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Abstract— Modeling and analysis of biochemical systems are
critical problems because they can provide new insights into sys-
tems which can not be easily tested with real experiments. One
such biochemical process is the formation of sugar cataracts in
the lens of an eye. Analyzing the sugar cataract development
process is a challenging problem due to the highly-coupled
chemical reactions that are involved. In this paper we model
sugar cataract development as a stochastic hybrid system. Based
on this model, we present a probabilistic verification method
for computing the probability of sugar cataract formation for
different chemical concentrations. Our analysis can potentially
provide useful insights into the complicated dynamics of the
process and assist in focusing experiments on specific regions
of concentrations. The verification method employs dynamic
programming based on a discretization of the state space and
therefore suffers from the curse of dimensionality. To verify
the sugar cataract development process we have developed a
parallel dynamic programming implementation that can handle
large systems. Although scalability is a limiting factor, this
work demonstrates that the technique is feasible for realistic
biochemical systems.

I. I NTRODUCTION

Modeling and analysis of biochemical systems are im-
portant tasks because they can unlock insights into the
complicated dynamics of systems which are difficult to test
experimentally. A variety of techniques have been used to
model biochemical systems, but the effectiveness of the
analysis techniques is often limited by tradeoffs imposed
by the modeling paradigms. Stochastic differential equations
have been used to model biochemical reactions [8], [2];
however, analysis of these models has mainly been limited
to simulation. Hybrid systems have also been used to model
biochemical systems [1], [7]; however, verification methods
based on deterministic hybrid systems fail to capture the
probabilistic nature of some biochemical processes and there-
fore may not be able to correctly analyze certain systems.
Stochastic Hybrid Systems (SHS) have been used to capture
the stochastic nature of biochemical systems but have previ-
ously been used for simulations [20] or analysis of systems
with simplified continuous dynamics [10].

In this paper we analyze the biochemical process of
medication-controlled sugar cataract development in the lens
of an eye. The enzyme sorbitol dehydrogenase catalyzes a
reversible oxidation of sorbitol and other corresponding keto-
sugars. An accumulation of sorbitol in the eye is theorized
to be the main factor in the development of a sugar cataract.
Medications exist which limit the effectiveness of the enzyme
in the reactions which reduces the chance of developing

cataracts, but also has other side effects.
The chemical reactions and kinetic coefficients for the

model have been previously studied [17]. Understanding
the exact conditions that lead to the development of sugar
cataracts will help scientists better predict and prevent the
condition [2]. Our analysis results can potentially provide
useful insights into its complicated dynamics and assist in
focusing experiments.

The stochastic dynamics of biochemical processes can
be accurately modeled by the chemical master equation
which, however, is impossible to solve for most practical
systems [8]. The Stochastic Simulation Algorithm (SSA)
is equivalent to solving the master equation based on a
discrete model by simulating one reaction at a time, but if
the number of molecules of any of the reactants is large, the
SSA is not efficient [20]. It is computationally intractable
to enumerate all possible states of the model employed by
the SSA for formal verification because the reaction rates
depend on the concentrations and the SSA models individual
molecules. Therefore, our approach suggests starting with
the continuous stochastic dynamics and generating discrete
approximations with coarser (and variable) resolution unlike
the fixed, overly-fine resolution of the SSA. The discrete ap-
proximations can then be used for verification of reachability
properties.

In this paper we use SHS to model a medication-controlled
version of the sugar cataract development system. We then
use a verification method based on dynamic programming
to perform probabilistic safety verification to estimate the
probability that the chemical concentrations will reach cer-
tain values. Early results of analysis of the sugar cataractde-
velopment system without medication control are presented
in [19].

The dynamic programming technique discretizes the con-
tinuous state space, so it suffers from the curse of dimen-
sionality. Therefore, we have developed a parallel dynamic
programming implementation of the verification algorithm.
Although scalability continues to be a limiting factor, this
work demonstrates that the technique is feasible for realistic
biochemical systems.

The organization for the rest of the paper is as follows:
Section 2 describes the related work, Section 3 describes
modeling of biochemical systems and the sugar cataract
development process using SHS, Section 4 describes the
probabilistic verification method, Section 5 presents our
experimental results, and Section 6 concludes the work.



