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Abstract

This paper applies an approach for approximating controlled stochastic diffusion to hybrid
systems. Stochastic hybrid systems are approximated by locally consistent Markov decision
processes that preserve local mean and covariance. A randomized switching policy is intro-
duced for approximating the dynamics on the switching boundaries. The validity of the approx-
imation is shown by solving the optimal control problem of minimizing a cost until a target
set is reached using dynamic programming. It is shown that using the randomized switching
policy, the solution obtained based on the discrete approximation converges to the solution of
the original problem.

1 Introduction

Many practical systems such as automobiles, chemical processes, and autonomous vehicles are

best described by dynamics that comprise continuous state evolution within a mode of operation

and discrete transitions from one mode to another, either controlled or autonomous. Such systems

often interact with the environment in the presence of uncertainty and variability. Stochastic hybrid

systems can model complex dynamics, uncertainty, and multiple modes of operations and they

can support high-level control specifications that are required for design of autonomous or semi-

autonomous applications.

Our goal in this work is to develop a systematic way to approximate stochastic hybrid systems

that is amenable to computational methods. We extend the approach presented in [19] to hybrid

systems. The basic idea of the approach is to approximate the original processes by appropriate

Markov Decision Processes defined on a discrete state space. The approximation is achieved by
∗This work was supported by NSF CAREER Award CNS-0347440.
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constructing locally consistent MDPs that preserve local mean and covariance. Based on the dis-

crete approximation, the stochastic optimal control problem is solved using dynamic programming.

Given the value function for the discrete approximation, a control law for the actual system can be

computed on-line using multi-linear interpolation. The main advantage of the approach is that the

control based on the discrete approximation is directly related to the original processes through the

notion of local consistency and further, it is shown that the solution converges to the solution of the

original problem.

Although the approach has been already applied to several classes of stochastic systems [19], to

our knowledge, the application to stochastic hybrid systems is novel. The extension of the approach

to hybrid systems faces the significant challenge of approximating the dynamics in the neighbor-

hood of the switching boundaries. The main contribution of this paper is the introduction of a

randomized switching policy that guarantees under appropriate conditions continuity of the switch-

ing times. Based on this idea, convergence of the approximating processes to the stochastic hybrid

process can be shown using a straightforward extension of the techniques presented in [19]. It

should be noted that the approach in [19] can handle discontinuous dynamics and discontinuous

cost functions. However, it has been recognized that the approximation method in the neighbor-

hood of the discontinuity sets is a significant issue since it affects the robustness of the solution.

Our proposed method first transforms the partition of the state space to a cover. Then, the discrete

process that approximates the hybrid system is defined using random switching times. The method

of transforming the state space partition to a cover has been used also for removing Zeno behav-

ior from hybrid system models as well as improving the robustness of estimation algorithms in the

presence of process and measurement noise [18]. The advantages with respect to robustness stem

from the continuity of analog-to-digital maps based on covers of the state space [21].

Several modeling paradigms for stochastic hybrid systems have been already proposed. A

stochastic hybrid system scheme that allows the continuous flows at each discrete location to be

characterized by stochastic differential equations is described in [16]. An extension of this model

that satisfies a Markov property is presented in [6] and a method to study the reachability prob-

lem is proposed. A similar model based on piecewise deterministic Markov processes is presented

in [5] for studying a probabilistic reachability problem. Probabilistic hybrid automata are intro-

duced in [15] for estimation and fault diagnosis. Communicating piecewise Markov processes are

proposed as compositional specifications for stochastic hybrid systems in [23] with an emphasis on

modeling concurrency. Applications of stochastic hybrid systems to air traffic management systems

are presented in [22, 10]. A stochastic hybrid system with application to communication networks

is presented in [14]. A modeling framework and a simulation environment for concurrent stochastic

hybrid systems is presented in [3]. The differences between these models are in the way randomness

affects the continuous and discrete dynamics and their interaction.

In this paper, we consider a model similar to that given in [16] but we assume that the stochastic
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differential equations that describe the continuous dynamics are controlled diffusions. The conver-

gence results are shown in the space of piecewise continuous functions that are continuous from

the right and have limits from the left. To simplify the notation, we also assume that the disper-

sion matrix is independent of the discrete state and control. Finally, we consider only autonomous

switchings. Controlled switchings can be easily incorporated in the computational methods since

they are based on discrete approximations and in the convergence results are based on a relaxed

control representation.

