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Abstract— In this paper, we study the problem of reaching
consensus asymptotically in the presence of adversary nodes
whenever the network is asynchronous under a local broadcast
model of communication. The type of adversary considered is
omniscient and may collude with other adversaries to achieve
the goal of disrupting consensus among the normal nodes. The
main limitation on the behavior of the adversary nodes is that
whenever the adversary nodes communicate with neighbors,
they must broadcast their messages so that all neighbors receive
the same information. The asynchronous consensus algorithm
studied here uses local strategies to ensure resilience against
the adversary nodes. The class of topologies studied are those
that are robust. Network robustness formalizes a notion of
redundancy of direct information exchange between subsets
of nodes in the network, and is an important property for
analyzing the behavior of resilient distributed algorithms that
use only local information.

I. INTRODUCTION

Consensus problems have a rich history in distributed
computing [1] and communication [2]. More recently, con-
sensus has become an active area of control research [3], [4].
This is because reaching agreement is a fundamental task in
distributed and multi-agent systems, and arises in diverse
applications such as agent flocking [5], [6], synchronized
path following [7], distributed estimation [8], and load bal-
ancing for parallel processors [9]. A major concern in large-
scale distributed systems is whether the group objectives
can be achieved in the presence of uncertainties such as
communication delays, data loss, or node failures. While
researchers in control have studied consensus algorithms that
have been shown to be robust to communication delays [10],
data loss [11], and quantization [12], the robustness of
such algorithms to node failures has been shown to be
lacking [13].

Of course, consensus algorithms that are robust to node
failures have been studied in distributed computing [1], [14],
communication networks [15], and mobile robotics [16]–
[18]. In these works, the faulty nodes may be characterized
by fault models and scope of fault assumptions. Two common
fault models are the crash fault [16], [17] and the Byzantine
fault [16], [19]–[21]. Whenever a node suffers a crash fault, it
simply stops somewhere in its execution (this is also referred
to as a stopping failure [1]). A Byzantine faulty node, on the
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other hand, may behave in an arbitrary manner. Therefore,
worst case executions must be considered. For the scope
of faults, it is typically assumed that at most F out of n
nodes fail. We refer to this as the F -total model. On the
other hand, a local bound on the number of faulty nodes has
been considered in fault-tolerant broadcasting [22]–[24] and
consensus [24], [25], where it is assumed that at most F
of any normal node’s neighbors fail. We refer to this as the
F -local model.

Another important concern with respect to networked
systems is the issue of malicious attacks and security
breaches [26]. Attacks on the network may include jam-
ming [27], denial-of-service [28], false data injection [29],
replay [30], or deception [31]. In jamming and denial-of-
service attacks, the attacker reduces (or entirely eliminates)
the availability of data from the communication network.
False data injection and deception attacks affect the integrity
of the data. Likewise, replay attacks inject incorrect and
outdated information by repeating previously transmitted
information.

In addition to direct attacks on the communication net-
work, another important type of attack – especially relevant
to the cooperative control of multi-agent networks – occurs
when a subset of nodes are compromised and behave as
adversaries. In the context of consensus, the adversary nodes
participate with the goal of disrupting consensus or leading
the consensus process to an invalid value. By analogy with
node failures, the adversary nodes may be characterized by
threat models and scope of threat assumptions. For such a
scenario, the Byzantine model is a suitable threat model.
However, depending on the communication realization, the
full generality of the Byzantine model may not be necessary.
In general, Byzantine nodes may simultaneously send differ-
ent information to different neighbors in the network [1].
However, if the nodes broadcast their information to neigh-
bors, such as in wireless broadcast, then duplicity (of this
type) is not possible. We refer to the Byzantine node under
the local broadcast model as a malicious node [24], [25],
[32]–[34].

One approach to overcoming adversary nodes is to try
to identify the adversary nodes so that their influence can
be removed [32], [35]. While identifying misbehaving nodes
is clearly an interesting and important problem, detection
and identification techniques require each node to have
information of the network topology beyond its local neigh-
borhood [32], [35]. This requirement of nonlocal information
may not be suitable for large-scale networks. Furthermore,
the detection algorithms are computationally expensive.