II. RELATED WORK

Many systems in the biological sciences can benefit from
formal modeling and analysis methods. Hybrid systems have
been used for modeling biological systems in order to capture
the complicated dynamics using well-defined abstractions.
Biomolecular network modeling is accomplished by us-
ing differential equations to model feedback mechanisms
and discrete switches to model changes in the underlying
dynamics [1]. Biological protein regulatory networks have
been modeled with hybrid systems using linear differential
equations to describe the changes in protein concentrations
and discrete switches to activate or deactivate the continuous
dynamics based on protein thresholds [7].

Stochastic hybrid systems further improve on the benefits
of hybrid systems by providing a more realistic probabilistic
framework for modeling real-world biochemical systems.
A modeling technique that uses SHS to construct models
for chemical reactions involving a single reactant specie is
presented in [10]. A genetic regulatory network was modeled
with a SHS model and compared to a deterministic model
in [12]. SHS models of biochemical systems have been
developed and simulated using hybrid simulation algorithms
in [9], [20]. The modeling technique employed in this work is
unique because it offers flexibility to include realistic system
aspects such as medication or temperature.

This paper employs a reachability analysis method based
on discrete approximations. Discrete approximation methods
based on finite differences have been studied extensively
in [16]. Based on discrete approximations, the reachabil-
ity problem can be solved using algorithms for discrete
processes [18]. The approach has been applied for optimal
control of SHS given a discounted cost criterion in [13].
For verification, the discount term cannot be used and
convergence of the value function can be ensured only for
appropriate initial conditions. A related grid based method
for safety analysis of stochastic systems with applications
to air traffic management has been presented in [11]. Our
approach is similar but using viscosity solutions we show
the convergence of the discrete approximation methods [14].

III. M ODELING BIOCHEMICAL REACTIONS USINGSHS

A. Dynamics of Biochemical Reactions

All cellular function of living organisms is governed
by complex systems of biochemical reactions. A reaction
specifies all chemical species which react (reactants) and
are produced (products). A kinetic coefficientk, associated
with each reaction, numerically describes the affinity for the
reactants to produce the products in constant temperature
conditions.

Experimental analysis is used to physically measure the
variation in individual concentrations of the chemical species
in a biochemical system. However, understanding the dynam-
ical behavior of biochemical systems requires running many
experiments that can be time consuming, tedious, unsafe,
or costly. Developing and analyzing dynamical models for
capturing the evolution of individual chemical species con-
centrations can reduce the number of experiments needed.

Discrete models are a natural modeling paradigm for
biochemical systems because reactions can be considered
as occurring at specific points in time, and when a reac-
tion occurs, individual molecules interact and produce new
molecules. Discrete models update the concentrations of the
involved reactants and products at a certain reaction rate
based on the stoichiometry defined by the reaction.

Chemical reactions are inherently probabilistic because
of the unpredictability of molecular motion [6], so their
dynamics are best described by stochastic models. Discrete
stochastic models of reactions can be created by describing
a reactionj as firing at a rateaj [5]. When the reaction fires,
the concentrations of the reactants and products are reset to
the appropriate updated values. Table I shows the rates and
resets for several examples of different types of reactions.
For example, when the reactionX → Z occurs, a molecule
of X is consumed and a molecule ofZ is produced denoted
by x− = 1 andz+ = 1 respectively wherex andz are the
quantities of molecules of chemical speciesX andZ, and
ki is the kinetic coefficient for reactioni.

Reaction aj Reset
X → Z k1x x− = 1;

z+ = 1;
X + Y → 2Z k2xy x− = 1;

y− = 1;
z+ = 2;

2X → Z 1/2 ∗ k3x(x − 1) x− = 2;
z+ = 1;

2X + Y → 2Z 1/2 ∗ k4x(x − 1)y x− = 2;
y− = 1;
z+ = 2;

3X → Z 1/6 ∗ k5x(x − 1)(x − 2) x− = 3;
z+ = 1;

TABLE I

EXAMPLE REACTION RATES AND RESETS

Reactions occur at different speeds depending on the con-
centrations of chemicals and the kinetic coefficient for each
reaction. “Slow” reactions occur when reaction rates and
concentrations are small enough and they can be modeled
and simulated efficiently using discrete stochastic techniques.
However, discrete simulations become inefficient when there
are large concentrations of molecules and/or fast reaction
rates. In such cases the reaction will occur very frequently
and the discrete simulation will need to execute a large
number of transitions in a short period of time. “Fast”
reactions occur at a rate that is fast enough or in high
enough concentrations. Such reactions can be modeled more
efficiently as stochastic continuous models [20].