To investigate the validity of the approximation we study the optimal control problem of min-

imizing a cost until a target set is reached. Optimal control of hybrid systems has attracted con-

siderable attention in computer science and control engineering. There are both theoretical results

and computational methods developed for non-stochastic hybrid systems. Optimal control problems

based on a unified hybrid model have been formulated in [4]. The main result in this work is the

derivation of generalized quasi-variational inequalities that characterize the optimal solutions. Sev-

eral approaches including discretization techniques have been proposed to solve these inequalities,

however, efficient computational methods have not been developed. An approach for control of

hybrid systems based on calculus of variations that employs chattering approximations to optimal

control solutions has been proposed in [9]. Several other design approaches based on optimal con-

trol have been proposed [26, 7]. These approaches are based on a hierarchical structure obtained

by imposing simplifying assumptions on the system (for example, order of continuous, discrete

optimization) which often can be restrictive. A formulation of the maximum principle for hybrid

systems has appeared in [24]. There are additional approaches to optimal control [1] as well as ef-

forts to extend existing results to stochastic optimal control methods [2] but computational methods

have not been proposed.

Sufficient and necessary conditions for the stochastic optimal control problem of switching dif-

fusions have been presented in [11]. These conditions require the solution of a partial differential

equation (PDE) that cannot be solved analytically but only in cases where the coupling between

the continuous and discrete dynamics is very simple. Controlled switching diffusions have been

used to model hybrid processes in [12] and dynamic programming equations have been derived for

the infinite horizon stochastic optimal control problem. These are coupled elliptic equations that in

the general case can be solved numerically using discretization methods. A dynamic programming

method based on discretization has been also proposed in [13]. Our approach is also based on dis-

cretization but it provides a significant advantage. The solution based on the approximating model

is directly related to the solution of the original problem through the notion of local consistency and

it converges as the discretization becomes finer.

The main research challenge that arises is the scalability of the proposed computational methods.

The state space of the approximating MDP increases exponentially with the dimension of the state

space. This limits the application of the approach to low-dimensional systems. Development of
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efficient computational methods for analysis and design based on the locally consistent MDPs is

currently under investigation.

The paper is organized as follows. Section 2 presents the stochastic hybrid system model.

The stochastic optimal control problem formulation is presented in Section 3. The approximating

method is described in Section 4. The discretized optimal control problem is presented in Section 5.

Section 6 contains the convergence results. Finally, the approach is illustrated in Section 7 with a

simplified 3-dimensional example of a car with two gears.

2 Stochastic Hybrid Systems

Definition 1 A stochastic hybrid system (SHS) is defined as (X,Q,U,Ω, A, f, σ, δ, R, (x0 , q0))

where

• X ⊆ R
d is the continuous state space,

• Q, |Q| = N is a finite set of discrete states,

• U = {Uq}q∈Q, Uq ⊂ R
mq is a collection of continuous control input sets,

• Ω = {Ωq}q∈Q,Ωq ⊂ R
d is a partition of X ,

• A = {Aq}q∈Q, Aq ⊆ ∂Ωq is a collection of autonomous switching sets,

• f : X × Q × Uq → X and σ : X → R
d×p are the controlled drift vectors and dispersion

matrices respectively,

• δ : Q×A→ Q is the autonomous switching map,

• R : Q× A → P(X)1 is a reset map which assigns to each q and x ∈ Aq a reset probability

kernel on X concentrated on Ωq′ where q′ = δ(q, x),

• (x0, q0) is an initial probability measure on X ×Q.

To define the execution of the SHS, we consider an R
p-valued Wiener process (Brownian mo-

tion) w(t) and a sequence of stopping times {t0 = 0, t1, t2, . . . , } that represent the times when the

continuous and discrete dynamics interact. Let the state at time ti be (xi, qi) = (x(ti), q(ti)) with

xi ∈ Ω0
qi

2. While the continuous state stays in Ω0
qi

, x(t) is evolving according to the stochastic

differential equation (SDE)

dx = f(x, q, u)dt+ σ(x)dw (1)

1
P(X) denotes the family of probability measures on X .

2Ω0 denotes the interior of the set Ω
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where the discrete state q(t) = qi remains constant and the solution is understood using the

Itô stochastic integral [20]. Let ti+1 = inf{t > ti : x(t) /∈ Ω0
qi
}. At ti+1 an autonomous

discrete transition and a reset of the continuous state occur. The new discrete state is qi+1 =

δ(qi, x(t
−
i+1)). The new continuous state x(ti+1) is selected randomly according to the probability

measure R(qi, x(t
−
i+1))(Ξ) where Ξ ⊂ Ωqi+1 is a measurable set. The evolution of x(t) is then

described by the SDE (1) with q(t) = qi+1 and initial condition x(ti+1) until the next switching

time.