A second approach is to design computationally efficient



algorithms that filter the information received from neighbors
to ensure resilience [24], [25], [33], [36]. A class of such
algorithms has been introduced for the study of Byzantine
approximate agreement [20], and has been extended to a
family of algorithms, called the Mean-Subsequence-Reduced
(MSR) algorithms [37]. MSR algorithms are iterative consen-
sus algorithms that are designed under the assumption that
at most F nodes fail (or are compromised). The main idea
is for each normal node to eliminate from consideration the
largest and smallest F values (i.e., the extreme values) in its
neighborhood. The values from a subset of the remaining
nodes are then averaged to determine the value for the
next round. MSR algorithms have been used extensively to
achieve fault tolerant and resilient consensus (e.g., in clock
synchronization [38] and robot gathering [16]–[18]). How-
ever, the network topological condition for characterizing
convergence has long been an open problem.

Recently, it has been shown that traditional graph the-
oretic metrics (such as connectivity) are inadequate for
characterizing the conditions under which MSR algorithms
achieve resilient consensus [24], [33]. Because of the re-
moval of extreme values in MSR algorithms, a property
that encapsulates the notion of sufficient local redundancy
of incoming information is needed. This idea is captured
by network robustness [24], [25] and a similar property
studied in [21], [39], [40]. Equipped with these properties,
the necessary and sufficient conditions for convergence of a
class of MSR algorithms have been given for the Byzantine
model under the assumption that at most F nodes are
compromised (F -total model) in synchronous [21], [39], [40]
and asynchronous networks [40]. For the local broadcast
version of the Byzantine model (referred to as the malicious
adversary), the tight condition on the network topology has
been given only for the case of synchronous networks under
the F -total model [25].

This paper formulates the resilient asymptotic consensus
(RAC) problem in an asynchronous framework, with a local
broadcast model of communication. We characterize, for
the first time, the necessary and sufficient condition on the
network topology for the existence of an algorithm that
achieves RAC in an asynchronous network under the local
broadcast model of communication, and in the presence of up
to F malicious nodes (F -total model). To show sufficiency,
we adapt the Weighted MSR (W-MSR) algorithm of [24],
[34] to an asynchronous setting and prove that the algorithm
succeeds under the necessary condition. Finally, we provide
a sufficient condition for the existence of an algorithm that
achieves RAC in the asynchronous network model under the
F -local model.

The rest of the paper is organized as follows. Section II
defines the networked system model, the threat model, the
scope of threat assumptions, and the problem statement.
Section III describes how the W-MSR algorithm is adapted
to an asynchronous setting. Section IV contains the main
results. Section V provides context for how these results
relate to the literature. Finally, Section VI summarizes the
paper.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

Consider a time-invariant network topology modeled by
the finite simple directed graph, or just digraph, D = (V, E),
where V = {1, ..., n} is the node set and E ⊂ V × V is the
directed edge set. Without loss of generality, the node set is
partitioned into a set of N normal nodes N = {1, 2, . . . , N}
and a set of M adversary nodes A = {N+1, N+2, . . . , n},
with M = n − N . The adversary nodes are assumed to be
unknown a priori to the normal nodes. Each directed edge
(i, j) ∈ E models the capability of node i to influence node
j. The set of in-neighbors, or just neighbors, of node i is
defined as Ni = {j ∈ V : (j, i) ∈ E} and the (in-)degree of
i is denoted di =|Ni|. Likewise, the set of out-neighbors of
node i is defined as N out

i = {j ∈ V : (i, j) ∈ E}. Because
each node has access to its own state, we also consider the
inclusive neighbors of node i, denoted Ji = Ni ∪ {i}.

The digraph D = (V, E) models the communication of
the networked system. The nodes communicate under a
local broadcast model, in which the out-neighbors of each
node i in D are precisely those nodes capable of receiving
messages from i. The communication is assumed to be
reliable (meaning all transmitted messages are eventually
delivered successfully), but the messages may incur different
(arbitrary) delays in transmission to different nodes and
messages may be received out of order. It is further assumed
that the sender of each message is identifiable by the receiver.

For the class of algorithms studied in this work, the
execution of each node proceeds in a sequence of rounds
r ∈ Z≥0 that consists of transmit, receive, and update stages.
A node (or subset of nodes) that is in the process of executing
its algorithm (i.e., it is in either the transmit, receive, or
update stage of some round r ∈ Z≥0) is said to be active. The
networked system is asynchronous, meaning the nodes do not
necessarily execute rounds at the same rate and the nodes
are not synchronized. Therefore, at any point in real time
t ∈ R≥0, the nodes may be in different stages of different
rounds. The reference time t = 0 is defined as the point
in time at which the first subset of normal nodes becomes
active. Because there is no synchrony among the nodes, it is
possible that at some time t > 0, some of the nodes may have
not yet become active. To handle this situation, we assume
there exists a dormant stage of round r = 0, in which nodes
may accumulate messages from in-neighbors but do not act
upon them until becoming active. Note that we place no
limitations on the amount of storage available at each node.