The rate of change of each chemical species is calculated
using the dynamics from the biochemical reactions. Suppose
that we have a system ofM chemical reactions andN
chemical species. We definexi as the concentration of the
ith chemical species in micro-Molarity (µM), Mfast as the
number of fast reactions,aj as the reaction propensity of the
jth reaction, andWj as a one-dimensional Wiener process.
The stoichiometric matrixv is a (Mfast X N ) matrix whose
values represent the concentration of chemical species lost or
gained in each reaction. Equation (1) describes the dynamics



for each of thei chemical species [20].

dxi =

Mfast
∑

j=1

vjiaj(x(t))dt+

Mfast
∑

j=1

vji

√

aj(x(t))dWj (1)

Discrete and continuous models consider only slow or
only fast chemical reactions, but real biochemical systems
often contain a mixture of both fast and slow reactions.
In a such a situation it is most efficient to use a hybrid
modeling approach to take advantage of the efficiency of
continuous modeling while still keeping the accuracy of
discrete modeling [20]. Stochastic hybrid systems are ideal
for modeling biochemical systems with both fast and slow
chemical reactions systems because they are able to model
continuous and discrete dynamics in a stochastic framework.
Fast reactions are modeled using the continuous stochastic
dynamics techniques presented earlier, and slow reactionsare
modeled as discrete transitions with probabilistic rates and
resets.

Determining which reactions are fast or slow is based
on analysis of the rates using the kinetic coefficients and
quantities of each reactant involved. The reaction rate range
can be determined by analyzing the rateaj from Table I
over the entire range of possible chemical concentrations.To
determine the smallest rate, the smallest concentrations for
each chemical species should be used. Similarly, the largest
rate can be determined by using the highest concentrations in
the range. Reactions are classified as fast or slow depending
on their relative speed differences [20].

B. Sugar Cataract Development

A sugar cataract is a type of cataract which distorts the
light passing through the lens of an eye by attracting water
to the lens when an excess of sorbitol is present. Often these
cataracts are formed in the eyes of diabetes patients who do
have highly fluctuating blood sugar levels. Several factors
affect the accumulation of sorbitol including the amount of
the enzyme Sorbitol Dehydrogenase (SDH). SDH catalyzes
the reversible oxidation of sorbitol and other polyalcohols to
the corresponding keto-sugars [17].

Reactant Variable [Min, Max] (µM) Res (µM)
NADH x1 [0.0005, 10.0005] 1

E − NADH x2 [0.0005, 10.0005] 1
NAD+ x3 [0.0009, 10.0009] 1

E − NAD+ x4 [0.0009, 10.0009] 1
SDH (E) x5 [0.0002, 1.0002] .1

fructose (F) x6 [0.2, 500.2] 20
sorbitol (S) x7 [0.2, 500.2] 20

Inactive form of E (Z) - [0.000002, 0.200002] -

TABLE II

CHEMICAL SPECIES PROPERTIES FOR THE SUGAR CATARACT MODEL

The chemical species and concentration ranges for the
sugar cataract development process for bovine lens are
described in Table II. The bovine lens data is used as a
standard model for human cataract development. The ranges

are bounded and are estimated using realistic concentration
values derived from experimental data and Michaelis-Menten
constants (Km) defined as the rate of the reaction at half-
maximal velocity [17]. Table III describes the seven reactions
and rates involved in sugar cataract development. The rate
is calculated based on the average concentrations in Table
II and the kinetic coefficients presented in Table III. The
average rate of the last reaction (E → Z) is several orders of
magnitude slower than the other reactions, so it is classified
as a slow reaction.

The slow reaction describes the conversion of the enzyme
(E) into its inactive form (Z) at a rate ofk7x5 according to
Table I. When the reaction occurs, the number of molecules
of E will be decreased by one and the concentration will be
decreased byd1 = 10−21 µ Molar.

