
A Case Study on the Model-Based Design and Integration of Automotive
Cyber-Physical Systems

Di Shang, Emeka Eyisi, Zhenkai Zhang, Xenofon Koutsoukos, Joseph Porter, Gabor Karsai, Janos Sztipanovits
Institute for Software Integrated Systems (ISIS)

EECS Department
Vanderbilt University, Nashville, TN 37235 USA

{di.shang, emeka.eyisi, zhenkai.zhang, xenofon.koutsoukos}@vanderbilt.edu

Abstract—Cyber-physical systems (CPS), such as automotive
systems, are very difficult to design due to the tight interactions
between the physical dynamics, computational dynamics and
communication networks. In addition, the evaluation of these
systems at the early design stages is very crucial and challeng-
ing. Model-based design (MBD) approaches have been applied
in order to manage the complexities due interactions. In this
paper, we present a case study to demonstrate the systematic
design, analysis and evaluation of an integrated automotive
control system. The system is composed of two independently
designed controllers, a lane keeping controller and an adaptive
cruise controller, which interact as a result of the integration.
The integrated system is deployed on a hardware-in-the-loop
simulator for evaluation under realistic scenarios. We present
experimental results that demonstrate the effectiveness of the
approach.

I. INTRODUCTION

Cyber-physical systems (CPS) are complex systems
whose behaviors emerge from the tight coupling and in-
teractions between the physical dynamics, computational
dynamics, and communication networks. Automotive sys-
tems are classical examples of CPS. Current automotive
systems employ up to 100 electronic control units (ECUs)
exchanging more than 2500 signals over up to 5 different
bus systems [1] [2]. These ECUs control and monitor many
subsystems of a vehicle such as chassis control, vehicle
stability and engine control etc. Most of these subsystems are
safety-critical and hence a failure could result in catastrophic
consequences.

Recently, automotive systems have been gaining increased
attention due to the increased pressure to integrate as many
functionalities on as few ECUs as possible, in addition
to the persistent effort for low production costs and tight
time-to-market. These economic factors have fueled various
emerging challenges to the design of automotive applica-
tions. Fueled by these drivers, automotive control appli-
cations are typically developed independently. Afterwards,
global system objectives, for example autonomous driving,
are achieved through the integration of the independently
designed control applications, each performing a specific
sub-objective towards the global goal. The work in [3]
discussed a strategy involving the combined design of lateral

and longitudinal controllers. This approach, although it
could be beneficial in regards to improving overall system
performance, can potentially lead to scalability challenges
given the increasing integration of more and more control
functionalities in vehicles.

In the integration of these control applications, various
interactions from the cyber and physical domains, which
may not be accounted for during design can manifest as a
result of the composition of these components. Additionally,
the independently designed control application might have
objectives which result in conflicts during operation. Due
to the tight coupling in CPS, the complex interactions
within and between the cyber and physical domains of CPS
affects the overall behavior of the integrated system and
can result in unintended behaviors if not properly handled.
Additionally, most issues with the integration of control
applications are typically discovered in the final phases of
the development cycle and at these later phases, correcting
the issues is very expensive as it involves the modification
of specifications, requirements and design. Hence, a sys-
tematic design, analysis and realistic testing of such system
integration of automotive control applications early in the
development cycle is very crucial.

A very well-known technique that is very beneficial in ad-
dressing these challenges is the model-based design (MDB)
approach [4]. However, the lack of a sound approach, for
the integration of components from the control design phase
with the components from software generation and deploy-
ment on actual platform/network, makes the model driven
approach very challenging because the tight interactions
between the design phases often manifest during integration.
In the current state-of-art, ad-hoc methods are often adopted
with the goal of “making the system work”. These ad hoc
methods are becoming unpractical as the complexity of the
system increases.

In an effort towards addressing the challenges with system
integration in CPS, this paper demonstrates a model-based
design and integration of cyber-physical systems with a
complex case study application of an automotive CPS. We
present a top-down model-based design and integration of
two independently designed automotive control applications,

a lane keeping control (LKC) application for the control of
a vehicle’s lateral distance and an adaptive cruise control
(ACC) application for the control of vehicle’s longitudi-
nal velocity, for the overall objective towards autonomous
driving. Our approach, using well-defined models, aims
to evaluate and address the interactions from the cyber
and physical domains that manifest as a result of the
integration. Our model-based development process utilizes
a model-based tool-chain, Embedded Systems Modeling
Language (ESMoL) [5], which streamlines control design
with software modeling, code generation and deployment on
platform/network, providing detailed models for the various
design layers in order to constrain the resulting interactions.
In order to evaluate the system integration, we employ an
experimental platform introduced in [6] which is based on
the time-triggered paradigm [7]. We present experimental
results from the hardware-in-the-loop simulation of the
integrated system on the experimental platform.