In order to keep track of the messages corresponding to a
given round, each message is tagged by the round r ∈ Z≥0

in which it is sent. Every node (including adversary nodes)
sends at most one message to its out-neighbors in each
round, and each normal node sends exactly one message
per round. Since the normal nodes follow this protocol,
any adversary node that sends multiple messages tagged by
a single round would be easily detected as an adversary.
However, an adversary may skip rounds without detection
(in finite time) because the messages may be received out



of order and with arbitrary delay. Moreover, an adversary
may decide at some point in time to stop sending messages
altogether.

A. Update Model

Suppose that each node i ∈ V maintains a scalar value
xi(r) ∈ R called the state1 of node i in round r. In particular,
each node begins with the private value xi(0) (which could
represent a measurement, optimization variable, etc.). At the
beginning of each round r ∈ Z≥0 (once the node becomes
active), each normal node i broadcasts its value to its out-
neighbors in the network (transmit stage). The value sent by
node j in round r ∈ Z≥0 is denoted xj(r). Once each normal
node i transmits its value, it then waits2 to receive d∗i < di
values (receive stage) from its in-neighbors (d∗i depends on
the adversary model, scope of threat assumptions, and size
of Ni). Observe that d∗i should be small enough so as to
avoid deadlock. Once node i ∈ N collects d∗i values from
in-neighbors, it updates its value for round r + 1 according
to the prescribed rule

xi(r + 1) = fi (xi(r), {xj(r)}) , i ∈ N , j ∈ N ∗
i (r),

where N ∗
i (r) is the set of nodes corresponding to the d∗i

values received from node i’s in-neighbors in round r. The
update rule fi(·) can be an arbitrary function, and may be
different for each node, depending on its role in the network.
These functions are designed a priori so that the normal
nodes reach consensus. However, some of the nodes may
not follow the prescribed strategy if they are compromised
by an adversary. Such misbehaving nodes threaten the group
objective, and it is important to design the fi(·)’s in such a
way that the influence of such nodes can be eliminated or
reduced without prior knowledge about their identities.

B. Threat Model

The type of adversary considered is referred to as a
malicious node. Malicious nodes are omniscient adversaries.
In particular, they know all other values and the full network
topology; they are aware of the update rules fi(·), ∀i ∈ N ;
they are aware of which other nodes are adversaries; and
they know the plans of the other adversaries.3 Although
malicious nodes have complete knowledge, their ability to
affect other nodes is limited. Specifically, a malicious node
k ∈ A may choose whether or not to broadcast its value to
its out-neighbors in any round r ∈ Z≥0, but if it does, it must
send at most one value xk(r) tagged with round r (otherwise,
the normal nodes receiving more than one value from node k
in round r would know that k is an adversary). Additionally,
in any finite time interval, a malicious node must send a
finite number of messages. Finally, a malicious node may
update its value in an arbitrary fashion. Since it is omniscient,

1Throughout this paper, we use interchangeably the terms “value” and
“state” of a node.

2If node i is one of the last normal nodes to become active, it is possible
that it may have already received at least d∗i messages from in-neighbors
for multiple rounds. In such a case, there is no need for node i to wait.

3One may take the viewpoint that a centralized omniscient adversary
informs and directs the behavior of the malicious nodes.

one must assume that the update is one that causes the
most disruption to the normal nodes. Note that malicious
nodes are Byzantine nodes restricted to the local broadcast
model. Byzantine nodes differ in that they are capable of
sending different messages to different out-neighbors, which
is possible under a point-to-point communication model [40].

C. Scope of Threats

Having defined the threat model, it is necessary to define
the number of adversary nodes. While there are various
stochastic models that could be used to formalize the scope
of threats, we use a deterministic approach and consider an
upper bound on the number of compromised nodes in the
network (F -total), or in the neighborhood of a normal node
(F -local).

Definition 1 (F -total model): A set S ⊂ V is F -total
(with F ∈ Z≥0) if it contains at most F nodes in the network,
i.e., |S| ≤ F . The F -total model refers to the case when
the set of adversaries A is an F -total set.

Definition 2 (F -local model): A set S ⊂ V is F -local
(with F ∈ Z≥0) if it contains at most F nodes in the
neighborhood of the other nodes, i.e., |Ni

∩
S| ≤ F , ∀i ∈

V \S . The F -local model refers to the case when the set of
adversaries A is an F -local set.