The rate of change of the concentrations of each chemical
species are modeled using the SDE (1) and are given below.
The inactive form of E (Z) is not a reactant in any of the
chemical equations, so its concentration is not included.

dx1 = (−k1x1x5 + k2x2)dt−
√

k1x1x5dW1 +
√

k2x2dW2

dx2 = (k1x1x5 − k2x2 − k3x2x6 + k4x4x7)dt+
√

k1x1x5dW1 −
√

k2x2dW2 −
√

k3x2x6dW3 +
√

k4x4x7dW4

dx3 = (k5x4 − k6x3x5)dt+
√

k5x4dW5 −
√

k6x3x5dW6

dx4 = (k3x2x6 − k4x4x7 − k5x4 + k6x3x5)dt+
√

k3x2x6dW3 −
√

k4x4x7dW4 −
√

k5x4dW5 +
√

k6x3x5dW6

dx5 = (−k1x1x5 + k2x2 + k5x4 − k6x3x5)dt−
√

k1x1x5dW1 +
√

k2x2dW2 +
√

k5x4dW5 −
√

k6x3x5dW6

dx6 = (−k3x2x6 + k4x4x7)dt−
√

k3x2x6dW3 +
√

k4x4x7dW4

dx7 = (k3x2x6 − k4x4x7)dt+
√

k3x2x6dW3 −
√

k4x4x7dW4 (2)

Biologists have determined that a ratio of sorbitol to
fructose that is greater than one is correlated to the beginning
stages of sugar cataract formation [3]. It has been shown
that fructose (x6) and SDH (x5) play a significant role in
the accumulation of sorbitol (x7) in the eye which in turn
begins the formation of sugar cataracts.

C. Medication Control

Medications exist which can help patients who are at high
risk of developing sugar cataracts. These medications work
by inhibiting the effectiveness of the enzyme SDH. The end
result is a reduction in the rate at which the enzyme (E)
reacts with other molecules in the system resulting in less
sorbitol production; however, since the reversible reactions
are tightly coupled, the results can have side effects.



The application of the medication can be represented as
a new discrete mode in the hybrid model that captures the
dynamics introduced by such a medication. In the medication
application mode the reaction rates, where the enzyme is a
reactant (k1,k6, and k7), are reduced. The amount that the
rates are reduced is directly proportional to the concentration
of the medication administered, so we use a 50 percent
reduction to model realistic behavior.

Since the amount of sorbitol is difficult to measure, we
have modeled the medication administration based on an
elevated level of fructose (as is the current practice). When
the amount of fructose in the blood rises above 250µMolar,
we introduce the effect of the drug, and when the level drops
below 250, we remove the effect of the drug, see Fig. 1. The
guards ensure that the medication is administered according
to the proper protocol, and the reset models the incrementing
or decrementing of the fructose byd2 = 5.

The analysis of this system will help the understanding
of the conditions that could lead to a patient developing
cataracts given a medication administration protocol and
possibly identify better thresholds for drug prescription.

dx=b(q1,x)dt+
σ(q1,x)dW

λ(q,x)=k7x5   /  x5-=d1;

x6>250 / x6+=d2;

x6<250 / x6-=d2;

dx=b(q2,x)dt+
σ(q2,x)dW

λ(q,x)=k7x5   /  x5-=d1;

Fig. 1. SHS model of medication-controlled sugar cataract development

D. SHS Model of Sugar Cataract Development

The SHS model for medication-controlled sugar cataract
development is shown in Fig. 1. In each discrete mode, the
continuous state evolves according to the corresponding SDE
where the solution is understood using the Itô stochastic
integral. The drift vectorb(q, x) and the dispersion matrix
σ(q, x) are defined by Equation (2) and are bounded and
Lipshitz continuous inx, and thus, the SDE has a unique
solution for a fixedq.

Two types of discrete transitions can be used to define
switching between the discrete modes: guarded transitions
and probabilistic rate transitions. A guarded transition fires

Reaction Kinetic coefficient Rate
E + NADH → E − NADH k1 = 6.2 31.1
E − NADH → E + NADH k2 = 33 151

E − NADH + F → E − NAD+ + S k3 = 0.0022 6
E − NAD+ + S → E − NADH + F k4 = 0.0079 19.5

E − NAD+
→ E + NAD+ k5 = 227 998

E + NAD+
→ E − NAD+ k6 = .61 3.2

E → Z k7 = 0.0019 0.002

TABLE III

SUGAR CATARACT REACTIONS AND KINETIC COEFFICIENTS

the instant when the guard becomes true. The firing of a
probabilistic rate transition is governed by an exponential
distribution characterized by the state-dependent transition
rateλ(q, x) which is assumed to be a bounded and measur-
able function that is integrable for every sample path.

In general, the reset map is defined as a transition measure
R(s,A) that defines the probability distribution of the state
after the jump and is assumed to be defined so that the system
cannot jump directly into the set of safe states [14]. In the
SCD system, the reset maps are deterministic and represent
the increasing or decreasing of the corresponding chemical
concentration (d1 or d2).