It is assumed that the functions f(x, q, u) and σ(x) are Lipschitz continuous in x, then the

SDE (1) has a unique solution. We also assume that every point x ∈ Aq is a regular point for the

autonomous switching set Aq. Note that if x ∈ Aq is regular for Aq, then a sample path of (1) which

starts at x will not remain in Aq for a nonempty time interval [17]. If x is regular for Aq then it is

also regular for a neighborhood of Aq around x and we can conclude that

lim
ε→0

∫ t

0
P [x(s) ∈ Nε(Aq)]ds = 0

where Nε(Aq) = {x : d(x,Aq) ≤ ε} and d(x,Aq) is the Euclidean distance between x and Aq. The

regularity assumption ensures that the sample paths would transverse the autonomous switching sets

and therefore, we can consider that the autonomous switchings occur instantaneously. A sufficient

condition for the regularity assumption is that the set Aq has dimension d − 1 and the diffusion

a(x) = σ(x)σT (x) is non-degenerate. If a(x) is degenerate, it is possible to satisfy the regularity

assumptions by assuming that the drift term f does not vanish in the switching boundary. Let

x(ti+1) be the continuous state after a discrete transition. We also assume that for every x(ti+1) ∈

Ξ, d(x(ti+1, A) ≥ ε > 0 and ∃δ > 0 such that P (inf{t > ti+1, x(t) ∈ A} ≥ δ) = 1 and

therefore, ti+1 − ti > δ, i = 1, 2, . . ., with probability 1. Finally, the continuous control is a

measurable stochastic process u(t) taking values in a compact set. The control policy u(t) is said

to be admissible if (i) it is non-anticipative with respect to the Wiener process w(t), (i.e. u(t) is

independent of w(s) − w(t), ∀s > t).

3 Stochastic Optimal Control

In this section, we describe the problem of minimizing a cost until a target set is reached. This

problem is used to demonstrate the validity of the discrete approximations proposed in the paper.

Figure 1 illustrates the optimal control problem. The target set G ⊂ R
d is assumed to be a compact

set with a smooth boundary ∂G which satisfies the same regularity conditions as the autonomous

switching sets. Further, we assume that x0 /∈ G and G ⊂ Ωq for some q ∈ Q. We define the

stopping time τ by τ = inf{t : x(t) ∈ ∂G}. If the stopping time is not defined then the value of τ

is set to infinity.

6



X

Ω1 Ω2

Ω3x0

G

Figure 1: Optimal control problem

Given a stochastic hybrid system, a target setG, an initial state (x0, q0) at t0 = 0, and a discount

factor β ≥ 0 the optimal control problem is formulated as the minimization of the cost

W (x0, q0, u) = E

[
∫ τ

0
e−βsk(x(s), q(s), u(s))ds + e−βτg(x(τ))

]

(2)

with respect to the admissible controls u(t).

Next, we describe an approach for stochastic optimal control based on dynamic programming.

To ensure that the stopping time and the cost (2) are well-defined and bounded, we assume that if

β = 0 then for every initial state (x0, q0) there exists an admissible control policy so that the state

will reach the target set G. If β > 0 the cost will be bounded even if the stopping time is not.

The value function is defined by

V (x0, q0) = inf
u
W (x0, q0, u), x0 ∈ Ωq0 .

Based on a standard dynamic programming argument, we can formulate the following result. Since

the initial condition can be arbitrary we will denote the value function by V (x, q).

Theorem 1 Given a SHS and the cost (2), an optimal admissible control policy u(x) must satisfy

the conditions

inf
u

[

∇V (x, q)f(x, q, u) +
1

2
tr(∇2V (x, q)a(x))

]

= 0,

∀q ∈ Q,∀x ∈ Ω0
q

V (x′, q′) ≤ V (x, q), ∀q ∈ Q,x ∈ Aq, q
′ = δ(q, x), x′ ∼ R(q, x)(Ξ)

V (x, q) = g(x),∀x ∈ ∂G, q ∈ Q : G ⊂ Ωq.

In addition, the following verification theorem can be proved in a straightforward manner.
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Theorem 2 Suppose that there exist V (x, q) twice differentiable in x, and bounded in Ω0
q and a

feedback control ū(x) such that the conditions of Theorem 1 hold and W (x, q, ū) is bounded. Then

V (x, q) is the optimal cost and ū(x) the optimal control.

In practice, computing the optimal value function V (x, q) can be very difficult and usually re-

quires computational methods based on discretization of the state space. In this paper, we employ

a discretization method for the approximation of stochastic hybrid systems by appropriately chosen

MDPs [19]. The SDE at every location q of the hybrid system is approximated by a controlled

Markov process that evolves in a state space that is a discretization of the region Ωq. The crite-

rion which must be satisfied by the approximating MDP is local consistency. Local consistency

means that the conditional mean and covariance of the MDP are proportional to the local mean and

covariance of the original process. An approximation parameter h analogous to a ”finite element

size” parameterizes the approximating Markov process. As h goes to zero, the local properties of the

MDP resemble the local properties of the original stochastic process. Application of the approach to

stochastic hybrid systems requires approximating the behavior at the switching boundaries. Suitable

approximations must ensure convergence of the approximating processes to the original stochastic

hybrid system.

4 Locally Consistent Markov Decision Processes

This section presents the locally consistent MDP that will be used to approximate the SHS. This

work employs the approximation method presented in [19] for computing locally consistent MDPs.