The rest of the paper is organized as follows. In Section II,
we formulate the problem addressed in this paper. Section III
presents the control software design flow. In the section IV,
the design of the independent controllers, LKC and ACC
as well as the supervisory controller for their integration is
described. Section V presents an evaluation of the integrated
control system as well as the experimental results highlight-
ing the impact of the interactions due to the integration. The
conclusion of the paper is provided in Section VI.

II. PROBLEM STATEMENT

In [8], three fundamentally different design layers of
CPS are introduced. The three layers are composed of
the physical layer, the platform layer and the computa-
tion/communication layer. The physical layer represents
physical components whose behavior are typically described
in continuous (physical) time using, for example ordinary
differential equations (ODEs). The platform layer represents
the hardware components of CPS and includes the network
architecture and computation platform that interact with
the physical components through sensors and actuators.
While executing the software components on processors
and transferring data on communication links, their ab-
stract behavior is “translated” into physical behavior. The
computation/communication layer represents the software
components executing on platform, with behavior expressed
in logical time. A detailed description of these three layers
are provided in [8]

This paper is based on an instantiation of the three
fundamental design layers, specifically for an automotive
CPS as depicted in Figure 1. In this figure, the physical layer
includes vehicle chassis, together with the engine, transmis-
sion, brakes and tires. The physical objects are intercon-
nected by physical components (e.g steering wheel) or cyber-
physical objects (e.g. steer by wire). The platform layer is
comprised of the electronic control units (ECUs) on which

Figure 1. Design Flow in CPS Design Layers

the control software applications are deployed, together with
the communication network over which the ECUs send
and receive data. The computation/communication layer
are comprised of software components such as the lane
keeping control (LKC), adaptive cruise control (ACC), and
engine control etc. that implement various functionalities in
a vehicle.

The emerging behavior of automotive CPS results from
the complex coupling and interactions within and across
the components in the three design layers. Therefore, un-
derstanding these interactions and how they impact the
overall system behavior is very crucial. These interactions
can typically be grouped into two main categories:

1) Physical Interactions represent interactions that man-
ifest as a result of composition of physical objects as
well as changes in their dynamics and environment.
Examples of such interactions are effects of changes in
physical structure such as mass, suspension type, en-
gine type etc. These interactions also include changes
in the environment such as changes in road geometry,
curves, road grade, banking, frictional surfaces etc.

2) Cyber Interactions represent interactions that mani-
fest as a result of composition of cyber components or
changes in the cyber components of the CPS. These
involve changes in network/platform as well as the
computational/communication layers. These changes
include variation in network and computation compo-
nent capacities and speed, deployment model, shared
resources, task allocation as well as timing specifica-
tions and scheduling etc. These are often attributed to
implementation effects and can have adverse impact
on the overall system behavior if not handled

appropriately.
In this work, we assume the components of the physical

layer are specified by a given physical vehicle dynamic
model. We also assume the network/platform layer is spec-
ified based on a given set of computational nodes and
communication network. The main research problem we
address is handling both cyber and physical interactions
that manifest in the integration of components in compu-
tation/communication layer of an automotive CPS. Specif-
ically, we consider the integration of two independently
designed automotive control applications, a lane keeping
controller and an adaptive cruise controller for the control
of the lateral and longitudinal vehicle dynamics respectively.
We aim to address the challenges impacting the behavior
of the overall system as a result of cyber and physical
interactions due to the integration.

III. CONTROL SOFTWARE DESIGN FLOW

In this section, we describe the proposed high-confidence
automotive control software design flow and tool-chain
which uses our model-based tool, ESMoL, to integrate
two commercial tools, Matlab/Simulink and TTE tools [9].
ESMoL, which is built in GME [10], is a multi-aspect
embedded software design environment, which provides a
mechanism for automating high-confidence distributed em-
bedded control system design [5]. Figure 2 shows the design
flow used in our automotive control software development
process. The design flow is composed of eight steps as
denoted in Figure 2, describing the top-down software
process from control model importation to deployment on
the experimental platform for system evaluation.