The SHS for the sugar cataract development is a special
case of the SHS model described in [15]. In particular, this
model has two discrete states, two probabilistic discrete tran-
sitions, two guarded discrete transitions, and deterministic
reset maps. It is assumed that the expected number of discrete
transitions in a finite time interval[0, t] is finite; see [15]
for sufficient conditions. Further, as described in Table II,
the concentrations of the SCD system are assumed to be
bounded.

We define the set of safe states as the set of all concen-
trations that satisfyx7 − x6 < 1 denoted by

B = ∪q∈{q1,q2}{q} ×Bq

= {(q, x)|x7 − x6 < 1, q ∈ {q1, q2}}.

Our problem is to determine what is the probability that
the SHS will exit the safe set assuming an arbitrary initial
condition inside the safe set.

IV. PROBABILISTIC VERIFICATION

A. Reachability Analysis

Given the set of safe statesB, we consider the verifica-
tion problem of computing the probability that the system
execution from an arbitrary (safe) initial state will exit the
safe set indicating the beginning stages of sugar cataract
development. We denote∂B andB̄ = B∪∂B the boundary
and the completion ofB respectively. Consider the stopping
time τ = inf{t ≥ 0 : s(τ−) ∈ ∂B} which is the first hitting
of the boundary∂B. Let s = (q, x) be an initial state inB,
then we define the functionV : B̄ → R by

V (s) =

{

Es[I(s(τ−)∈∂B)], s ∈ B

1, s ∈ ∂B
.

whereI denotes the indicator function.
The functionV (s) can be interpreted as the probability

that a trajectory starting atx will reach the boundary∂B of
the safe set, i.e. the probability that the system is unsafe and
sugar cataract formation may begin.

The value functionV that characterizes the safety of sugar
cataract formation can be described as the viscosity solution
of a system of coupled Hamilton-Jacobi-Bellman (HJB)
equations. This function is similar to the value function for
the exit problem of a standard stochastic diffusion, but the
running and terminal costs depend on the function itself.
The coupling between the equations arises because the value



function in a particular mode depends on the value function
in the adjacent modes and is formally captured by the
dependency of the running and terminal costs on the value
function V.

Proposition 1 We define a bounded functionc : B̄ → R+

continuous inx such that

c(q, x) =

{

1, if x ∈ ∂Bq

0, otherwise
.

and denoteLV (q, x) = λ(q, x)
∫

Γ
V (y)R((q, x), dy) and

ψV (q, x) = c(q, x) +
∫

Γ
V (y)R((q, x), dy). Then,V is the

unique viscosity solution of the system of equations

b(q, x)DxV +
1

2
tr(a(q, x)D2

xV ) + λ(q, x)V +LV (q, x) = 0

in Bq, q ∈ Q, with boundary conditionsV (q, x) = ψV (q, x)
on∂Bq, q ∈ Q. The proof is a straightforward application of
the results presented in [15] to the SHS of the sugar cataract
development.

B. Numerical Methods Based on Dynamic Programming

One of the advantages of characterizing reachability prop-
erties using viscosity solutions is that for computational
purposes we can employ numerical algorithms based on
discrete approximations. We employ the finite difference
method presented in [16] to compute locally consistent
Markov chains (MCs). We consider a discretization of the
state space denoted bȳSh = ∪q∈Q{q} × S̄h

q where S̄h
q

is a set of discrete points approximatingBq and h > 0
is an approximation parameter characterizing the distance
between neighboring points. By the boundness assumption,
the approximating MC will have finitely many states which
are denoted bysh

n = (qh
n, ξ

h
n), n = 1, 2, . . . , N . The transi-

tion probabilitiesph((q, x), (q′, x′)) of the Markov chain are
computed to approximate the SHS while preserving local
mean and variance.

Concentrations of chemical species are constrained to
be non-negative, and therefore, reflective boundaries are
introduced to approximate such constraints. For the approx-
imating process, the constraints are modeled as reflective
boundaries equipped with reflections directions that point
into the state space. The process is reflected back when
it tries to violate the constraints. Local consistency can be
satisfied in a straitforward manner [16].

The value functionV of the SHS can be approximated by

V h(s) = Es

[

νh
∑

n=0

c(qh
n, ξ

h
n)I(n=ni)

]

.