Note that whenever the set of M adversary nodes A is
an F -total set, we know M ≤ F . On the other hand if
A is an F -local set, it is possible that M > F . Indeed,
there is no upper bound on M for F -local set A since
it is feasible that many adversaries may not be neighbors
with any normal node. The F -total fault model has been
studied in distributed computing [1], [19], [21] and mobile
robotics [16]–[18] for both stopping (or crash) failures and
Byzantine failures. The F -local fault model has been studied
in the context of Byzantine-resilient broadcasting [22]–[24]
and consensus in synchronous networks [24], [25], [34].

D. Resilient Asymptotic Consensus

Given the adversary model and scope of threats, we
formally define the resilient asymptotic consensus problem.
Let MN (r) and mN (r) denote the maximum and minimum
values of the normal nodes in round r, respectively.

Definition 3 (Resilient Asymptotic Consensus): The nor-
mal nodes are said to achieve resilient asymptotic con-
sensus (RAC) in the presence of adversary nodes (given a
particular adversary model) if

(i) mN (r + 1) ≥ mN (r) and MN (r + 1) ≤ MN (r), for
every round r ∈ Z≥0, and

(ii) limr→∞ MN (r)−mN (r) = 0,
for any choice of initial values xi(0) for i ∈ V .
The RAC problem consists of two conditions. The first (i)
is a validity or safety condition. If it is satisfied, then the
states of the normal nodes always remain inside the initial
interval [mN (0),MN (0)] (safety), and any value selected
(i.e., through termination) is guaranteed to lie in this interval
(validity). The second (ii) is a convergence condition on
agreement. Observe that any asynchronous algorithm that
achieves resilient asymptotic consensus in the presence of



adversary nodes under either the F -total or F -local model
must wait for no more than d∗i = di−F values in its receive
stage in order to avoid deadlock.

III. ASYNCHRONOUS W-MSR ALGORITHM

In this section, we modify the Weighted MSR (W-MSR)
algorithm with parameter F that has been studied in syn-
chronous networks [24], [25], [34]. The modifications made
to accommodate asynchrony are analogous to the modifica-
tions made for MSR algorithms [20], [40], and consist of
the following two changes: (i) the messages are tagged with
the corresponding round index, and (ii) each normal node
j waits to receive only d∗j = dj − F messages from in-
neighbors for a given round r before updating its value.

Asynchronous W-MSR with parameter F :
In each round r ∈ Z≥0, once active, normal node i performs
the following steps:

1) Transmit step: Send the current value xi(r) to outgoing
neighbors, along with round index r.

2) Receive step: Wait to receive exactly d∗i = di − F
messages from different nodes tagged by round index
r, and break ties arbitrarily. Sort the di − F values in
ascending order. If there are less than F values strictly
larger than its own value, xi(r), then normal node i
removes all values that are strictly larger than its own.
Otherwise, it removes precisely the largest F values in
the sorted list (breaking ties arbitrarily). Likewise, if
there are less than F values strictly smaller than its own
value, then node i removes all values that are strictly
smaller than its own. Otherwise, it removes precisely
the smallest F values.

3) Update step: Let Ri(r) denote the set of nodes whose
values are removed or disregarded by normal node i
in step 2 of round r. Each normal node i applies the
update

xi(r + 1) =
∑

j∈Ji\Ri(r)

wij(r)xj(r), (1)

where the weights wij(r) satisfy the following condi-
tions for all rounds r ∈ Z≥0 and for some 0 < α < 1.

• wij(r) = 0 whenever j ̸∈ Ji or j ∈ Ri(r);
• wij(r) ≥ α, ∀j ∈ Ji \ Ri(r), i ∈ N ;
•

∑n
j=1 wij(r) = 1, ∀i ∈ N .

Together, these conditions imply that the updated value
is a convex combination of values in Ji \Ri(r) with a
uniform lower bound on the weights given by α.

The rest of this paper is concerned with determining
necessary and sufficient conditions on the network topology
for the normal nodes using Asynchronous W-MSR with
parameter F to achieve resilient asymptotic consensus.

IV. RESILIENT CONSENSUS ANALYSIS

We begin with the following result showing that W-MSR
with parameter F always satisfies the validity condition for
resilient asymptotic consensus (RAC) under the F -total and

Fig. 1. Illustration of an (r, s)-edge reachable set of nodes.