Although this method can be used to approximate the continuous dynamics, it cannot be applied

for approximating the behavior at the switching boundaries. In this section, first we discuss some

necessary background for the approximation method of [19] that will be extended for approximating

SHS and then we focus on the approximation at the switching boundaries.

4.1 Background Material

Consider the SDE (1) evolving in Ω0
q . The local mean and covariance on the interval [0, δ] are

E[x(δ) − x] = f(x(t), q(t), u(t))δ + o(δ)

E[(x(δ) − x)(x(δ) − x)T ] = σ(x(t))σT (x(t))δ + o(δ).

Let {ξh
n} be an MDP on a discrete state space Sh

q ⊂ Ωq with transition probabilities denoted by

p((x, q), (y, q)|u). A locally consistent MDP must satisfy

E[∆ξh
n] = f(x, q, u)∆th(x, q, u) + o(∆th(x, q, u))
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E[(∆ξh
n −E[∆ξh

n])(∆ξh
n −E[∆ξh

n])T ] =

σ(x)σT (x)∆th(x, q, u) + o(∆th(x, q, u))

where ∆ξh
n = ξh

n+1 − ξh
n, ξ

h
n = x and ∆th(x, q, u) are appropriate interpolation intervals (or the

“holding times”) for the MDP. In general, the control action u can take values in a compact set in

some topological space. We say that a control policy {uh
n, n < ∞} is admissible if the chain has

the Markov property under this policy.

The transition probabilities p((x, q), (y, q)|u) and the interpolation intervals can be computed

systematically from the parameters of the SDE (details can be found in [19]). In the case the

diffusion matrix a(x) = σ(x)σT (x) is diagonal and for a regular grid where ei is unit vector in the

ith direction, the transition probabilities are

p((x, q), (x ± hei, q)|u) =
aii(x)/2 + hf±i (x, q, u)

Qh(x, q, u)
(3)

and the interpolation interval is

∆th(x, q, u) =
h2

Qh(x, q, u)
(4)

where Qh(x, q, u) =
∑

i[aii(x) + h|fi(x, q, u)|] and a+ = max{a, 0} and a− = max{−a, 0}

denote the positive and negative parts of a real number.

It should be noted that an MDP that is locally consistent with the SDE (1) is not unique. Any

reasonable approximation that satisfies the local consistency conditions can be used. Optimization

algorithms for MDPs employ iteration in policy/value space. To perform efficiently the minimiza-

tion over the admissible controls at every iteration (see Section 5) it is desirable to eliminate the

control dependence u in the denominators of the transition probabilities and the interpolation inter-

val. This is always possible if the SDE (1) is affine in the controls [19] and can be accomplished

by defining Q̄h(x, q) = maxu∈Uq Q
h(x, q, u) and replace Qh(x, q, u) by Q̄h(x, q) in equations (3)

and (4).To ensure that the transition probabilities sum to one for each x and u, we introduce

p((x, q), (x, q)|u) = 1 −
∑

y,y 6=x,q′,q′ 6=q

p((x, q), (y, q′)|u).

It can be shown that the difference between the old and the new values of the transition probabilities

is O(h) and therefore, the new transition probabilities and interpolation interval are also locally

consistent with (1) [19].

4.2 Switching Boundaries

The method discussed above approximates the continuous dynamics by discrete MDPs only in the

interior of the regions Ωq. Approximating stochastic hybrid systems requires defining the MDP
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in the neighborhood of the switching boundaries in a way that preserves local consistency. There

are two particular forms of switching boundaries of interest, smooth hypersurfaces and boundaries

of polyhedral sets that have “corners”. Here, we consider the case of smooth hypersurfaces. The

method can be extended for the case of switching boundaries with “corners” in a straightforward

manner and details are omitted due to length limitations. The main idea in this paper consists of

the following steps: (i) transform the partition of the SHS to a cover, (ii) define appropriate random

switching functions for approximating the behavior at the boundaries.

First, the partition Ω = {Ωq} is transformed to a cover. Consider the region Ωq and denote its

boundary Aq as

Aq = {x ∈ R
d : aq(x) = 0}

where aq : R
d → R is assumed to be a smooth functional. The functional aq must satisfy the

condition ∇aq(x) 6= 0, ∀x ∈ Aq which ensures that the boundary is an (d − 1)-dimensional

hypersurface separating the state space. Assume without loss of generality that ∀x ∈ Ω0
q we have

aq(x) < 0. The region Ωq is expanded to Ω′
q defined by

Ω′
q = {x ∈ R

d : aq(x) − γ(h) = 0}

where γ(h) > h > 0 for every h > 0 and γ(h) → 0 as h → 0. By expanding Ωq to Ω′
q we obtain

Ω′ = {Ω′
q}, q ∈ Q. Since

⋃

q Ωq ⊆
⋃

q Ω′
q for every q, Ω′ is a cover of the state space X of the

SHS.

