strictly output passive is necessarily
lm2 -stable. Therefore, each agent described byHi is
inherently stable. The benefit of the passivity-based
network framework is that it ensures that interactions
caused by the network do not destabilize the net-
worked multi-agent system. This result holds even in
the presence of time-varying delays and data loss (un-
der the assumptions outlined in Section 3.2) because
the passivity results hold. Moreover, the networked
multi-agent system will remain stable regardless of
network topology.

4.3 Steady-State Analysis

To analyze the behavior of the coupled multi-agent
system, we consider the system at steady-state. In
order to do this, we assume that each strictly output
system,Hi , admits a steady-state solution whenever a
constant input is applied. With this assumption, there
exists a steady-state solution for the multi-agent sys-
tem (provided there is no data loss), since the rest of
the networked system is linear. For simplicity, we as-
sume the system is SISO. If the degrees of freedom of
the system are decoupled, this result may be applied
to MIMO systems.

Theorem 3 Consider a network of n interacting
SISO agents designed using the framework described



in Section 3 and ignore time delays and data loss. As-
sume the inputs, ri , reach steady-state and consider
the outputs, yi , as k→ ∞. If Hi at each node i has
steady-state gain gi , then the steady-state output of
node i is given by

yi = gi
bigi+1

[

r i +
√

2bi√
ni ∑

j∈Ni

1√
2b j n j

[
b j g j−1

g j
y j + r j ]

]

(23)

Proof: Since time delays and data loss are ig-
nored, we drop the time index. Using the relation
ei = r i −xi and replacingHi with gi , the input-output
relationyi = Hi(ei) may be written as

yi = gi(r i −xi). (24)

Next, substituting (24) into (9b) and solving forxi
yields

xi = −√
2bi

bigi+1vii +
bigi

bigi+1r i . (25)

Substituting (25) into (24) and reducing gives us

yi = gi
bigi+1r i +

√
2bigi

bigi+1vii . (26)

Combiningv ji = u ji with (12a) at nodej (roles of j
andi are reversed), produces

v ji = 1√n j
u j j .

Substituting this into (12b) for nodei yields

vii = 1√
ni ∑

j∈Ni

1√
n j

u j j . (27)

Now, solving (24) at nodej for x j and substituting
into (9a) at nodej produces

u j j = 1√
2b j

(

b j g j−1
g j

y j + r j

)

(28)

Substitute (28) into (27) to get

vii = 1√
ni ∑

j∈Ni

1√
2b j n j

(

b j g j−1
g j

y j + r j

)

(29)

Finally, substitute (29) into (26) to obtain (23). 2

Theorem 3 provides a system ofn equations de-
scribing the system asymptotically (ask → ∞). The
system of equations described by (23) are clearly cou-
pled and depend on the overlay network structure. For
the case of a regular topology, the following corol-
lary characterizes the system of equations and pro-
vides the means to precalculate the reference inputs
to asymptotically achieve a desired setpoint. For the
two-dimensional agent model described in Section
3.1 the two degrees of freedom are decoupled, so we
use this corollary to establish ann-gon around the tar-
get, as described in Section 2.

Corollary 1 Consider a network of n SISO agents
with a regular overlay network topology (i.e., ni =
n j ≡ η ∀i, j ∈ V). If all of the systems Hi have iden-
tical steady-state gain g and each scattering trans-
formation has the same impedance b, the system of
steady-state equations may be written as

y = g
bg+1

(

r + 1
η A[bg−1

g y+ r]
)

, (30)

where y and r are defined in Theorem 1 and A is
the adjacency matrix of the regular overlay network
topology. Assuming the inverse of (ηI +A) exists, we
may solve this equation for r to obtain

r = 1
g (ηI +A)−1 ((bg+1)ηI − (bg−1)A)y. (31)

5 SIMULATIONS

The experimental setup involves a network of eight
UAVs that communicate in a regular overlay network
topology, each with degreeη = 4, and a synchronous
sampling period ofT = 0.01 seconds. Each UAV
moves in the plane, influenced by its own input and
the wave variables received from its neighbors. We
model the UAVs as described in Section 3.1, so that
each has a steady state gain,g = 1, and characteris-
tic impedance,b = 1. The dynamics of the velocity
limited UAVs are implemented using Simulink mod-
els while TrueTime is used to simulate the network
dynamics and communication between neighboring
UAVs. The network protocol used is IEEE 802.11b,
with a speed of 11 Mbps.

5.1 Evaluation

We present five scenarios to demonstrate our design
framework.

Experiment 1: Nominal Case. In this experi-
ment, delays and data loss are ignored. Figure 8a
shows a plot of the eight UAVs enclosing the target
at the origin, within a radius of 100m. The data points
show the evolution of the UAVs from their initial posi-
tions to their final positions. The UAVs cooperatively
enclose the target and each agent is 100m away from
the target, thus achieving the desired goal.