Step 1 specifies the control functionality in the MAT-
LAB/Simulink environment. In our framework, a controller
for a specific vehicle feature is typically designed in Mat-
lab/Simulink and validated using simulations. Subsequently,
the Real-Time Workshop (RTW) [11], an automatic code
generator in Simulink, is used to generate the equivalent C
code of the designed controller. In order to provide detailed
implementation details for the controller, we utilize ESMoL.
The Matlab/Simulink model of the controller is automati-
cally imported into the ESMoL. The imported model is a
structural replica of the Matlab/Simulink controller model
in the ESMoL modeling environment. This imported model
then becomes the functional specification for instances of
software components. Step 2 involves the specification of
the logical software architecture which captures data depen-
dencies between software component instances independent
of their distribution over different nodes. Step 3 defines the
hardware platforms hierarchically as nodes with commu-
nication ports interconnected by networks. Step 4 defines
the deployment model by mapping software components to
nodes, and data messages to communication ports. Step 5
establishes a timing model by attaching timing parameter
blocks to components and messages. Step 6 translates the

Figure 2. Embedded Control Software Design Flow Supported by the
ESMoL Language and Modeling Tools.

ESMoL model into the simpler ESMoL Abstract model
using the Stage1 interpreter of ESMoL. The model in this in-
termediate language is flattened and the relationships implied
by structures in ESMoL are represented by explicit relation
objects in ESMoL Abstract. Step 7 takes the scheduling
problem specification generated from the ESMoL Abstract
model and uses a tool in ESMoL called SchedTool to solve
the scheduling problem. The results are imported back into
ESMoL model and written to the appropriate objects. A
detailed description of the first 7 steps can be found in [5].
Step 8 generates the control software which is compiled and
then deployed on the experimental platform.

IV. CONTROL DESIGN

In this section, we describe the independently designed
lane keeping and adaptive cruise controllers as well as the
integration of the two controllers.

A. Lane Keeping Control

Motivated by the need to overcome dynamic traffic con-
gestion problems and driving safety issues, the lane keeping
control of vehicles has become a very active research area.
The lane keeping control is a driver-assitance vehicle feature
that automatically controls a vehicle’s lateral distance in
order to keep the vehicle between lane markings while
keeping other parameters such as lateral acceleration within
a comfortable driving range. The lane keeping controller

Figure 3. Nested PID Controller

(LKC) executes this objective with the aid of magnetic
trackers for detecting magnetic markers on the road or
through an integrated vision system.

Over the years, there have been quite a few developed
techniques for lane keeping control. An adaptive self-tuning
regulator for lane keeping control was presented in [12]. The
approach provides lane keeping with robustness to unknown
system parameters but the complexity of the approach makes
it quite challenging for an actual implementation on a digital
platform. In [13], a self-tuning controller based on system
parameter identification and pole placement control was
introduced. The authors in [14] presented a performance
evaluation of several lane keeping control techniques such
as H-infinity control, fuzzy control and self-tuning regulator
and discussed the relative trade-off with each approach. In
this paper, we adopt the nested PID lane keeping controller
structure introduced in [15]. The control strategy is to
force the lateral displacement of the vehicle at a lookahead
distance to zero.

Figure 3 shows the block diagram for the nested PID
LKC. The nested PID LKC is composed of two controllers.
The outer loop controller, denoted as Controller-1 in Fig-
ure 3, is a PID-type controller with an additive integral
action on the lateral offset to reject the disturbances on
the curvature which increase linearly with respect to time.
Controller-1 computes a desired reference yaw rate based
on the vehicle’s lateral displacement. The control law for
Controller-1 is as follows:

rd = −KP2yl −KI2

∫ t

0

yldt−KI3

∫ t

0

∫ t

0

yldt−KdyLd (1)

Then the yLd is given by:

yLd = − 1

τ2
α+

1

τ
yl (2)

α̇ = −1

τ
α+ yl (3)

where τ is the filter time constant and is set to a value of
0.01, KP2,KI2,KI3 and KdyLd are the controller gains.

The inner loop controller, denoted as Controller-2 in
Figure 3, is a PI-type controller and computes the desired
steering angle required for achieving zero lateral distance
at the lookahead distance. The control law is described as

follows

δf = −KP1(r − rd)−KI1

∫ t

0

(r − rd)dt (4)

The parameter gains for both controllers used in this paper
are presented as follows

KP1 = 12; KI1 = 10;

KP2 = 1.6; KI2 = 0.12; KI3 = 0.01;

Kd = 0.0005; τ = 0.01

(5)

B. Adaptive Cruise Controller

The adaptive cruise control (ACC) system is an active
safety and driver-assistance vehicle feature that automati-
cally controls a vehicles longitudinal velocity in a dynamic
traffic environment. ACC enables an ACC-equipped vehicle
to follow a leading forward moving vehicle while maintain-
ing a desired distance from the leading vehicle as determined
by the vehicles velocity and a specified time gap or headway.