Let {(ξh
n, q

h
n)} be an MDP on a discrete state space S = {(x, q) ∈ Sh × Q : x ∈ Ω′

q} with

transition probabilities denoted by p̃ ((x, q), (x′, q′)) |u). For all states (x, q) such that aq(x) < 0

(interior of Ωq), the system cannot switch and the transition probabilities are computed so that the

MDP is locally consistent with the corresponding SDE. Hence, ∀(x, q) ∈ S : aq(x) < 0 we have

p̃ ((x, q), (x ± hei, q)|u) = p((x, q), (x ± hei, q)|u),

p̃ ((x, q), (x, q)|u) = p((x, q), (x, q)|u)

and

p̃
(

(x, q), (x, q′)|u
)

= 0, if q 6= q′.

The switching behavior of the SHS is approximated by introducing random switching times and

discretizing the reset maps. For each boundary A′
q = {x ∈ R

d : aq(x) = γ(h)}, we define the

switching rate function λq(x) such that λq(x) is continuous on Oq = {x ∈ R
d : 0 ≤ aq(x) ≤

γ(h)}, λq(x) = 0 if aq(x) = 0, and λq(x) → ∞ as x → A′
q. We also approximate the reset

map R(q, x)(Ξ) by a discrete transition probability kernel. If a discrete transitions q → q ′ occurs,

the next continuous state is selected randomly from the grid points that belong to Ξ according to a

uniform distribution. Let xi ∈ Ξ, i = 1, 2, . . . , ζ , then

p((x, q), (x′, q′)|u) =

{

1/ζ if x′ ∈ Ξ

0 otherwise
.
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Consider the interpolation intervals ∆τ h
n = ∆th(ξh

n, q
h
n, u

h
n), we define the process {qh

n}

P [qh
n+1 changes in ∆τh

n |q
h
n, ξ

h
n, u

h
n] =















1, if ξh
n ∈ A′

qh
n

1 − e
−λ

qh
n
(ξh

n)∆th(ξh
n,qh

n,uh
n)
, if ξh

n ∈ Nh(A′
qh
n
) ∩ Ω

′0
qh
n

0, otherwise

.

Based on the random switching times and the discretization of the reset maps, ∀(x, q) ∈ S

such that 0 ≤ aq(x) ≤ γ(h) the transition probabilities of the approximating MDP for states

(x, q), x ∈ Oq are defined as

p̃
(

(x, q), (x′, q′)|u
)

=






















(1 − e−λq(x)∆th(x,q,u))p((x, q), (x′, q′)|u),

if q 6= q′ and x′ ∈ Ξ

e−λq(x)∆th(x,q,u)p ((x, q)(x′, q′)) ,

if q = q′ and = x± hei

.

By the construction of the switching rate function, as h → 0, the cover {Ω′
q} converges to the

original partition {Ωq} and the approximating process preserves local consistency.

4.3 Boundary of the Target Set

We also define a random stopping rule when the state approaches the boundary of the target set G ⊂

Ωqf
. The process stops at step n with probability 1 − e−λG(ξh

n)∆th(ξh
n ,qh

n,uh
n) if ξh

n ∈ Nh(∂G) ∩Ω0
qf

,

and with probability 1 if ξh
n ∈ ∂G.

4.4 Reflective Boundaries

In practical applications, the physical process is usually constrained in a bounded state space. Re-

flective boundaries are introduced to approximate such constraints. For the approximating MDPs,

the constraints are modeled as reflective (or constrained) boundaries equipped with reflection di-

rections that point into the state space. The process is reflected back when it tries to violate the

constraints. Local consistency can be satisfied at the reflective boundaries in a straightforward man-

ner by computing the transition probabilities based on the reflection directions [19]. It is assumed

that the transition probabilities do not depend on the controls and that the reflections occur instan-

taneously and hence, the corresponding interpolation intervals are zero.
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5 Computational Methods for Optimal Control

We have described how to approximate the original stochastic hybrid system by a locally consistent

MDP. For the optimal control problem, one also needs to approximate the original cost function

by one which is appropriate for the MDP. Then, numerical algorithms can be used to compute an

optimal value function and design a feedback controller for the system.

Consider the approximating MDP {ξh
n, q

h
n} with transition probabilities p̃((x, q), (y, q ′)|u) and

denote νh the stopping time representing that ξh
n reaches the target set G. Then, assuming that the

discounting is constant in the intervals [thn, t
h
n+1) the cost (2) can be approximated by

W h(x0, q0, u) = E

[

νh
∑

n=0

e−βthnc(ξh
n, q

h
n, u

h
n) + e−βthνh g(ξh

νh
)

]

where c(ξh
n, q

h
nu

h
n) = k(ξh

n, q
h
n, u

h
n)∆τh

n .

