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Abstract—Model-based diagnosis for industrial applications
have to be efficient, and deal with modeling approximations and
measurement noise. This paper presents a distributed diagnosis
scheme, based on Dynamic Bayesian Networks (DBNs) that
generates globally correct diagnosis results through local analysis,
by only communicating a minimal number of measurements
among diagnosers. We demonstrate experimentally that our
distributed diagnosis scheme is computationally more efficient
than its centralized counterpart, and it does not compromise the
accuracy of the diagnosis results.

I. INTRODUCTION

Online diagnosis schemes designed to ensure the safe and
efficient operation of real-world engineering systems must be
robust to uncertainties; efficient in their memory and compu-
tational requirements; scale well to changes in system con-
figurations; and not suffer from single points of failure. Most
centralized model-based diagnosis schemes suffer from some
of these shortcomings, but distributed diagnsosis schemes can
address these drawbacks [1]–[3].

This paper presents a distributed scheme for diagnosing
parametric faults in complex physical systems operating in
uncertain environments using Dynamic Bayesian Networks
(DBNs) [4]–[6]. Our distributed diagnosis scheme does not use
a centralized coordinator, and each local diagnoser generates
globally correct diagnosis results through local analysis, by
only communicating a minimal number of measurements with
other local diagnosers. The diagnoser design is based on fac-
toring the bond graph (BG) model of the system into multiple
independent, structurally observable, bond graph factors (BG-
Fs) that are systematically converted into diagnosis models,
i.e., DBN-Factors (DBN-Fs), used by the local diagnosers.
Random variables in a DBN-F are guaranteed to be condition-
ally independent of the random variables in all other DBN-
Fs given the chosen subset of communicated measurements
considered as system inputs. We leverage this conditional
independence among the DBN-F variables to derive separate
particle filter (PF)-based inference algorithms [7] for fault
detection, isolation, and identification. This quantitative diag-
nosis scheme is employed in combination with a qualitative
fault isolation scheme to improve diagnosis efficiency.

In the remainder of this paper, we present our distributed
diagnosis scheme, prove that our local diagnosers generate
globally correct diagnosis results through local analysis with-
out a centralized coordinator, and demonstrate experimentally
using an electrical power system case study that our distributed

diagnosis scheme is computationally more efficient than its
centralized counterpart without compromising the accuracy of
the diagnosis results.

II. MODELING FOR DIAGNOSIS

Our approach requires two diagnosis models: (1) temporal
causal graphs (TCGs) for qualitative fault isolation [8], and (2)
DBNs for fault detection and identification [6]. Both models
are systematically derived from the system BG model [9].

A. Bond Graphs

BGs are parametric, topological models that capture energy
exchange pathways in physical processes. The generic BG-
elements are energy storage (C and I), dissipation (R), trans-
formation (GY and T F), source (Se and S f ), and detection
(De and D f ) elements. The connecting edges, called bonds,
represent energy pathways between the elements. Each bond
has an associated effort, e, and flow, f , variable, such that their
product defines the power transferred through the bond. 0- and
1-junctions represent equal-effort and equal-flow connections,
respectively. Fig. 1(b) shows the BG of a twelfth-order electri-
cal circuit shown in Fig. 1(a). For every C element in integral
causality, the corresponding state variable is the displacement
variable, q, such that q̇ = f . Similarly for every I element
in integral causality, the corresponding state variable is the
momentum variable, p, such that ṗ = e.

Faults are defined as changes in the nominal BG param-
eter values [6]. An incipient fault is a slow change in BG
parameter, p (with nominal parameter value function, p(t)),
and modeled as p±i(t) = p(t)±∆i

p · (t − t f ), t > t f ,where t f is
the time of fault occurrence, p±i(t) is the temporal profile
of parameter p with an incipient fault, and ∆i

p is a constant
slope. An abrupt fault is modeled as an addition of a constant
persistent bias term, ∆a

p · p(t), to the nominal parameter value,
p(t), i.e., p±a(t) = p(t)±∆a

p · p(t), t > t f ,where t f is the time of
fault occurrence, ∆a

p is the percentage change in the parameter
expressed as a fraction, and p±a(t) is the temporal profile of
parameter p with an abrupt fault.

