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Abstract— Modeling and analysis of biochemical systems are cataracts, but also has other side effects.
critical problems because they can provide new insights into sys-  The chemical reactions and kinetic coefficients for the
tems which can not be easily tested with real experiments. One model have been previously studied [17]. Understanding

such biochemical process is the formation of sugar cataracts in th t diti that lead to the d | t of ]
the lens of an eye. Analyzing the sugar cataract development € exact conditions that lead to the development ol suga

process is a Cha"enging pr0b|em due to the high|y-c0up|ed cataracts W|” help SCientiStS better predict an(-j prthBt_t
chemical reactions that are involved. In this paper we model condition [2]. Our analysis results can potentially pravid
sugar cataract development as a stochastic hybrid system. Babe yseful insights into its complicated dynamics and assist in
on this model, we present a probabilistic verification method focusing experiments.

for computing the probability of sugar cataract formation for The stochastic d . f biochemical pr n
different chemical concentrations. Our analysis can potentially € stochaslic dynamics or biochemical processes ca

provide useful insights into the complicated dynamics of the D€ accurately modeled by the chemical master equation
process and assist in focusing experiments on specific regionswhich, however, is impossible to solve for most practical
of concentrations. The verification method employs dynamic systems [8]. The Stochastic Simulation Algorithm (SSA)
programming based on a discretization of the state space and is equivalent to solving the master equation based on a

therefore suffers from the curse of dimensionality. To verify di t del by simulating one reaction at a time. but if
the sugar cataract development process we have developed a ISCrete model by simulating one reaction at a e, bu

parallel dynamic programming implementation that can handle ~ the number of molecules of any of the reactants is large, the
large systems. Although scalability is a limiting factor, this SSA is not efficient [20]. It is computationally intractable

work demonstrates that the technique is feasible for realistic to enumerate all possible states of the model employed by
biochemical systems. the SSA for formal verification because the reaction rates
depend on the concentrations and the SSA models individual
molecules. Therefore, our approach suggests starting with

Modeling and analysis of biochemical systems are imthe continuous stochastic dynamics and generating déscret
portant tasks because they can unlock insights into thepproximations with coarser (and variable) resolutiorikenl
complicated dynamics of systems which are difficult to teshe fixed, overly-fine resolution of the SSA. The discrete ap-
experimentally. A variety of techniques have been used faroximations can then be used for verification of reachigbili
model biochemical systems, but the effectiveness of th@roperties.
analysis techniques is often limited by tradeoffs imposed In this paper we use SHS to model a medication-controlled
by the modeling paradigms. Stochastic differential equsti version of the sugar cataract development system. We then
have been used to model biochemical reactions [8], [2l)se a verification method based on dynamic programming
however, analysis of these models has mainly been limitad perform probabilistic safety verification to estimates th
to simulation. Hybrid systems have also been used to modelobability that the chemical concentrations will reacl- ce
biochemical systems [1], [7]; however, verification methodtain values. Early results of analysis of the sugar catatect
based on deterministic hybrid systems fail to capture theelopment system without medication control are presented
probabilistic nature of some biochemical processes and-thein [19].
fore may not be able to correctly analyze certain systems. The dynamic programming technique discretizes the con-
Stochastic Hybrid Systems (SHS) have been used to captuiuous state space, so it suffers from the curse of dimen-
the stochastic nature of biochemical systems but have-pregionality. Therefore, we have developed a parallel dynamic
ously been used for simulations [20] or analysis of systemsrogramming implementation of the verification algorithm.
with simplified continuous dynamics [10]. Although scalability continues to be a limiting factor, ghi

In this paper we analyze the biochemical process afiork demonstrates that the technique is feasible for ttealis
medication-controlled sugar cataract development inghe | biochemical systems.
of an eye. The enzyme sorbitol dehydrogenase catalyzes arhe organization for the rest of the paper is as follows:
reversible oxidation of sorbitol and other correspondiatpk Section 2 describes the related work, Section 3 describes
sugars. An accumulation of sorbitol in the eye is theorizethodeling of biochemical systems and the sugar cataract
to be the main factor in the development of a sugar catarackevelopment process using SHS, Section 4 describes the
Medications exist which limit the effectiveness of the emey probabilistic verification method, Section 5 presents our
in the reactions which reduces the chance of developirexperimental results, and Section 6 concludes the work.