Assuming that the above sum is well-defined and bounded, minimizing the cost is a discrete

problem that can be solved using standard dynamic programming algorithms based on policy or

value iteration methods. If β = 0 then it is required that the target set G is reachable from the initial

state. Reachability is satisfied if for the initial state ξh
0 ∈ X \ G there exists a control sequence

{uh
n}, n <∞ and a path {(ξh

0 , q
h
0 ), (ξh

1 , q
h
1 ), . . . , (ξh

νh
, qh

νh
)} such that the

P (ξh
n ∈ G|ξh

0 , q
h
0 , u

h
0 , . . . , ξ

h
νh−1, q

h
νh−1, u

h
νh−1) > 0.

Since the state space of the approximating MDP is assumed to be finite, reachability of the target

set can be tested using the transition probability matrix.

We can define the optimal value function

V h(x0, q0) = inf
u
W h(x0, q0, u)

and using a standard dynamic programming argument, we can derive the equation

V h(x, q) = min
u





∑

y,q′

p̃((x, q), (y, q′)|u)V h(y, q′) + c(x, q, u)





if x ∈ X \G and V h(x, q) = g(x), if x ∈ G

For the reflective boundaries, we have considered that the transition probabilities are indepen-

dent of the control and the reflections are instantaneous. Let the reflections be defined by a set of

vectors of unit length rq(x), a cost cTr (x)E[∆ξh
n] is associated with the reflective boundary such that

cTr (x)rq(x) ≥ 0 and cTr (x) ≥ 0 elementwise to approximate the cost of the unconstrained process.

The equation for the optimal value for point on the reflective boundaries is

V h(x, q) =
∑

y,q′

p̃((x, q), (y, q′))V h(y, q′) + cTr (x)E[∆x].
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The optimal value function can be computed by the value iteration

V h
n+1(x, q) = minu





∑

y,q′

p̃((x, q), (y, q′)|u)V h
n (y, q′) + c(x, q, u)





with the boundary conditions described above. The value function V h(x, q) is a discrete approxi-

mation of the optimal cost for the hybrid system. Finally, given the discrete optimal value function,

a feedback control scheme can be designed for computing u(x). For (x, q) with x ∈ Ωq, the control

law is given by

u(x) = arg min
u

{

∂V h(x, q)

∂x
f(x, q, u) + k(x, q, u)

}

(5)

The gradient of V h(x, q) can be approximated as a weighted function of the differences ∆V h of the

values at the grid points. The advantage of the discretization method based on the locally consistent

MDPs is that the cost of the approximating discrete-time process converges weakly to the original

cost as shown in Section 6.

6 Convergence

Given the approximation parameter h, the SHS has been approximated by a locally consistent MDP.

The original cost has been expressed in terms of the MDP and computational methods can be used to

compute the optimal value function V h(x, q). In this section, we will show that V h(x, q) converges

to the optimal value function V (x, q) of the original problem. Convergence of the approximating

processes for control diffusions has been shown in [19]. We extend this approach to address the

difficulties that arise due to the hybrid dynamics.

6.1 Convergence of the Approximating Processes

Consider the locally consistent approximating process {ξh
n, q

h
n} and the optimal control input {uh

n}

and denote {thi } the sequence of switching times. First, a continuous time interpolation {ψh(t), qh(t)}

is constructed so that {ψh(t)} is a Markov process. This will allow the construction of the Wiener

process w(t) as h → 0. Denote the moments of change of ψh(t) by τh
n , n < ∞ with τh

0 = 0. To

ensure that ψh(t) is a Markov process, the interpolation intervals ∆th(x, q, u) are considered not to

be deterministic but they are described by an exponential distribution with mean ∆th(x, u), i.e.,

P [∆τh
n ≤ t|ξh

n = x, qh
n = q, uh

n = u] = 1 − e
− t

∆th(x,q,u)

E[∆τh
n |ξ

h
n = x, qh

n = q, uh
n = u] = ∆th(x, q, u).
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Using these new intervals we define

ψh(τh
n ) = ξh

n, n <∞ (6)

ψh(t) =
∑

i:τh
i+1≤t

∆ξh
i + ξh

0 (7)

and

qh(t) = qh
n, t ∈ [τh

n , τ
h
n+1)

uh(t) = uh
n, t ∈ [τh

n , τ
h
n+1).

From (7) we can write

ψh(t) = ξh
0 +

∑

i:τh
i+1≤t

[

E[∆ξh
n] + ∆ξh

n] −E[∆ξh
n]

]

= ξh
0 +

∑

i:τh
i+1≤t

E[∆ξh
n] +Bh

n

where Bh
n =

∑

i:τh
i+1≤t[∆ξ

h
n] − E[∆ξh

n]] is an R
d-valued discrete martingale. Denote ∆thi =

∆th(ξh
i , q

h
i , u

h
i ), then by local consistency

∑

i:τh
i+1≤tE[∆ξh

n] =
∑

i:τh
i+1≤t f(ξh

n, q
h
i , u

h
i )∆thi +

o(∆thi ) and Bh
n has quadratic variation

∑

i:τh
i+1≤t a(ξ)∆t

h
i + o(∆thi ). As h→ 0, we get

ψh(t) = ψh(0) +

∫ t

t0

f(ψh(s), qh(s), uh(s))ds+ δh
1 (t) +Bh(t) (8)

where

Bh(t) =

∫ t

t0

a(ψh(s))ds+ δh
2 (t)

with E[sups≤t δ
h
1 (s)] → 0 and E[sups≤t δ

h
2 (s)] → 0.