B. Temporal Causal Graph

TCGs are graphs that capture the causal and temporal
relations between system variables, through directed edges
and their labels. The direction of a TCG edge and its label
are based on causality, which establishes the cause and effect
relationships between the e and f variables of a bond based on



(a) Schematic.

(b) Bond graph.

(c) Two-Factored bond graph with imposed derivative causal-
ity.

(d) Dynamic Bayesian Net-
work.

(e) Two-Factored Dynamic
Bayesian Network.

Fig. 1. Models of the twelfth-order electrical system.

constraints imposed by the incident BG elements. As shown
in [8], algorithms that use the sequential causal assignment
procedure (SCAP) to assign the causality in a BG [9] can be
used to generate a TCG from a BG.

C. Dynamic Bayesian Network

A DBN is defined as D = (X,U,Y), where X, U, and Y are
sets of stochastic random variables that denote (hidden) state
variables, system input variables, and measured variables in
the dynamic system, respectively [4]. Graphically, a DBN is a
two-slice Bayesian network, representing a snapshot of system

behavior in two consecutive time slices, t and t+1. Each DBN
time-slice represents the Markov process observation model,
P(Yt |Xt ,Ut), while the across-time links represent the Markov
state-transition model, P(Xt+1|Xt ,Ut). The system DBN is
constructed from its TCG in integral causality using the
method given in [5]. Fig. 1(d) shows the DBN for our example
circuit, where thick-lined circles denote state variables, thin-
lined circles denote observed variables, and squares denote
input variables.

III. THE DISTRIBUTED DIAGNOSIS APPROACH

Decentralized diagnosis schemes can be broadly classified
into three protocols presented in [2], where each local diag-
noser is built from the global system model and uses only a
subset of observable events. Our approach, similar to the third
protocol, generates correct results without a coordinator. But,
unlike the approach presented by [1], each individual local
diagnoser needs to communicate only the minimal number
of measurements, and not diagnosis results, from other diag-
nosers to generate globally correct diagnosis results.

In our distributed diagnosis approach (Fig. 2), we factor
a BG into structurally observable BG-Fs, and build a local
diagnoser off the DBN-F and TCG-Factor (TCG-F) derived
from each BG-F. Each local diagnoser performs three primary
tasks [6]: (i) fault detection, (ii) qualitative fault isolation
(Qual-FI), and (iii) quantitative fault hypothesis refinement and
identification (Quant-FHRI).

A fault is detected when the residual, i.e., the difference
between the observed (faulty) and estimated (nominal) values
of a measurement, is determined to be statistically signifi-
cant [10]. A PF scheme [7] implements the nominal observer
for each DBN-F diagnoser. Fault detection triggers Qual-FI,
which starts with a hypotheses generation, where all possible
parameter changes that can explain the observed deviation
are generated. The fault hypotheses are refined by comparing
the fault signatures of the fault hypotheses, and removing
from consideration, the fault hypotheses inconsistent with the
observed deviations. Fault signatures are generated from the
system TCG-F.

The Quant-FHRI scheme is invoked when either the fault
hypotheses set is refined to a pre-defined size, k, a design
parameter, or a pre-specified s simulation timesteps have
elapsed. For each fault hypothesis that remains when Quant-
FHRI is initiated, a faulty system model is generated by
extending the nominal DBN-F to include the fault parameter as
a stochastic variable in the DBN-F [6]. Again, a PF scheme for
each DBN-F fault model tracks the faulty observed behavior,
taking as input the measurements from time td−∆max

t , where
∆max

t ≥ td − t f is the maximum delay possible between the
time of fault occurrence, t f , and the time of fault detection,
td . For each PF, a Z-test is used to determine if the deviation
of a measurement estimated by the PF from the corresponding
actual observation is statistically significant. As more observa-
tions are obtained, ideally the PF using the correct fault model
will eventually converge to the observed measurements, while
the observations estimated using the incorrect fault models