Figure 4 shows a block diagram of the ACC system. The

Figure 4. Adaptive Cruise Control System

ACC system is based on our previous work in [6], where
two hierarchical levels of control is applied. The upper level
controller depicted in Figure 4 uses the driver inputs, the
radar measurements and the current distance and velocity of
the ACC-equipped vehicle relative to a leading vehicle, to
compute the desired acceleration that is required to achieve
the desired spacing or velocity. On the other hand, the main
objective of the low level controller is two-fold. First, using
the desired acceleration command from the upper level con-
troller, the lower level controller determines whether to apply
braking control or throttle control. Secondly, the required
control command is applied to the vehicle in order to achieve
the desired acceleration. The applied control command is
either throttle angle command, or master cylinder pressure
command. A more detailed description of the ACC depicted
in Figure 4 can be found in [6].

C. Integrated Control System

In this section, we consider the integration of the previ-
ously described lane keeping controller and adaptive cruise
controller. Although the two controllers modify the behavior
of two seemingly different dynamics of the vehicle, with
the ACC controlling the longitudinal dynamics while the

LKC controls the lateral dynamics, there exists physical
interactions in the both the lateral and longitudinal dynamics
of the vehicle. Not only that, changes in the physical
environment such as geometry of vehicle path or road
curvature highlights certain conflicts in the operation of
the two distinctive controllers. For example, the ACC on
detecting a leading vehicle dynamically adjusts the speed of
the ACC-equipped vehicle to the lead vehicle’s speed. On
a curved road, the ACC in an effort to track the leading
vehicle, can attain a vehicle speed that might be too fast,
such that it can potentially obstruct the LKC’s ability to
maintain the desired lateral distance resulting in a conflict.
This type of conflict can potentially result in undesired
and unintended behavior of the overall system. In order to
address these types of conflicts, we integrate a supervisory
controller whose main objective is to restrict the regions of
operation of the integrated system in a safe desirable manner.
The overall integrated system is depicted in Figure 5.

Figure 5. Integrated Control Systems

Figure 6 shows the model of the supervisory controller.
The supervisory controller has two main modes and operates

Figure 6. Supervisory Controller

by dynamically determining the desired longitudinal set-
speed of the ACC based on the perception of the current road

geometry, specifically the road curvature. The idea is that by
restricting the allowable speed for the ACC based on the road
curvature, the LKC can equally be able to achieve its desired
objective of maintaining a desired lateral distance. Hence,
on a relatively straight road, the ACC operates in its normal
mode based on the user set-speed and radar inputs but on a
curvy road, the supervisory controller modifies the user-set
speed to a desired speed based on the radius of curvature.
The underlying relationship between desired speed and road
curvature is described by equation (6)

v =

√
Al

ρ
(6)

where v, Al and ρ are the desired set speed, maximum lateral
acceleration and road curvature(the inverse of curve radius)
respectively.

V. EVALUATION

A. System Architecture

The system architecture for the TTEthernet-based
hardware-in-the-loop simulator (HIL) is shown in Figure 7.
The system architecture is based on time-triggered paradigm
typically used to address the composability and predictability
challenges by precisely defining the interfaces between com-
ponents both in time and value domains [7]. Additionally,
our choice of a time-triggered paradigm is in line with the
current increased efforts towards the standardization of in-
car communication networks, such as FlexRay and Time-
Triggered Ethernet (TTEthernet or TTE), with the overall
objective of guaranteeing highly reliable, deterministic, and
fault-tolerant system performance [16]. We briefly describe
the components of the HIL architecture.

Figure 7. HIL Simulator Architecture

The Design/Visualization PC represents the computing
platform, running Windows operating system, for the dy-
namic modeling of a vehicle using CarSim as well as the
initial control design and testing using Matlab/Simulink. The

design/visualization PC is also used for the visualization and
reporting of results from various experiments.

The TTEthernet Development Switch is an 8-port
100Mbps system which supports 100 Base-TX Ethernet and
enables hard real-time communication based on the TTEth-
ernet protocol. In Fig. 7, the end systems communicate
with each other through the switch that form a star or
cascaded star network topology. The traffic classes supported
in TTEthernet include time-triggered (TT), rate-constrained
(RC), and best-effort (BE), which can be used in different
mixed-criticality scenarios. In this work, we only use the
TT traffic which guarantees the deterministic end-to-end
communication delay. The switch operates based on user
defined configurations based on an experimental scenario.
The configurations are specified in our model-based tool,
ESMoL, which is discussed in Section 3.