The computational methods will give an optimal control sequence {uh
n}. The optimal control

may not exist as h → 0. To show convergence, a relaxed control representation [25] is employed.

Denote the space of the relaxed control as A and BA and BA×[0,∞) the Borel σ-algebras on A and

A × [0,∞) respectively. A relaxed control representation can be obtained by defining probability

measures µt on BA and µ on BA×[0,∞) as

µt(A) = IA(α(t))

µ(A× [0, t]) =

∫ t

0
µt(A)ds

where α(t) ∈ A ⊆ A and IA is the characteristic function for the set A.

Denote µh
t and µh the corresponding probability measures for the sequence ψh(t), then (8) can

be written as

ψh(t) = ψh(0)+ (9)
∫ t

t0

∫

A

f(ψh(s), qh(s), αh(s))µh
s (dα)ds + δh

1 (t) +Bh(t)
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In the following, we prove that {ψh(t), qh(t)} converges weakly to the execution of the SHS.

LetE denote a metric space andDE [0,∞) the set of functions that are continuous from the right and

have limits from the left. The ψh(t) and qh(t) are viewed as elements of DE [0,∞) for E = R
d and

R respectively. The difference with the results of [19] is that we show convergence of the switching

times and then assuming finitely many switchings in a bounded interval we show convergence for

the hybrid process based on the weak convergence results for DE [0,∞) in [8] (Thm 7.8).

Theorem 3 Consider the locally consistent approximating process {ξh
n, q

h
n} with an admissible

control sequence {uh
n} and a sequence of (random) switching times {thi }. Let {ψh(t), qh(t)} be

the continuous time Markov interpolation and µh(·) a relaxed control representation of {uh
n} for

ψh(t). Then {ψh(t), qh(t)} converges weakly to the execution of the SHS.

Proof To prove convergence of the sequence of switching times, without loss of generality we will

consider only th1 . Since th1 ∈ [0,∞) the range of th1 is compact and therefore the sequence (as in-

dexed by h) is tight. Hence, th1 is relatively compact and contains a weakly convergent subsequence

with limit denoted by t̄1. Using a similar argument, µh(·) is tight and has a weakly convergent

subsequence with limit µ(·). From the results in [19], the martingale Bh(t) can be written as

Bh(t) =

∫ t

t0

σ(ψh(s))dwh(s) + εh1(t)

where E[sups≤t |ε
h
1(t)| → 0. Further, wh(t) is tight and has a limit w(t) which is a Wiener process.

By the assumption of finitely many switchings in a bounded interval E[qh(νh + δ) − qh(νh)] → 0

for any stopping time νh. Therefore qh(t) is tight and we denote q(t) its limit. Finally, from the

above results, the boundness of f , and the properties of the stochastic integral in (10) ψh(t) is

tight and we denote the limit by x(t). Consider the mapping t̂1 : D[0,∞) → [0,∞] given by

t̂1(φ(t)) = inf(t > t0 : φ(t) /∈ Ω0
q0

). Then by the randomized switching rule, t̂1 is continuous with

probability 1 and

t̄1 = lim
h
th1 = lim

h
(t̂1(ψ

h(t)) = t̂1(x(t) = t1.

By the definition of qh(t) and since t̄1 = t1, q(t) is piecewise constant. By the assumption of

finitely many switchings in a bounded interval, ψh(thi ) → x(ti) ([8], Thm 7.8) and therefore, the

integral in (10) can be written as
∫ t

t0

∫

A

f(ψh(t), qh(t), αh(s))µh
s (dα)ds→

∫ t

t0

∫

A

f(x(t), q(t), α(s))µh
s (dα)ds

Finally, Bh(t) converges to
∫

t0
σ(x(s))dw(s) [19]. 2
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6.2 Convergence of the Optimal Cost

The next theorem shows convergence of the optimal cost. The proof follows from Theorem 3 and the

results in [19]. The cost for the continuous time interpolation {ψh(t), qh(t)} with control sequence

µh(t) is

W h(x0, q0, µ
h) =

E

[

∫ τh

t0

e−βsk(ψh(s), qh(s), α)µh
s (dα)ds + e−βτh

g(ψh(τh))

]

.

Denote V ′h(x, q) = infµh W h(x, q, µh) and let V h(x, q) denote the optimal value function for the

process {ξh
n, q

h
n} with an admissible control sequence {uh

n}. Then |V ′h(x, q) − V h(x, q)| → 0 as

h → 0 and by abuse of notation we will use V (h, q) to denote the optimal value function for both

processes.