Fig. 2. The distributed diagnosis architecture.

would gradually deviate from the observed measurements.
We assume that the particles for the true fault model will
converge to the observed measurements within sd time steps
of its invocation. Since the fault magnitude is included as a
stochastic variable in every fault model, the magnitude of the
true fault (i.e., the % bias, ∆a

p, or, the slope, ∆i
p) is considered

to be that estimated by the PF for the true fault model.
We start tracking faulty data from time td −∆max

t because
once the fault has occurred, and till the magnitude of the fault
is correctly identified, the system model is unknown. Tracking
the observed measurements from before the occurrence of fault
in the system is beneficial in terms of setting the initial state
vector values. However, this implies that the process noise for
each state variable must be set to a large enough value to avoid
the “particle attrition” or “weight degeneracy” problem [11].
But having a large constant standard deviation would result
in a large variance in estimated values. Fig. 3 illustrates our
approach of using a standard deviation that varies linearly
between σmax

p and σmin
p around the approximate time of fault

occurrence. The heuristic for determining σmax
p and σmin

p are
as follows: We assume a symmetric scale for fault magnitude
increase and decreases, and assign σmax

p ≥P/3, where P
is the nominal value of parameter p for a p−a fault. The
denominator 3 is based on normal distribution characteristics:
99.7% of the values in a normal distribution lies within three
standard deviations of the mean. For a p−i fault, we assign
σmin

p ≥P∆t/3, where ∆t is the time difference between two
slices of the DBN. For p+a and p+i faults, we assume the
max possible values for ∆a

p and ∆i
p are denoted by ∆a

pmax and
∆i

pmax , respectively. So, for a p+a fault, σmax
p ≥ ∆a

pmax/3, and
for a p+i fault, σmax

p ≥ ∆i
pmax ∆t/3. Once σmax

p values have
been determined, we usually set σmin

p = σmax
p /10. Note that

in the incipient fault model, it is the noise that accounts for
generating particles in the vicinity of the true parameter value
at each time step. Hence, we must be careful to ensure that
σmin

p is not smaller than the actual ∆i
p ·∆t for that parameter.

IV. DESIGNING THE LOCAL DIAGNOSERS

The objective of our distributed diagnosis scheme is to
generate globally correct diagnosis results without a central-
ized coordinator, and by communicating a minimal number of
measurements between diagnosers. We achieve this objective
by first factoring the system BG into maximal number of
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Fig. 3. Profile of standard for our particle filtering-based fault identification.

structurally observable [12] BG-Fs, and then generating a
TCG-F and a DBN-F for each BG-F. The detailed procedure
for generating the local diagnosers appears in [13].

The factoring approach identifies the system state variables
that can be computed as algebraic functions of a subset of
sensor measurements, and replaces these state variables by
the algebraic functions. As the values of these state variables
can now be computed at every time step, the dependence of
across time relations between some of the state variables are
removed, which decouples the computational model for each
factor given the sensor measurements. Therefore, the inference
algorithms for each factor are independent of the algorithms
for other factors, facilitating our distributed diagnosis scheme.

Factoring BGs, therefore, corresponds to replacing energy-
storage I and C elements by modulated sources of flow or
effort, respectively, with the modulation factors computed
as algebraic functions of observed measurements. Fig. 1(b)
shows complete BG of the electrical circuit. The available
measurements in this circuit are current values, i1, i2, . . . , i4 and
voltages v1,v2, . . . ,v6. Fig. 1(c) shows the two BG-Fs that the
global BG is factored into. The current through the inductor
L5 is equal to v3/R3. Hence, we can replace f35 in Fig. 1(b)
with modulated MS f = v3/R3 creating the two independent
factors. If one or more of the resultant BG-Fs are structurally
unobservable, they are merged with other BG-Fs till all of the
BG-Fs are structurally observable.