F -local models. We then provide the definition of network
robustness used in the analysis. Recall that MN (r) and
mN (r) are the maximum and minimum values of the normal
nodes in round r, respectively.

Lemma 1: Suppose each normal node updates its value
according to the Asynchronous W-MSR algorithm with pa-
rameter F under the F -total or F -local model. Then, for
each normal node i ∈ N , xi(r + 1) ∈ [mN (r),MN (r)],
regardless of the network topology. From this we conclude
mN (r + 1) ≥ mN (r) and MN (r + 1) ≤ MN (r).

Proof: Suppose that one value, say xj(r), used in the
update (1) satisfies xj(r) > MN (r). Then, by definition of
MN (r), j must be an adversary and xj(r) > xi(r). Since i
uses xj(r) in round r, there must be at least F more nodes
in the neighborhood of i with values at least as large as
xj(r). Hence, these nodes must also be adversaries, which
contradicts the assumption that at most F in-neighbors of
i are adversary nodes. Thus, xj(r) ≤ MN (r). Similarly,
we can show that xj(r) ≥ mN (r). The result follows
since xi(r + 1) in (1) is a convex combination of values
in [mN (r),MN (r)].

A. Network Robustness

Before stating our main results, we require the following
definitions.

Definition 4 ((r, s)-edge reachable set): Given a nontriv-
ial digraph D and a nonempty subset of nodes S, we say
that S is an (r, s)-edge reachable set if there are at least s
nodes in S with at least r in-neighbors outside of S, where
r, s ∈ Z≥0; i.e., given X r

S = {i ∈ S : |Ni \ S| ≥ r}, then
|X r

S | ≥ s.
A general illustration of an (r, s)-edge reachable set of

nodes is shown in Figure 1. The parameter s in the definition
of (r, s)-edge reachability quantifies a lower bound on the
number of nodes in the set with at least r in-neighbors
outside S. Observe that, in general, a set is (r, s′)-edge
reachable, for s′ ≤ s, if it is (r, s)-edge reachable. At
one extreme, whenever there are no nodes in S with at
least r in-neighbors outside of S, then S is only (r, 0)-edge
reachable. At the other extreme, S can be at most (r, |S|)-
edge reachable. Edge reachability is used to define the global
property of robustness.

Definition 5 ((r, s)-robustness): A nonempty, nontrivial
digraph D = (V, E) on n nodes (n ≥ 2) is (r, s)-robust,
for nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for every
pair of nonempty, disjoint subsets S1 and S2 of V at least one



of the following holds (recall X r
Sk

= {i ∈ Sk : |Ni\Sk| ≥ r}
for k ∈ {1, 2}):
(i) |X r

S1
| = |S1|;

(ii) |X r
S2
| = |S2|;

(iii) |X r
S1
|+ |X r

S2
| ≥ s.

By convention, if D is empty or trivial (n ≤ 1), then D is
(0,1)-robust. If D is trivial, D is also (1,1)-robust.4

Note that an (r, 1)-edge reachable set is abbreviated as r-
edge reachable, and an (r, 1)-robust digraph is abbreviated
as r-robust.

B. Necessary Condition for F -Total Malicious Model

The following is the main contribution of the paper and
provides, for the first time, a necessary and sufficient con-
dition for there to exist an algorithm that can achieve RAC
in asynchronous networks with a local broadcast communi-
cation model under the F-total malicious model. First, we
prove necessity. Then we show sufficiency by demonstrating
that Asynchronous W-MSR achieves RAC consensus under
this condition.

Theorem 1: If an asynchronous algorithm achieves re-
silient asymptotic consensus under the F -total or F -local
malicious model in a nontrivial (n ≥ 2) time-invariant
asynchronous network under the local broadcast model, then
the network is (2F + 1, F + 1)-robust.

Proof: Suppose there exists an asynchronous algorithm
that achieves resilient asymptotic consensus in a nontrivial
network that is not (2F + 1, F + 1)-robust. Then, there
are nonempty, disjoint S1,S2 ⊂ V such that none of the
conditions (i)− (iii) in Definition 5 hold (with r = 2F +1
and s = F + 1). Suppose the initial value of each node
in S1 is a and each node in S2 is b, with a < b. Let all
other nodes have initial values taken from the interval [a, b].
Since |X 2F+1

S1
|+ |X 2F+1

S2
| ≤ F , suppose all nodes in X 2F+1

S1

and X 2F+1
S2

are malicious (which is allowed under both the
F -total and F -local models) and keep their values constant
for all rounds. With this assignment of adversaries, there
is still at least one normal node in both S1 and S2 since
|X 2F+1

S1
| < |S1| and |X 2F+1

S2
| < |S2|, respectively.