I. INTRODUCTION



Il. RELATED WORK Discrete models are a natural modeling paradigm for

Many systems in the biological sciences can benefit frofgiochemical systems because reactions can be considered
formal modeling and analysis methods. Hybrid systems ha@$ occurring at specific points in time, and when a reac-
been used for modeling biological systems in order to Captupion occurs, individual molecules interact and produce new
the complicated dynamics using well-defined abstractiong10lecules. Discrete models update the concentrationseof th
Biomolecular network modeling is accomplished by usinvolved reactants and products at a certain reaction rate
ing differential equations to model feedback mechanism@sed on the stoichiometry defined by the reaction.
and discrete switches to model changes in the underlying Chemical reactions are inherently probabilistic because
dynamics [1]. Biological protein regulatory networks havedf the unpredictability of molecular motion [6], so their
been modeled with hybrid systems using linear differentiglynamics are best described by stochastic models. Discrete
equations to describe the changes in protein concentsatioffochastic models of reactions can be created by describing
and discrete switches to activate or deactivate the comtimu 2 reactiony as firing at a rate; [5]. When the reaction fires,
dynamics based on protein thresholds [7]. the concentrations of the reactants and products are keset t

Stochastic hybrid systems further improve on the benefit§e appropriate updated values. Table | shows the rates and
of hybrid systems by providing a more realistic probakiist resets for several examples of different types of reactions
framework for modeling real-world biochemical systemsFor example, when the reactioxi — Z occurs, a molecule
A modeling technique that uses SHS to construct mode® X is consumed and a molecule Bfis produced denoted
for chemical reactions involving a single reactant spesie Py 2— = 1 and 2+ = 1 respectively wherer and z are the
presented in [10]. A genetic regulatory network was modele@uantities of molecules of chemical speci&sand Z, and
with a SHS model and compared to a deterministic modét is the kinetic coefficient for reaction
in [12]. SHS models of biochemical systems have been

developed and simulated using hybrid simulation algorithm E{(e‘f“gn L mfefelt.
in [9], [20]. The modeling technique employed in this work is ' ot =1
unique because it offers flexibility to include realisticssm X+Y -2z kazy r— =1
aspects such as medication or temperature. ZZ’; - ;
This paper employs a reachability analysis method based 2X — Z 1/2 % ksz(z — 1) =2
on discrete approximations. Discrete approximation netho 24 =1,
based on finite differences have been studied extensively | 2X+Y — 22 1/2 % kaz(z — Ly o= f
in [16]. Based on discrete approximations, the reachabil- Z+;2§
ity problem can be solved using algorithms for discrete 3X = Z 1/6 x ksx(x —1)(x = 2) | z— =3;
processes [18]. The approach has been applied for optimal =1
control of SHS given a discounted cost criterion in [13]. TABLE |
For verification, the discount term cannot be used and EXAMPLE REACTION RATES AND RESETS

convergence of the value function can be ensured only for . _ _

appropriate initial conditions. A related grid based metho Reactions occur at different speeds depending on the con-
for safety analysis of stochastic systems with appncgtioncentrations of chemicals and the kinetic coefficient forheac
to air traffic management has been presented in [11]. Offaction. “_Slow” reactions occur when reaction rates and
approach is similar but using viscosity solutions we shogoncentrations are small enough and they can be modeled

the convergence of the discrete approximation methods [14nd simulated efficiently using discrete stochastic temines.
However, discrete simulations become inefficient whenether