In the maximal number of structurally observable BG-F con-
figuration, each BG-F is converted into a DBN-F. By construc-
tion, the random variables in each DBN-F are conditionally
independent from those in other DBN-Fs given the subset of



measurements now considered as system inputs. Because our
DBN-Fs are generated from structurally observable BG-Fs,
our factored inference scheme generates accurate inference
results. Fig. 1(e) shows the DBN-Fs corresponding to the
two BG-Fs in Fig. 1(c). Note that in the DBN-Fs, the state
variable p35 is replaced by the input v3L5/R3. Since, v3/R3
can be measured at every time step, all causal links directed
into p35 are removed. As a result, given v3L5/R3, every
variable in one DBN-F is conditionally independent of the
variables in the other DBN-F. Thus, the two generated DBN-
Fs are conditionally independent. In the factored DBN, we do
not replace state variables, such as, p2 with i1L1, since this
replacement does not yield any additional factors in Fig. 1(e).
Moreover, we do not replace state variables p10 and q29 with
i2L3 and v5C4, respectively, since we assume that inductor L3,
and capacitor C4 can become faulty. We can see that the DBN-
Fs shown in Fig. 1(e) map to the BG-Fs shown in Fig. 1(c).

Once we generate m DBN-Fs, D1, D2, . . . Dm, from m
structurally-observable BG-Fs, B1,B2, . . . ,Bm, a local diag-
noser, Di, is constructed based off the DBN-F Di and the
TCG-F derived from each BG-F, Bi. Our distributed diagnosis
approach (presented in the previous section) can be imple-
mented by each Di, independent of the other diagnosers.

V. IMPLEMENTING THE LOCAL DIAGNOSERS

Each local diagnoser, Di, receives the input signals Ui, and
the observed measurements Yi from the system since it is
based off DBN-F, Di. Note that a diagnoser Di’s inputs Ui may
include some of the inputs to the global system, i.e., Ui∩U 6=
∅, as well as some measurements now considered inputs, i.e.,
Ui ∩Y 6= ∅. Each Di implements an independent PF-based
observer on nominal DBN-F Di for fault detection in Qual-
FI; uses the TCG-F for hypothesis generation and refinement;
and PFs applied to faulty DBN-Fs generated by extending Di
with faulty parameters as additional state variables for tracking
faulty system behavior in Qual-FHRI.

Each of these PFs takes as inputs, Ui, and estimates Xi based
on Yi. Only measurements (∪iUi)−U are shared between
the PF-based observers for each Di. Further, the PF for the
DBN-F Di is designed to use a |Xi|

|X| particles, where a is a
user-specified parameter. Given m DBN-Fs, we know that
∑i |Xi|< |X|, where X is the total number of state states in the
complete system. Therefore, the complexity of tracking using
each DBN-F is less that that of tracking using the global DBN.
Also, since the inference algorithms on the different factors
are executed simultaneously, the total complexity of inference
reduces to the complexity of inference of the PF with the
maximum number of particles. The reduction of complexity
is based on the assumptions that the sensors associated with
measurements used to modulate the sources of energy in BG-
Fs will not be faulty, and the components whose parameters
are used in the algebraic functions are assumed not to fail.
Therefore, there is a trade-off for robustness to gain efficiency.