Fix any normal node i ∈ S1 (and therefore, i ∈ S1 \
X 2F+1

S1
), and note that |Ni\S1| ≤ 2F . Suppose the delays for

messages from qi = min{F, |Ni \ S1|} nodes in Ni \ S1 are
arbitrarily large compared to all the other incoming messages
to node i in round 0 (and the delays are large enough so that
node i has become active). Then Ni\Ri(0) includes at most
|Ni \ S1| − qi ≤ F values outside of S1 (which from the
perspective of the update rule could all be adversary values).
Other values used by the update rule for node i are from
inside S1 (including node i’s own value), so they have value
a. Therefore, the update rule must set xi(1) = a to ensure
the validity condition (more specifically, to ensure MN (1) ≤
MN (0)). In a similar manner, one can argue that any normal
node j ∈ S2 \ X 2F+1

S2
must select xj(1) = b. Finally, since

[mN (0),MN (0)] = [a, b], any normal node k in V \ (S1 ∪

4The trivial graph is defined to be both (0,1)-robust and (1,1)-robust for
consistency with properties of robust networks for n > 1.

S2) must set its value xk(1) ∈ [a, b] to ensure the validity
condition. Therefore, round 1 has the same distribution of
values as round 0. By induction, we conclude that for each
round r ∈ Z≥0 each node in S1 has value a, each node in
S2 has value b, and all other nodes have values in [a, b].
Therefore, no consensus is achieved, which contradicts the
assumption that there exists an asynchronous algorithm that
achieves resilient asymptotic consensus in a network that is
not (2F + 1, F + 1)-robust.

C. Sufficient Condition for F -Total Malicious Model

Theorem 2 (Sufficiency): Consider a time-invariant asyn-
chronous network under the local broadcast model. Suppose
the communication is described by a digraph D = (V, E),
where each normal node uses the Asynchronous W-MSR
algorithm with parameter F . Then, under the F -total ma-
licious model, resilient asymptotic consensus is achieved if
the network topology is (2F + 1, F + 1)-robust.

Proof: Define Ψ(r) = MN (r) − mN (r), which is a
nonincreasing function of r by Lemma 1. Whenever the
normal nodes are in agreement at some round r0 ∈ Z≥0,
then consensus is maintained in future rounds r ≥ r0. In
the analysis that follows, recall that r is the round index and
does not correspond to a common point in real time among
the nodes. The difference in real time between when any
two nodes actually execute round r may be quite large. The
main point is that eventually each node will execute round
r ∈ Z>0 because the network delay is finite and normal
nodes only wait for at most di − F incoming messages
from neighbors. With this in mind, fix r0 ≥ 0 and assume
Ψ(r0) > 0. For r ≥ r0 and η > 0, define SM (r, r0, η) =
{j ∈ V : xj(r) > MN (r0) − η} and Sm(r, r0, η) = {j ∈
V : xj(r) < mN (r0) + η}. Define ϵ0 = Ψ(r0)/2 and define
ϵj = αϵj−1 for j = 1, 2, . . . , N − 1, where N = N .
It follows that ϵj = αjϵ0 > 0. By definition, the sets
SM (r0, r0, ϵ0) and Sm(r0, r0, ϵ0) are nonempty and disjoint.
Because D is (2F +1, F +1)-robust and there are at most F
malicious nodes in the network (F -total model), it follows
that either there exists i ∈ SM (r0, r0, ϵ0)∩N or there exists
i ∈ Sm(r0, r0, ϵ0) ∩ N , or there exists such i in both, such
that i has at least 2F+1 neighbors outside of its set. Suppose
first that i ∈ SM (r0, r0, ϵ0)∩N has at least 2F+1 neighbors
outside its set. Since at most 2F of these values will be
ignored or removed (up to F ignored due to delays and F
removed for being the smallest values in the in-neighborhood
of node i), it follows that

xi(r0 + 1) =
∑

j∈Ji\Ri(r0)

wij(r0)xj(r0)

≤ α(MN (r0)− ϵ0) + (1− α)MN (r0)

≤ MN (r0)− αϵ0 = MN (r0)− ϵ1.

Note that for any normal node not in SM (r0, r0, ϵ0), the
above inequality holds as well because any normal node
always uses its own value in the update. From this, we
conclude

|SM (r0 + 1, r0, ϵ1) ∩N| < |SM (r0, r0, ϵ0) ∩N|.