Figure 8b shows the x-positions of four agents
(UAVs 1, 3, 5, and 8) over a period of 200 seconds.
The desired x-positions for the four agents are 100m,
0m, 0m and -100m, respectively. These values corre-
spond to the desired configuration and are achieved in
about 160 seconds.

Figure 9 shows the average and maximum errors
of all the UAVs’ positions relative to the desired con-
figuration. From the figure, the average and maxi-
mum error reach the value of zero after 160 seconds



which corresponds to the time the UAVs achieve the
desired configuration.
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(a) UAVs and target positions.
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(b) Plot of UAVs’ x-position over time.

Figure 8: Network of UAVs (nominal case).
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Figure 9: Average and maximum errors of UAVs’ positions
(nominal case).

Experiment 2: Nonuniform Constant Time De-
lays. This experiment demonstrates the robustness of
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Figure 10: Average and maximum errors of UAVs’ po-
sitions (nonuniform constant delay in all communication
channels).
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Figure 11: Average and maximum errors of UAVs’ posi-
tions (ten percent probability of packet loss).
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Figure 12: Average and maximum errors of UAVs’ posi-
tions (time-varying delay case).

the distributed network of UAVs to nonuniform con-
stant delays. We introduce nonuniform time delays,
between 1 to 10 seconds, in all the communication
channels of the network. Figure 10 shows the average
and maximum errors, comparing the nominal case to
the case with nonuniform constant delays. From the
figure, the average and maximum errors for the delay
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Figure 13: Average and maximum errors of UAVs’ posi-
tions (time-varying delay and packet loss case).
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Figure 14: UAVs and target positions (time-varying delay
and packet loss case).

case reach the value of zero after 200 seconds, taking
about 40 seconds more time than in the nominal case
to reach the desired configuration. The presence of
time delays in the network does not prevent the agents
from reaching the desired configuration; however, the
time delays increase the time it takes to reach the de-
sired configuration.

Experiment 3: Data Dropouts. This experiment
demonstrates the effect of packet loss on the behavior
of the UAVs. A probabilistic model is used to im-
plement the loss of packets in the channels. For our
studies, we simulate the case of a ten percent prob-
ability of packet loss. Figure 11 shows the average
and maximum errors, comparing the nominal case to
the case of ten percent probability of packet loss. The
plot shows that even with ten percent packet loss, the
UAVs still manage to come very close to the desired
configuration, demonstrating the resilience of the net-
work. Due to the packet loss, the UAVs will never
reach a steady state; however, the UAVs’ positions
end up within a maximum error of 6 meters and an
average error of 4 meters of the desired configuration.

Experiment 4: Time-Varying Delays. This ex-
periment demonstrates the effect of time-varying de-

lays on the behavior of the UAVs. To simulate the
case of time-varying delays, we incorporate a distur-
bance node in the network. The sampling period of
the disturbance node is set to a value of 0.05 seconds,
and the disturbance node floods the network with dis-
turbance packets based on a Bernoulli process with
parameterd. The disturbance node samples a uni-
formly distributed random variableX[k] ∈ [0,1] ev-
ery 0.05 seconds. IfX[k] > d, a disturbance packet is
forced on the network. Figure 12 shows the average
and maximum errors, comparing the nominal case to
the time-varying delay case, withd = 0.5. The plot
shows that in the presence of time-varying delays, the
UAVs remain stable and settle within a maximum er-
ror of 0.09 meters and an average error of 0.02 meters
from the desired configuration.

Experiment 5: Combined Network effects.The
experiment demonstrates the combined effects of ten
percent packet loss and time-varying delays on the be-
havior of the UAVs. This experiment studies the com-
bined network effects of time-varying delays and data
loss in order to simulate the real world dynamics of
the network. Again, the time-varying delays are intro-
duced through the disturbance node withd = 0.5. Fig-
ure 13 shows the average and maximum errors, com-
paring the nominal case to the case with the combined
network effects. The figure shows that the average
and maximum errors increase slightly after appearing
to settle near 5 meters. This occurs because one of the
UAVs actually moves interior to the circle around the
target, shown in Figure 14. The UAV directly below
the target is approximately 15 meters away from its
desired location, and causes the maximum error seen
in Figure 13.

6 CONCLUSIONS

Discrete-time implementation of networked multi-
agent systems introduces significant challenges
caused by effects such as network delays and data
loss. This paper proposes a passive-by-construction
distributed network control design framework that en-
sureslm2 -stability in the presence of these network ef-
fects. Using steady-state analysis, we show how to
control the agents in the multi-agent network in order
to establish ann-gon upon deployment. Simulations
supporting the theoretical results are presented on the
Simulink/TrueTime platform. In future work, we plan
to extend the design framework to achieve other group
oriented tasks such as output synchronization, forma-
tion control, and rendezvous. We will also extend the
work to formations inR3.
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