Theorem 4 Consider the locally consistent approximating process {ξh
n, q

h
n} with an admissible

control sequence {uh
n} and a sequence of (random) switching times {thi }. Let {ψh(t), qh(t)} be

the continuous time Markov interpolation and µh(·) a relaxed control representation of {uh
n} for

ψh(t). If β > 0 or if β = 0 and the sequence τh is uniformly integrable then W h(x0, q0, µ
h) →

W (x0, q0, µ) and V h(x, q) → V (x, q).

Proof The assumption that either β > 0 or β = 0 and the sequence τh is uniformly integrable

guarantees boundness of the cost. Then by the continuity of the exit times we getW h(x0, q0, µ
h) →

W (x0, q0, µ). Since lim infh τ
h → τ , by the weak convergence and Fatou’s lemma [8] we get

lim infhW
h(x0, q0, µ

h) ≥W (x0, q0, µ) and lim infh V
h(x, q) ≥ V (x, q).

The relaxed control can be approximated by a piecewise constant control uε(t) with relaxed

control representation µε(·) which is ε-optimal and results in a solution (xε(t), qε(t) such that

|W (x0, q0, µ
ε) −W (x0, q0, µ)| ≤ ε.

Because the moments of change of ψh(t) are not deterministic, they may not coincide with the

the times the control changes in the discrete time approximation. By slightly changing the piece-

wise constant control it can be shown that the approximating process (ψh(t), qh(t)) with control

µh(·) converges weakly to the solution (xε(t), qε(t)) with control µε(·) and therefore V h(x, q) ≤

W h(x, q, µh) → W (x, q, µε) [19]. Then ε-optimality implies that W (x, q, µε)+ δ(ε) ≤ V (x, q) +

δ(ε) + ε where δε→ 0 as ε→ 0 and therefore lim suph V
h(x, q) ≤ V (x, q). 2
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7 Example

We illustrate the proposed approach using a simplified model of a truck with flexible transmission

presented in [13]. The system is described by

dx1 = x2dt

dx2 = −x2 + x3

dx3 = −x2 + gq(x2)udt+ σdw,

q = 1, 2, −0.1 ≤ u ≤ 1.1 σ = 0.01

where x1, x2 and x3 are the position, velocity, and the rotational displacement of its transmission

shaft respectively. The efficiency for gear q is gq(x) shown in Figure 2(a), u is the throttle, and dw

is a scalar Wiener process. We have modified the model of [13] by assuming that gears switches

occur at the speed of equal efficiency between the gears (x2 = 0.5) and therefore, the switching

boundary is defined by A = {x : x2 = 0.5}.

The objective is to drive the state (x0, q0) to the target set

G = {x ∈ <2 :
1

2
xTx ≤ 0.25}

while minimizing the cost

W (x0, q0, u) = E

[
∫ τ

0
k(x(s), q(s), u(s))ds + g(x(τ))

]

where k(x, q, u) = 1 and g(x) = 1
2x

Tx. First, we approximate the system by an MDP over the

region

X = {x : −5 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.5,−0.5 ≤ x3 ≤ 1.5}

using a uniform grid with approximation parameter h = 0.25.

The reflective boundary is defined as an outer approximation of X by expanding by h in all

directions. For the corner points, we select the reflection direction r(x) as the vector of length h in

the direction of the diagonal and we assume that the transition probabilities are independent of the

control u. For the remaining points on the reflective boundary, we select r(x) as the normal vector of

length h pointing inside X . We transform the partition of the state space to a cover by defining two

new boundaries A = {x : x2 = 0.5 ± 2h} and the switching rate functions by λ(x) = 0.5
ln 0.5 ln(1 ∓

x2−0.5
2h

) respectively. Everytime a switching occurs, we reset the continous state to guarantee finitely

many switchings. We define the transition probabilities for local consistency as defined in Section 4.

The optimal value function V (x) is computed using an iteration method in value space. The results

shown in Figure 2 are obtained by simulating the SHS model in continuous-time (using Simulink)

where the control law is computed by (5) using multilinear interpolation. Except the stochastic

nature of the state trajectory, the results are very similar to those presented in [13]. The advantage
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Figure 2: (a) Gear profiles, (b),(c), and (d) Simulation results

of the approach is that this solution which is based on a discrete approximation that preserves the

local mean and variance of the original system.

8 Conclusions and Future Work

The paper employs an approximation method for solving the optimal control problem for stochastic

hybrid systems based on locally consistent Markov decision processes that preserve the local mean

and covariance of the original system. The approach gives rise to several significant problems. A

fundamental challenge is to identify and characterize problems that can be solved based on the

approximations whose solutions converge to their correct values as the approximation parameter

goes to zero. Another challenge is to develop scalable numerical methods that can be applied to

large systems. Finally, the approach can be extended to more general stochastic hybrid systems that

may include both continuous and discrete controls and state jumps.
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