are large concentrations of molecules and/or fast reaction
A. Dynamics of Biochemical Reactions rates. In such cases the reaction will occur very frequently
All cellular function of living organisms is governed and the discrete simulation will need to execute a large
by complex systems of biochemical reactions. A reactionumber of transitions in a short period of time. “Fast”
specifies all chemical species which react (reactants) angiactions occur at a rate that is fast enough or in high
are produced (products). A kinetic coefficient associated enough concentrations. Such reactions can be modeled more
with each reaction, numerically describes the affinity foe t efficiently as stochastic continuous models [20].
reactants to produce the products in constant temperatureThe rate of change of each chemical species is calculated
conditions. using the dynamics from the biochemical reactions. Suppose
Experimental analysis is used to physically measure thtbat we have a system af/ chemical reactions andv
variation in individual concentrations of the chemical@pe chemical species. We defing as the concentration of the
in a biochemical system. However, understanding the dynarith chemical species in micro-Molarity:{), M ¢,s: as the
ical behavior of biochemical systems requires running manyumber of fast reactionsg,; as the reaction propensity of the
experiments that can be time consuming, tedious, unsafgh reaction, and¥; as a one-dimensional Wiener process.
or costly. Developing and analyzing dynamical models folhe stoichiometric matrix is a (My.s; X N) matrix whose
capturing the evolution of individual chemical species -convalues represent the concentration of chemical speciesios
centrations can reduce the number of experiments neededjained in each reaction. Equation (1) describes the dyrsamic

IIl. M ODELING BIOCHEMICAL REACTIONS USINGSHS



for each of the; chemical species [20]. are bounded and are estimated using realistic concemtratio
values derived from experimental data and Michaelis-Mente
Myaut Myaur constants (Km) defined as the rate of the reaction at half-
dx; = Z vjiag(x(t))dt + Z vji /aj(x(t))de (1) Maximal vglomty [1?].Tab|e|lldescr|bes the seven reazmdi
= = and rates involved in sugar cataract development. The rate

. . | , VS| is calculated based on the average concentrations in Table
Discrete and continuous models consider only slow 9f 5y the kinetic coefficients presented in Table Iil. The

only fast chemical reactions, but real biochemical SySte”}jﬁ/erage rate of the last reactiofi (- Z) is several orders of

often contain a mixture of both fast and slow reactionsyaqnitude slower than the other reactions, so it is classifie
In a such a situation it is most efficient to use a hybncgs a slow reaction

modeling approach to take advantage of the efficiency of The slow reaction describes the conversion of the enzyme

gpntlnuous én?delng while r‘?’t'" 'kehept;n'g the accuracl)(dogi\E) into its inactive form (Z) at a rate df;x5 according to
iscrete modeling [20]. Stochastic hybrid systems arelide able |. When the reaction occurs, the number of molecules

for mpdelmg b_|ochem|ca| systems with both fast and SIOV}Sf FE will be decreased by one and the concentration will be
chemical reactions systems because they are able to mo gl:reased by, = 102! ;1 Molar

continuous and discrete dynamics in a stochastic framewor The rate of change of the concentrations of each chemical

Fast rgactions are modeled using t.he continuous StQChaséL?ecies are modeled using the SDE (1) and are given below.
dynamics tech_nlques prese_n_ted ea_rller, and s!(_)w_reacar@ns The inactive form of E (Z) is not a reactant in any of the
modeled as discrete transitions with probabilistic rated a chemical equations, so its concentration is not included.

resets.
Determining which reactions are fast or slow is based dz; = (—kizia5+ koxo)dt — / kiz125dWy +
on analysis of the rates using the kinetic coefficients and [kgzadWs

guantities of each reactant involved. The reaction ratgean

can be determined by analyzing the ratge from Table | v = (ki@1s — kot — ka2ows + kazazr)dt +
over the entire range of possible chemical concentratitms. Vki1x1wsdWy — N/ kazadWo —
determine the smallest rate, the smallest concentrations f VEkszoxgdWs + /kyzazzdW,y

each chemical species should be used. Similarly, the farges dr

. ) . N = (ksxy — kexsxs)dt + / ksxadWs5 —
rate can be determined by using the highest concentrations i (k524 — kozsws)dt + v/ ksadWs

the range. Reactions are classified as fast or slow depending vV kew3rsdWe
on their relative speed differences [20]. dry = (kszoxe — kaxaxr — ksxy + kewszs)dt +
B. Sugar Cataract Development Vksz206dWs — v/ kazazrdWy —