The functionV h can be computed using a value iteration
algorithm. The results in [15] show that the algorithm
converges for appropriate initial conditions, and further, the
solution based on the discrete approximations converges
to the one for the original stochastic hybrid system as
the discretization becomes finer (h → 0). Regarding the
efficiency of the computational methods, the iterative algo-
rithm is polynomial in the number of states of the discrete
approximation process. Although scalability is a limiting

factor, using parallel methods the approach is feasible for
realistic systems as the sugar cataract development, a seven-
dimensional biochemical system for which the approximat-
ing process has approximately 800 million states.

V. EXPERIMENTAL RESULTS

In this section we analyze the safety probability for the
medicated SHS sugar cataract model. The chemical con-
centration ranges used are presented in Table II, and the
resolution of each range is presented in Table II. We assume
that the system includes reflective boundaries at the upper
and lower limits of each range. This is reasonable since it
is assumed that the ranges given include all possible states
which are reachable, and the resolutions are sufficiently
small for realistic approximation. We chose the resolution
parameters to be similar to the resolution that measurement
equipment can achieve in actual experiments. For example,
the concentration of sorbitol can be experimentally measured
with subµMolar resolution.

The resolution parameters for the sugar cataract system
result in an MDP with approximately 800 million states.
Storing the values at each state alone requires several giga-
bytes of memory, so we developed a parallel value iteration
implementation to improve the performance of the algorithm.
The value iteration algorithm is still guaranteed to converge
in a parallel implementation as long as updated values
are used periodically [4]. Parallel dynamic programming
algorithms are well-defined and easy to implement [4]. Our
MDP has a regular structure which improves the efficiency
of the value iteration algorithm and allows us to implement
a fairly straitforward partitioning technique for the parallel
implementation.

To partition the problem for multiple processors we select
five of the seven dimensions of the MDP to divide in half.
Each processor only analyzes half of the total range for each
of five divided ranges and the entire range for the other
two dimensions. The two range divisions in five dimensions
create25 = 32 range combinations that must be considered.
The processors are each specifically assigned a combination
of the ranges to ensure that the entire range for each
dimension is computed, and all range values are arranged to
minimize communication. Processors with neighboring range
values regularly update their neighbors to ensure the value
iteration converges.

To visualize our results we can plot projections of the
data for different concentrations of the chemicals involved.
Specifically, these projections show the safety probability for
entire range of sorbitol and fructose levels for certain values
of the five other variables. Multiple selections of the five
other variables are chosen to show a more comprehensive
view of the data.

Figure 2 shows a projection of the value function for the
medicated SCD system along the safety boundary where
x1 = 1.0, x2 = 1.0, x3 = 1.0, x4 = 1.0, and x5 = 0.1.
Near the boundary of the safe and unsafe regions, the value
function varies significantly depending on the projection
variables chosen. The results imply that certain chemical



Fig. 2. Projection of the value function

Fig. 3. Difference between medicated and non-medicated valuefunctions

concentrations are more prone to developing cataracts than
others.

Figure 3 shows the difference between the value functions
of the medicated and non-medicated models. It demonstrates
that the effectiveness of the medication is variable depending
on the patient’s current condition. This information couldbe
used to help doctors and patients decide whether or not the
benefits of the medication justify the costs or side effects.

The Advanced Computing Center for Research and
Education (ACCRE) at Vanderbilt University provides
the parallel computing resources for our experiments
(www.accre.vanderbilt.edu). The computers form a cluster
of 348 JS20 IBM PowerPC nodes running at 2.2 GHz
with 1.4 Gigabytes of RAM per machine. We use C++
as the implementation language because ACCRE supports
Message Passing Interface (MPI) compilers for C++. We
use the MPI standard for communication between processors
because it provides an efficient protocol for message passing
middleware for distributed memory parallel computers. The
sugar cataract experiment took approximately 10 hours on
the 32 processors. Currently, the bottlenecks of this approach
are the memory size and speed.

VI. CONCLUSIONS

Biochemical system modeling and analysis are important
but challenging tasks which hold promise to unlock secrets of
complicated biochemical systems. SHS are an ideal modeling
paradigm for biochemical systems because they incorporate
probabilistic dynamics into hybrid systems to capture the

inherent stochastic nature of the biochemical systems. The
sugar cataract development problem is excellent example
of a system that is modeled effectively using the presented
modeling methods. Our dynamic programming analysis tech-
nique provides verification results for realistic systems using
parallel computing techniques to lessen the effect of the curse
of dimensionality.
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