The Target PC is a NI LabView Real-Time Target running
NI’s Real-Time Module which provides a complete solution
for creating reliable, stand-alone real-time systems [17].
In this HIL, the vehicle’s physical dynamics modeled in
CarSim is deployed on the Target PC during experiments.
The Target PC is also integrated with a TTTech PCIe-
XMC card [9] which enables the seamless integration and
communication with ECUs on the Time-Triggered network
supported by the TTEthernet switch.

In Fig. 7, the distributed system has four ECUs, but there
could possibly be more or fewer number of ECUs connected
at a time based on a specific configuration. In our frame-
work, an ECU is an IBX-530W-ATOM box with an Intel
Atom CPU running a Real-Time Linux (RT-Linux) operating
system. Each ECU is integrated with a TTEthernet Linux
driver using an implementation of the TTEthernet protocol
to enable the communication with other end systems in the
TTEthernet network. Controller software components are
deployed on the ECUs for execution of automotive control
applications. The controller software components that are
deployed on each ECU are generated from the software
design and deployment models for the controller specified
in ESMoL.

B. Controller Software Implementation

The integrated control systems composed of the inde-
pendently designed LKC and ACC controllers as well as
the supervisory controller are designed in Matlab/Simulink
and validated using simulations. Subsequently, the Simulink
models are imported into the ESMoL environment, and then
we follow the software design flow described in Section III
in order to implement the integrated control system.

Figure 8 shows the logical interconnections of the con-
troller components. Each component represents a task, and
there are four tasks, which are Supervisor, ACC, LKC, and
Collection respectively. Two tasks, InputHandler and Out-
putHandler, are used to represent the sensing and actuation
of the CarSim.

Figure 8. Logical Software Architecture of ACC And LKC Controller.

In Figure 9, the network/platform configurations are ex-
plicitly modeled in the ESMoL. Three ECUs are specified
as ECU1, ECU2 and ECU3. RT-Target node is where the
CarSim simulator runs. In order to represent the sensors
and actuators of a vehicle, two virtual I/O devices are
used. Specific parameters for TTEthernet need to be de-
fined, such as hyperperiod, bandwidth, time slot size, clock
synchronization cycle, and synchronization precision. These
specified parameters can be used to generate the TTEthernet
configuration script using an ESMoL interpreter.

Figure 9. Network/Platform Representation.

Figure 10 shows the deployment model of control soft-
ware. Dashed arrows represent assignment of components
to their respective processors, and solid lines represent
assignment of message instances (component ports) to com-
munication channels (port objects) on the processor. We
manually deploy Supervisor and Collection on ECU1, ACC
on ECU2, and LowLevelController and LKC on ECU3.

In Figure 11, the timing and execution model for tasks
and message transfers of the control system are shown.
The control system runs at a period of 10ms. Since the
TTEthernet provides a synchronized time base for com-
munication, all the message transfers are attached with
TTExecInfo to indicate time-triggered communication. For

Figure 10. Platform Deployment Aspect of Control Software.

example, S2AExec is used to specify the timing for the
message transferring from Supervisor to ACC. We set the
execution period which is the hyperperiod of the TTEthernet
configuration, desired offset which is used to specify the
initstart ns field of TT message in the generated TTEthernet
configuration script, and worst case duration which is the
worst case communication time of the TTEthernet. The
TTEthernet driver on each ECU has a scheduler to take
advantage of the synchronized time base, which can invoke
the tasks according to a static schedule. Thus, all the tasks
can be executed according to the time-triggered paradigm.
We specify the TTExecInfo for each task. For instance,
LKCExec specifies the execution time of LKC in the 10ms
period. Before scheduling, we only need to provide the
execution period and the task’s worst case execution time,
which is measured empirically.

An ESMoL interpreter called Stage1 is used to translate
ESMoL models into an abstract intermediate language that
contains explicit relation objects that represent relation-
ships implied by structures in ESMoL. This translation is
similar to the way a compiler translates concrete syntax
first to an abstract syntax tree, and then to intermediate
semantic representations suitable for optimization. Stage1
was implemented using the UDM model navigation API.
The ESMoL Abstract target model is the flattened ESMoL
model and the source for the transformations implemented
in Stage2. After model transformation, the ESMoL model
becomes an ESMoL Abstract model in the form of XML
file.

An ESMoL Abstract interpreter called Stage2 is used to
generate the TTEthernet configuration script for network
scheduling. This interpreter takes the parameters specified in

Figure 11. Timing/Execution Model of ACC Controller.

the TTEthernet components of the network/platform model,
and combines them with message specifications. Message
specifications are generated for inter-processors message
transfers, which can be deduced from the software archi-
tecture model and the deployment model. The desired offset
field of TT message is from the timing model. When the
configuration script is generated, a scheduler provided by
TTTech [9] is used for network scheduling.