A sugar cataract is a type of cataract which distorts the VksadWs + v/ kerswsdWe
light passing through the lens of an eye by attracting water dzs = (—ki12175 + koo + k54 — ker375)dt —
to the lens then andexce;,s of sorb;tgl LE;) present. Often ;t]heze VEkizzsdWy + \/kozodWs +
cataracts are formed in the eyes of diabetes patients who do fomtndWe — ) Teedinnd W,
have highly fluctuating blood sugar levels. Several factors sHads 6rsLsaIe
affect the accumulation of sorbitol including the amount of dre = (—ksware + kawswr)dt — \/kzwowedWs +
the enzyme Sorbitol Dehydrogenase (SDH). SDH catalyzes V kaxax,dWy
the reversible oxidation of sorbitol and other polyalcehtul dry = (kswaws — kazazs)dt + /kataredWs —

the corresponding keto-sugars [17].

vV k4$4l‘7dW4 (2)

Reactant Variable [Min, Max] (uM) Res (M) . . . . .
NADH T [0.0005, 10.0005] 1 Biologists have determined that a ratio of sorbitol to
E - NA+DH T2 [0.0005, 10.0005] 1 fructose that is greater than one is correlated to the beginn
NAD 3 [0.0009, 10.0009] 1 ;
2o NAD+ o [0.0009. 10.0009] 1 stages of sugar cataract formation [3]. .It hgs been s'hown
SDH (E) 5 [0.0002, 1.0002] 1 that fructose ;€_6) and SDI_—| s) play a 5|gn|f|c§1nt _role in
fructose (F) zg [0.2, 500.2] 20 the accumulation of sorbitolz¢) in the eye which in turn
sorbitol (S) x7 [0.2, 500.2] 20 i i
Inactive form of E (2) ’ [0.000002, 0.500002] : begins the formation of sugar cataracts.

C. Medication Control

TABLE I Medications exist which can help patients who are at high
CHEMICAL SPECIES PROPERTIES FOR THE SUGAR CATARACT MODEL  risk of de\/e|oping sugar cataracts. These medications work
by inhibiting the effectiveness of the enzyme SDH. The end
The chemical species and concentration ranges for tmesult is a reduction in the rate at which the enzyme (E)
sugar cataract development process for bovine lens amacts with other molecules in the system resulting in less
described in Table Il. The bovine lens data is used as sorbitol production; however, since the reversible remdi
standard model for human cataract development. The ranga® tightly coupled, the results can have side effects.



The application of the medication can be represented #se instant when the guard becomes true. The firing of a
a new discrete mode in the hybrid model that captures th@obabilistic rate transition is governed by an exponéntia
dynamics introduced by such a medication. In the medicatiatistribution characterized by the state-dependent ttiansi
application mode the reaction rates, where the enzyme israte \(q, ) which is assumed to be a bounded and measur-
reactant k;,ks, and k7), are reduced. The amount that theable function that is integrable for every sample path.
rates are reduced is directly proportional to the concéatra  In general, the reset map is defined as a transition measure
of the medication administered, so we use a 50 percefi(s, A) that defines the probability distribution of the state
reduction to model realistic behavior. after the jump and is assumed to be defined so that the system

Since the amount of sorbitol is difficult to measure, wecannot jump directly into the set of safe states [14]. In the
have modeled the medication administration based on &CD system, the reset maps are deterministic and represent
elevated level of fructose (as is the current practice). Whethe increasing or decreasing of the corresponding chemical
the amount of fructose in the blood rises above gMblar, concentrationd; or ds).
we introduce the effect of the drug, and when the level drops The SHS for the sugar cataract development is a special
below 250, we remove the effect of the drug, see Fig. 1. Thease of the SHS model described in [15]. In particular, this
guards ensure that the medication is administered acaprdimodel has two discrete states, two probabilistic discrete-t
to the proper protocol, and the reset models the increngntisitions, two guarded discrete transitions, and determiinis
or decrementing of the fructose laly = 5. reset maps. It is assumed that the expected number of discret

The analysis of this system will help the understandingransitions in a finite time interval0, ¢] is finite; see [15]
of the conditions that could lead to a patient developindor sufficient conditions. Further, as described in Table I
cataracts given a medication administration protocol anghe concentrations of the SCD system are assumed to be
possibly identify better thresholds for drug prescription  bounded.