Similarly, if i ∈ Sm(r0, r0, ϵ0) ∩ N has at least 2F + 1
neighbors outside its set, then

xi(r0 + 1) =
∑

j∈Ji\Ri(r0)

wij(r0)xj(r0)

≥ α(mN (r0) + ϵ0) + (1− α)mN (r0)

≥ mN (r0) + αϵ0 = mN (r0) + ϵ1.

Similarly as above, this inequality holds for any normal node
not in Sm(r0, r0, ϵ0). From this, we conclude

|Sm(r0 + 1, r0, ϵ1) ∩N| < |Sm(r0, r0, ϵ0) ∩N|.

By repeating this analysis, we can show by induction that
as long as SM (r0+ j, r0, ϵj)∩N and Sm(r0+ j, r0, ϵj)∩N
are both nonempty, then either

|SM (r0 + j + 1, r0, ϵj+1) ∩N| < |SM (r0 + j, r0, ϵj) ∩N|,

or

|Sm(r0 + j + 1, r0, ϵj+1) ∩N| < |Sm(r0 + j, r0, ϵj) ∩N|,

or both hold. Since

|SM (r0, r0, ϵ0) ∩N|+ |Sm(r0, r0, ϵ0) ∩N| ≤ |N | = N,

there exists T < N such that one of the sets

SM (r0 + T, r0, ϵT ) ∩N ,

Sm(r0 + T, r0, ϵT ) ∩N ,

or both, is empty. It follows that in the former case,

MN (r0 + T ) ≤ MN (r0)− ϵT ,

and in the latter case,

mN (r0 + T ) ≥ mN (r0) + ϵT .

Since
ϵ0 > ϵ1 > · · · > ϵT ≥ ϵN−1 > 0,

we have

Ψ(r0+N − 1)−Ψ(r0) ≤ Ψ(r0 + T )−Ψ(r0)

≤ (MN (r0 + T )−MN (r0))

+ (mN (r0)−mN (r0 + T ))

≤ −ϵT

≤ −ϵN−1.

Therefore,

Ψ(r0 +N − 1) ≤ Ψ(r0)(1− αN−1/2).

Define c = (1 − αN−1/2). Since c is not a function of r0
and r0 was chosen arbitrarily, it follows that

Ψ(r0 + k(N − 1)) ≤ ckΨ(r0),

for all k ∈ Z≥0. Because c < 1, it follows that Ψ(r) → 0 as
r → ∞.

D. Sufficient Condition for F -Local Malicious Model
Theorem 3 (Sufficient Condition, F -Local): Consider

a time-invariant asynchronous network under the local
broadcast model. Suppose the communication is described
by a digraph D = (V, E), where each normal node uses
the Asynchronous W-MSR algorithm with parameter
F . Then, under the F -local malicious model, resilient
asymptotic consensus is achieved if the network topology is
(3F + 1)-robust.

Proof: In this case, the sets SM and Sm are defined
to include only normal nodes. Then, the (3F + 1)-robust
assumption under the F -local model ensures at least one
normal value outside of either SM or Sm will be used in
the update (at most up to F values outside the set could be
from adversaries, F smallest or largest values are removed,
and F values are ignored due to time delays, leaving still
one normal value from outside that is used). The rest of the
analysis is identical to the proof of Theorem 2.

V. RELATED WORK
Although the Byzantine approximate agreement prob-

lem was posed more than twenty-five years ago [20], the
necessary and sufficient topological condition on a time-
invariant network for the existence of a successful asymptotic
consensus algorithm in the presence of up to F Byzantine
nodes has been an open problem (for both synchronous
and asynchronous networks) until very recently [21], [39],
[40]. Synchronous networks under the F -total Byzantine
model are studied in [21], [39], and both synchronous and
asynchronous networks are studied in [40]. In [21], Vaidya
et al. provide the tight condition required in synchronous
directed networks for the existence of a successful algorithm
that ensures resilient asymptotic consensus in the presence of
up to F Byzantine faulty nodes (F -total model). In order to
state the condition, we require the following definition, which
provides a common notation for the definitions considered
separately in [21] and [40].

Definition 6: For nonempty, disjoint sets of nodes A,B ⊂
V , A r⇒ B if and only if there exists a node v ∈ B that has
at least r in-neighbors in A; i.e., |Nv ∩ A| ≥ r. A r; B if
and only if A r⇒ B is not true.