For task scheduling, we use a heuristic algorithm based
on the bottom-level of the system task graph. The bottom-
level represents the longest path from any task in the graph
to the end of the task graph (we assume the graph is polar).
We use a technique such as that described in [18], where the
allocation of the tasks to the processors is known, but the
message ordering must be determined. The algorithm places
each task according to the bottom-level of its corresponding
task graph vertex (in descending order). This ensures that
all dependencies are met before any task can be scheduled.
Our variant of the algorithm heuristically chooses the order
of bus messages based on the bottom-level of their sending
tasks, with ties broken by the sender whose graph vertex
has the greatest out-degree. This heuristic can not guarantee
optimality, but generally packs the schedule tightly resulting
in a reasonable end-to-end latency. For optimality, other
message permutations could produce shorter schedules, but
the search for an optimal schedule is known to be NP-
hard [18]. In this case of task scheduling, the critical path
is simple and is: InputHandler 7→ Supervisor 7→ ACC 7→
Collection 7→ OutputHandler.

After network/task scheduling, the schedule information is
updated into the ESMoL and ESMoL Abstract models auto-

matically. The interpreter uses the updated ESMoL Abstract
model to assemble all the codes for compilation. The net-
work scheduling result is used by a tool called TTEBuild
from TTTech to generate the binary configuration files for
TTEthernet switch and PCIe-XMC card, and C code con-
figuration files for ECUs. The Stage2 interpreter assembles
the C code files generated by RTW and TTEBuild with
glue code files and generates a Makefile automatically. The
tasks are executed in RT-Linux kernel space in order to
take advantage of the synchronized time base of TTEthernet.
After compilation the kernel modules are deployed onto the
respective ECUs as specified by the deployment model.

C. Experiments

In this section, we present two sets of experiments to
illustrate our design approach. The first set of experiments
presents the initial control design phase of the integrated
system composed of the supervisory controller, the LKC and
the ACC performed in Matlab/Simulink. This set of exper-
iments highlights the potential impact of interactions and
conflicts between the objectives of the ACC and LKC. We
show the improved system behavior with the inclusion of the
supervisory controller in order to restrict such interactions or
conflicts. The second experiment involves the model-based
software development of the integrated system with the three
controllers based on the controller software implementation
and the deployment on the experimental platform for a
hardware-in-the-loop simulation. We present results from the
hardware-in-the-loop simulation. In all the experiments, a
vehicle dynamic model created and configured in CarSim is
used to represent the host vehicle. The selected test track
is a dynamic path with a combination of straight paths and
curved roads with radii of 160m, 200m and 160m for the
three curves respectively as seen in Figure 12.

−2000 0 2000 4000 6000 8000
−150

−100

−50

0

50

100

150

X Coordinate(m)

Y
 C

oo
rd

in
at

e(
m

)

Figure 12. Integrated Control Simulation Track

1) Simulation of the Integrated Control System in the
Control Design Phase: This set of experiments are designed

to illustrate the importance of the supervisory controller in
handling certain physical interactions that emerge as a result
of integrating the independently designed LKC and ACC
systems. Two scenarios are considered, in the first case we
consider the integration of the two controllers without a
supervisory controller and in the second case we consider the
integration of the controllers with the aid of a supervisory
controller.

Figure 13 shows the simulation results for the integrated
system without a supervisory controller. The lookahead
distance of the LKC controller is 5m. The desired time-
gap of the ACC is set to 1.5s. The leading vehicle starts at
an initial position of 0, 0 with an initial speed of 30km/h
while the host vehicle, equipped with the integrated control
system, starts at an initial position of (−800, 0) with an
initial speed of 80km/h.

From Figure 13, it can be seen that the ACC performs
it’s desired objectives effectively by dynamically tracking
the leading vehicle’s speed as shown in Figure 13a while
at same time maintaining a safe vehicle distance as shown
in Figure13b. On the other hand, the performance of the
LKC is deteriorated due to the resulting conflict and inter-
actions with the ACC. The lateral displacement as shown
in Figure13c deviates from the desired lane of the vehicle
with a peak value of about −0.7m. This amount of deviation
can result in potentially catastrophic consequence. Although,
the curves in the paths are very aggressive, the lateral
acceleration exceeds 4m/s2 for the most part in the curved
roads.