We define the set of safe states as the set of all concen-
MaX)=k.Xs | xg-=d;; MaX)=koXs | X5-=d;; trations that satisfyc; — zg < 1 denoted by

B = Uq6{417q2}{q} x B
- {(qv‘L) T7 — Tg < 13 qG{QD(]Q}}'
Our problem is to determine what is the probability that

the SHS will exit the safe set assuming an arbitrary initial
condition inside the safe set.

Xg>250 / x+=d,;

dx=b(qg, x)dt+
o(q,,X)dw

dx=b(q,,x)dt+
o(0,X)dW

Xg<250 / %-=d,;

Fig. 1. SHS model of medication-controlled sugar cataraceld@ment IV. PROBABILISTIC VERIFICATION

D. SHS Model of Sugar Cataract Development A. Reachability Analysis

The SHS model for medication-controlled sugar cataract G'Ven the set of safe statds, we consider the verifica-
development is shown in Fig. 1. In each discrete mode, P Problem of computing the probability that the system
continuous state evolves according to the correspondirfg SIFXecution from an arbitrary (safe) initial state will exitet
where the solution is understood using thé titochastic S&fe Set indicating the beginning stages of sugar cataract
integral. The drift vectom(q, z) and the dispersion matrix development. We denotB and B = BUJB the boundary
o(g,z) are defined by Equation (2) and are bounded an%”d the gompletlon oB respectively. _Cor_13|der t_he st_oppmg
Lipshitz continuous inz, and thus, the SDE has a uniqueliMe 7 = inf{t > 0:s(77) € 9B} which is the first hitting

solution for a fixedq. of the boundan®B. Let s = (¢, z) be an initial state in5,
Two types of discrete transitions can be used to defif@en we define the functiol : B — R by
switching b_e_tw_een the dis<_:r_ete modes: guarded _tr_ansi'_[ions V(s) = EyI(sr-yeom)), s€B
and probabilistic rate transitions. A guarded transitioasfi 1, se OB
_ - _ where I denotes the indicator function.
. NADEIeaC“I‘;” — K'”elz'c Eogfgc'e”t gftf The functionV (s) can be interpreted as the probability
E * NADH — B Y NADH kg — 33 151 | that a trajectory starting at will reach the boundary B of
E—-NADH+F — E—-NADt +§ ks = 0.0022 6 the safe set, i.e. the probability that the system is unsade a
E— NAD" + i —E- NADIE +F k4 = 0.0079 195 | sugar cataract formation may begin.
g; %ig+ : gf %ﬁg+ 'Zi - 2517 %928 The value functior/ that characterizes the safety of sugar
E—Z k7 = 0.0019 0.002 | cataract formation can be described as the viscosity soluti

of a system of coupled Hamilton-Jacobi-Bellman (HJB)
equations. This function is similar to the value functiom fo
the exit problem of a standard stochastic diffusion, but the
running and terminal costs depend on the function itself.
The coupling between the equations arises because the value

TABLE IlI
SUGAR CATARACT REACTIONS AND KINETIC COEFFICIENTS



function in a particular mode depends on the value functiofactor, using parallel methods the approach is feasible for
in the adjacent modes and is formally captured by theealistic systems as the sugar cataract development, a-seve
dependency of the running and terminal costs on the valuémensional biochemical system for which the approximat-
function V. ing process has approximately 800 million states.
Proposition 1 We define a bounded function: B — R,
continuous inz such that V. EXPERIMENTAL RESULTS
1. if zcoBY In this section we analyze the safety probability for the
c(q, ) :{ O, otherwise ° medicated SHS sugar cataract model. The chemical con-
’ centration ranges used are presented in Table I, and the
and denoteLY (¢,2) = (¢, z) [ V(y)R((q,x),dy) and resolution of each range is presented in Table Il. We assume
V(g x) = c(q,x) + [ V(y)R((¢q,2),dy). Then,V is the that the system includes reflective boundaries at the upper
unique viscosity solution of the system of equations and lower limits of each range. This is reasonable since it
1 is assumed that the ranges given include all possible states
b(q, ) DV + gtr(a(q’l")Div) +Ag,2)V+L"(¢g,2) =0 which are reachable, and the resolutions are sufficiently
. ) . v small for realistic approximation. We chose the resolution
in B, ¢ € Q, with boundary condition¥' (¢, ») = " (¢, z) parameters to be similar to the resolution that measurement
ondBY, ¢ € Q. The proof is a straightforward application C)fe uipment can achieve in actual experiments. For example,

the results presented in [15] to the SHS of the sugar catargfib concentration of sorbitol can be experimentally meaur
development. with sub uMolar resolution.