Given the relation of Definition 6, the tight condition for
the synchronous case may be stated as follows. Fix any
quadruple of sets of nodes F , L, C,R that form a partition5

of V such that 0 ≤ |F| ≤ F , |L| > 0, and |R| > 0. Then
at least one of the two following conditions must hold true:
(i) R ∪ C

F+1⇒ L or (ii) L ∪ C
F+1⇒ R. Observe that this

condition requires sufficient redundancy of directed edges
between subsets of normal nodes in the network (the nodes in
F account for the Byzantine nodes). Note that the condition
can be restated in terms of robustness; i.e., the subdigraph
induced by the normal nodes must be (F + 1)-robust.

Vaidya et al. present an equivalent condition in [40], which
uses the following concepts. The decomposition digraph

5Here, sets S1,S2, . . . ,Sp ⊆ S are said to form a partition of set S if
∪p
i=1Si = S and Si ∩ Sj = ∅ for i ̸= j. Note that in this context, some

of the sets in the partition may be empty.



Dd = (Vd, Ed) of D = (V, E) is constructed from D by
associating a node vk ∈ Vd to each strongly connected
component Ck of D. A directed edge (i, j) ∈ Ed exists if
and only if there is a node in component Cj reachable from
every node in component Ci. Note that the decomposition
digraph is always a directed acyclic graph [41]. A source
component of D is a strongly connected component Ck of
D such that vk is not reachable from any other node in Dd.
Finally, a reduced digraph DF = (VF , EF ) of D = (V, E)
is any subdigraph of D such that F ⊂ V , VF = V \ F ,
and EF is obtained by first removing all directed edges in
E that are incident with nodes in F and then removing
up to F other incoming edges at each node in VF . The
alternative condition states that every reduced digraph DF
with |F| < |V| and |F| ≤ F must contain exactly one
source component. It is shown in [40] that the unique source
component in any such reduced digraph must contain at least
F + 1 nodes. By associating F with the set of Byzantine
nodes, these results say there must be a set of normal nodes
(the source nodes in the reduced digraph) that are capable
of disseminating their information resiliently throughout the
rest of the network. Moreover, the number of source nodes
in any reduced digraph DF must outnumber the Byzantine
faulty nodes.

The necessary and sufficient condition for time-invariant
asynchronous networks with a point-to-point communication
model in the presence of up to F Byzantine nodes is given
in [40]. The condition can also be stated using the relation of
Definition 6. Fix any quadruple of sets of nodes F , L, C,R
that form a partition of V such that 0 ≤ |F| ≤ F , |L| >
0, and |R| > 0. Then at least one of the two following
conditions must hold true: (i) R ∪ C

2F+1⇒ L or (ii) L ∪
C

2F+1⇒ R. Note that the condition can be restated in terms
of robustness; i.e., the subdigraph induced by the normal
nodes must be (2F + 1)-robust.

The concept of robust networks is introduced by Zhang
and Sundaram in [24], where it is shown to be a useful
property in studying the resilience of distributed algorithms
(including consensus and broadcast algorithms) in the pres-
ence of F -local adversaries. A refined definition (which is
the one presented here, with finer granularity through the
introduction of parameter s) is given in [25], [34], in order
to formulate the necessary and sufficient condition to achieve
resilient asymptotic consensus in time-invariant synchronous
networks under the F -total malicious model.

Note that robust networks are quite common. In [24], [25],
[34], it is shown that the robustness of the seed graph in
the well-known preferential attachment model for scale-free
networks [42] is maintained throughout the growth of the
network provided the number of edges added each iteration is
sufficiently large. Moreover, it is shown in [43] that random
networks also exhibit robustness properties.

VI. CONCLUSION

This paper provides the necessary and sufficient condition
required on the network topology for the existence of a

consensus algorithm that achieves resilient asymptotic con-
sensus (RAC) in time-invariant asynchronous networks in the
presence of up to F malicious nodes under a local broad-
cast model of communication (F -total malicious model). A
sufficient condition is given for the case when the number
of malicious nodes in any normal node’s neighborhood is
bounded by F (F -local malicious model). The topological
conditions are stated in terms of the robustness of the
network, which is a novel graph theoretic property that
provides a measure on the amount of redundancy of directed
edges that exist between subsets of nodes in the network.
Together with other recent results [21], [25], [39], [40],
the tight conditions on the network topology for success-
ful RAC algorithms have been determined for the F -total
Byzantine and malicious models (for both synchronous and
asynchronous time-invariant networks). The tight topological
condition for the F -local malicious model is still an open
problem left for future work.
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