0 50 100 150 200 250 300
20

40

60

80

100

120

Time(s)

C
ar

 S
p

ee
d

(k
m

/h
)

(a) Car Speed (Solid Line: Follow-
ing Car. Dash Line: Leading Car)

0 50 100 150 200 250 300
30

40

50

60

70

80

90

100

Time(s)

D
is

ta
n

ce
 B

et
w

ee
n

 C
ar

s(
m

)

(b) Distance Between Cars. (Solid
line: Current Value. Dash Line: De-
sire Value)

0 50 100 150 200 250 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time(s)

La
te

ra
l D

is
pl

ac
em

en
t(

m
)

(c) Lateral Displacement

0 50 100 150 200 250 300
−8

−6

−4

−2

0

2

4

6

8

Time(s)

La
te

ra
l A

cc
el

er
at

io
n(

m
/s

2)

(d) Lateral Acceleration

Figure 13. Integrated Control System Simulink Simulation Without
Supervisor

Figure 14 shows the simulation results for integrated
system with a supervisory controller as well as a compar-

ison of the lateral performance. The supervisory controller
dynamically modifies the set-speed input to the ACC based
on the perceived road geometry/curvature. The specified
controller and system parameters are the same as in the
previous scenario. From Figure14a and b, it can be observed
that the set speed input to the ACC is modified by the
supervisory controller based on the curvature of the road.

Figure 14c and d compares the lateral performance of
the system with a supervisory controller and without a
supervisory controller. It can be seen in Figure 14 that,
the lateral displacement for the case with a supervisory
controller is limited to a peak value of about −.34m as
compared to −0.7m in the case without a supervisory
controller. Likewise the lateral acceleration is also reduced in
the aggressive curves as compared to the case without the
supervisory controller. These two scenarios highlights the
importance of the supervisory controller in the integration
of the two independently designed controllers specifically
in handling interactions emerging from the physical layer of
the CPS.

2) Hardware-in-the-loop Simulation of the Integrated
Control System: In this experiment, we present the exper-
imental results from testing the integrated control system
with the supervisory controller on the experimental platform.
The controller and system parameters as well as the path
to track for this experiment are identical to the case for
the Simulink simulations in the control design phase. We
evaluate the impact of platform effects on the performance
of the integrated control system as a result of deployment
on to the experimental platform.

The results from the execution of the integrated control
system on the experimental platform is present in Figure 15.
The vehicle speed and distance plots in Figure 15a and b
respectively are similar to the speed and distance plots from
the integrated system simulation in the control design phase
presented in Figure 14a and b.

Taking a closer look at the results in Figure15d, we
can observe some oscillations in the results from the HIL
simulation. This resulting difference can be attributed to plat-
form effects as a result of the deployment of the integrated
control system on the experimental platform. Specifically,
this implementation limitation is due to the fact that the
computation on the RT-Target is not synchronized with the
network communication in the platform. The synchroniza-
tion issue also leads to difference in the lateral distance offset
as can be seen in Figure 15c.

VI. CONCLUSION

CPS, such as automotive systems, are complex systems
that require systematic methodologies such as model-based
design in to address CPS design challenges. We present a
MBD approach that facilitates the design and integration of
time-triggered automotive control systems. We present an
automotive control system case study for the integration of

0 50 100 150 200 250 300
20

40

60

80

100

120

Time(s)

C
ar

 S
p

ee
d

(k
m

/h
)

(a) Car Speed (Solid Line: Follow-
ing Car. Dash Line: Leading Car)

0 50 100 150 200 250 300
30

40

50

60

70

80

90

100

Time(s)

D
is

ta
n

ce
 B

et
w

ee
n

 C
ar

s(
m

)

(b) Distance Between Cars. (Solid
line: Current Value. Dash Line: De-
sire Value)

0 50 100 150 200 250 300
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time(s)
L

a
te

ra
l

D
is

p
la

c
e
m

e
n

t(
m

)

(c) Lateral Displacement (Solid Line: Without Supervisor. Dot
Line: With Supervisor)

0 50 100 150 200 250 300
-8

-6

-4

-2

0

2

4

6

8

Time(s)

L
a
te

ra
l

A
c
c
e
le

ra
ti

o
n

(m
/s

2
)

(d) Lateral Acceleration(Solid Line: Without Supervisor. Dot
Line: With Supervisor)

Figure 14. Integrated Control System Simulink Simulation with Supervisor

two independently designed controllers, the LKC and the
ACC. Cyber and physical interactions emerge as a result
of this integration. A supervisory controller is integrated to
handle certain physical interactions such as the impact of
road curvature on the behavior of the two controllers. The
designed integrated control system is evaluated using a HIL
simulator.