B. Numerical Methods Based on Dynamic Programming The resolution parameters for the sugar cataract system
result in an MDP with approximately 800 million states.

One of the advantages of characterizing reachability prop:.~ . . .
9 9 yp K%tormg the values at each state alone requires several giga

erties using viscosity solutions is that for computationab tes of memory. so we develoned a parallel value iteration
purposes we can employ numerical algorithms based o Y P P

discrete approximations. We employ the finite differenc|mplementat|on to improve the performance of the algorithm

. . he value iteration algorithm is still guaranteed to cogeer
method presented in [16] to compute locally con5|stenm a parallel implementation as long as updated values
Markov chains (MCs). We consider a discretization of the P P g P

state space denoted b — U,cq{q} S(’; where Sg are used periodically [4]. Parallel dynamic programming

is a set of discrete points approximatigd and i > 0 algorithms are well-defined and easy to implement [4]. Our

is an approximation parameter characterizing the distané{lf-DP has a Fegu"'.” structure which improves the efficiency

: ) : . Of the value iteration algorithm and allows us to implement
between neighboring points. By the boundness assumptloar1,fairl straitforward partitioning technique for the pheh
the approximating MC will have finitely many states which. y P 9 q P

are denoted by! = (¢",&"), n=1,2,..., N. The transi- 'mPlementation. |
tion probabilitiesp”((q, z), (¢, 2')) of the Markov chain are To partition the problem for multiple processors we select

computed to approximate the SHS while preserving locgl’s ™ 2 Serert AmEneone e A e o oneh
mean and variance. p Yy yz g

Concentrations of chemical species are constrained Eé five divided ranges and the entire range for the other

: . : wo dimensions. The two ran ivisions in five dimension
be non-negative, and therefore, reflective boundaries PN dimensions. The two range divisions e dimensions

5 e i
introduced to approximate such constraints. For the <31|epr05|:<.reate2 = 32 range combinations that must be considered.

. . . .The processors are each specifically assigned a combination
imating process, the constraints are modeled as reflectw? P P y 9

boundaries equipped with reflections directions that poin imtgr?si(r)?\ni%ec?ortr? uetgzu;endthjlt r;r;]e ee\;];lzjeesrzl:gzr:g; ?a?jctho
into the state space. The process is reflected back when b ’ 9 9

it tries to violate the constraints. Local consistency can pminimize communication. Pr_oces_sors with neighboring eang
e . values regularly update their neighbors to ensure the value
satisfied in a straitforward manner [16].

The value functiorl/ of the SHS can be approximated by|terat|on CONVErges. o
To visualize our results we can plot projections of the

N Vh W data for different concentrations of the chemicals invdlve
V*(s) = Es Z (@ns En ) (n=n) | - Specifically, these projections show the safety probaifidit
n=0

entire range of sorbitol and fructose levels for certairugal
The functionV” can be computed using a value iteratiorof the five other variables. Multiple selections of the five
algorithm. The results in [15] show that the algorithmother variables are chosen to show a more comprehensive
converges for appropriate initial conditions, and furthbe view of the data.

solution based on the discrete approximations convergesFigure 2 shows a projection of the value function for the
to the one for the original stochastic hybrid system amedicated SCD system along the safety boundary where
the discretization becomes finek (— 0). Regarding the z; = 1.0, z2 = 1.0, z3 = 1.0, x4 = 1.0, andzs = 0.1.
efficiency of the computational methods, the iterative algoNear the boundary of the safe and unsafe regions, the value
rithm is polynomial in the number of states of the discretéunction varies significantly depending on the projection
approximation process. Although scalability is a limitingvariables chosen. The results imply that certain chemical



inherent stochastic nature of the biochemical systems. The
sugar cataract development problem is excellent example
of a system that is modeled effectively using the presented

o modeling methods. Our dynamic programming analysis tech-

0.6

0.4~

0.2+

nique provides verification results for realistic systeragg
parallel computing techniques to lessen the effect of thgecu
of dimensionality.
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