0 50 100 150 200 250 300
20

40

60

80

100

120

Time(s)

L
o

n
g

it
u

d
in

al
 S

p
ee

d
(k

m
/h

)

(a) Following Car Speed

50 100 150 200 250 300
30

40

50

60

70

80

90

100

Time(s)

D
is

ta
n

ce
 B

et
w

ee
n

 C
ar

s(
m

)

(b) Distance Between Cars. (Solid
line: Current Value. Dash Line: De-
sire Value)

0 50 100 150 200 250 300
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time(s)

L
a
te

ra
l

D
is

p
la

c
e
m

e
n

t(
m

)

(c) Lateral Displacement (Solid Line: HIL Simulation. Dot Line:
Simulink Simulation)

0 50 100 150 200 250 300
-6

-4

-2

0

2

4

6

Time(s)

L
a
te

ra
l

A
c
c
e
le

ra
ti

o
n

(m
/s

2
)

(d) Lateral Acceleration (Solid Line: HIL Simulation. Dot Line:
Simulink Sim ulation)

Figure 15. Integrated Controller HIL Simulation

REFERENCES

[1] J. Mossinger, “An insight into the hardware and software
complexity of ecus in vehicles,” Advances in Computing and
Information Technology, Communications in Computer and
Information Science, vol. 198, pp. 99–106, 2011.

[2] ——, “Software in automotive systems,” IEEE Software,
vol. 27, no. 2, pp. 92 –94, march-april 2010.

[3] E. H. Lim and J. K. Hedrick, “Lateral and longitudinal
vehicle control coupling for automated vehicle operation,” in

Proceedings of 1999 American Control Conference, vol. 5.
IEEE, 1999, pp. 3676–3680.

[4] T. Stahl and M. Volter, Model-driven software development.
John Wiley and Sons, 2006.

[5] J. Porter, G. Hemingway, H. Nine, C. VanBuskirk, N. Kot-
tenstette, G. Karsai, and J. Sztipanovits, “The esmol language
and tools for high-confidence distributed control systems
design. part 1: Language, framework, and analysis,” Tech.
Rep., Sept. 2010.

[6] E. Eyisi, Z. Zhang, X. Koutsoukos, J. Porter, G. Karsai, and
J. Sztipanovits, “Model-based control design and integration
of cyber-physical systems: An adaptive cruise control case
study,” Journal of Control Science and Engineering, 2013.

[7] H. Kopetz and G. Bauer, “The time-triggered architecture,”
Proc. of the IEEE, vol. 91, no. 1, pp. 112 – 126, jan 2003.

[8] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette,
P. Antsaklis, V. Gupta, B. Goodwine, J. Baras, and S. Wang,
“Toward a science of cyber-physical system integration,”
Proc. of the IEEE, vol. 100, no. 1, pp. 29 –44, jan. 2012.

[9] “Ttethernet,” http://www.tttech.com/en/products/ttethernet/.

[10] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi,
“The generic modeling environment,” in Workshop on Intel-
ligent Signal Processing, 2001.

[11] “Mathworks - real-time workshop,”
http://www.mathworks.com/products/rtw/.

[12] M. Netto, S. Chaib, and S. Mammar, “Lateral adaptive
control for vehicle lane keeping,” in Proceedings of the 2004
American Control Conference. Piscataway, NJ, USA: IEEE
Press, 2004, pp. 2693–2698.

[13] V. Bobál, J. Böhm, J. Fessl, and J. Machácek, Digital Self-
tuning Controllers: Algorithms, Implementation and Appli-
cations, ser. Advanced Textbooks in Control and Signal
Processing Series. Springer-Verlag London Limited, 2005.

[14] S. Chaib, M. Netto, and S. Mammar, “H infinity, adaptive,
pid and fuzzy control: comparison of controllers for vehicle
lane keeping,” in 2004 IEEE intelligent Vehicles Symposium.
Piscataway, NJ, USA: IEEE Press, 2004, pp. 139–144.

[15] R. Marino, S. Scalzi, G. Orlando, and M. Netto, “A nested pid
steering control for lane keeping in vision based autonomous
vehicles,” in Proceedings of the 2009 conference on American
Control Conference, ser. ACC’09. Piscataway, NJ, USA:
IEEE Press, 2009, pp. 2885–2890.

[16] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends
in automotive communication systems,” Proceedings of the
IEEE, vol. 93, no. 6, pp. 1204 –1223, june 2005.

[17] “National instruments,” http://www.ni.com/.

[18] O. Sinnen, Task Scheduling for Parallel Systems. Wiley-
Interscience, 2007.