Our local diagnosers are guaranteed to generate globally
correct results through local analysis, without a centralized
coordinator. By construction, a fault, φ ∈ Fj, is only detected

TABLE I
FAULT SIGNATURES FOR LOCAL DIAGNOSERS D1 AND D2

Diagnoser D1
Fault i1 i2 i3 v1 v2

C−a
2 , C−i

2 , R+a
2 , R+i

2 0−0− 0− 0+ 0+
L−a

2 0+0− 0−−+−+
L−i

2 0+0− 0− 0− 0−
L−a

3 0++−+−−∗−+
L−i

3 0+0+ 0+ 0− 0−
L−a

4 0+0+−+0− 0−
L−i

4 0+0+ 0− 0− 0−

Diagnoser D2
Fault i4 v4 v5 v6

C−a
3 , R+a

4 0++−0+ 0+
C−i

3 , R+i
4 0+ 0+ 0+ 0+

C−a
4 0− 0++−+−

C−i
4 , R+a

6 , R+i
6 0− 0+ 0+ 0+

L−a
7 −+0− 0− −∗

L−i
7 0− 0− 0− 0−

R+a
7 0− 0+ 0−+−

R+i
7 0− 0+ 0− 0+

by diagnoser D j. All other diagnosers, Dk, k 6= j, will not
detect the fault hence, they are not activated. In general, say
the observer in diagnoser Di uses the state space equations
X̂it+1 =Gi(Xit ,Uit ), and Ŷit =Hi(Xit ,Uit ). Two diagnosers D j,
Dk communicate a measurement Y ∈ Y if Y ∈ U j ∧Y ∈ Uk,
i.e., measurement Y is an input to both D j and Dk. A fault in
BG-F, Bk implies that functions Gk and Hk do not correctly
represent the actual system any more. As a result, Ŷk 6≈ Yk,
and a fault is eventually detected by Dk. The effects of a fault
in Bk can propagate to another BG-F B j, j 6= k, through their
shared inputs, (U j ∩Uk)−U, iff Bk and B j communicate at
least one measurement, but, since we adopt the single-fault
assumption, and since by construction, two BG-Fs can never
share any parameters, the state space representations G j and
H j of all other BG-Fs, B j, j 6= k, will correctly represent
the actual system dynamics of each BG-F. Hence, Ŷ j ≈ Y j,
i.e., the observers in other diagnosers will correctly track
the faulty measurement, and hence no fault will be detected.
Consequently, the diagnoser does not get activated unless a
fault is detected.

VI. EXPERIMENTAL RESULTS

This section presents experimental results of applying our
distributed diagnosis scheme on the electrical system shown
in Fig. 1(a). Two local diagnosers, D1 and D2 are designed
for this electrical circuit, for the top and bottom DBN-Fs
shown in Fig. 1(e). The two diagnosers communicate voltage
measurement v3 between each other. Table I shows the possible
faults that must be diagnosed by each of the two diagnosers,
and the fault signatures for each fault, given the measurements
available to each diagnoser.

We present an experimental run for diagnosing an abrupt
fault in C2, C−a

2 , with ∆a
C2

= −0.9, introduced at time,
t = 100 s. A negative deviation is noticed in measure-
ment i3 at t = 101.4 s, which result in the fault hy-
potheses set, {C−i

2 ,C−a
2 ,R+a

2 ,R+i
2 ,L−i

2 ,L−a
2 ,L−i

4 ,L−a
4 }. Sube-

quent changes in i3 and v2 the fault hypotheses are refined
to {C−i

2 ,C−a
2 ,R+a

2 ,R+i
2 } using the fault signatures in Table I.

Qual-FI can produce no further refinements so Quant-FHRI is
initiated. As shown in Fig. 4, the second diagnoser does not
detect any fault. We start tracking the observed measurements
from time t = 97.5 s, and instantiate two PFs, one using a
DBN-F model for fault C−i

2 /C−a
2 , and the other using a DBN-F

model for fault R+i
2 /R+a

2 , with parameters C2 and R2 introduced
as additional state variables in the nominal system DBN-Fs
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Fig. 4. Tracking observations in the presence of C−a
2 fault by diagnoser D2.

shown in Fig. 1(e). Figs. 5(a) and 5(b) show the DBN-F fault
models for C−i

2 /C−a
2 and R+i

2 /R+a
2 , respectively.

Fig. 6 shows the sum of mean squared estimation errors
obtained using the two different fault models. For abrupt
faults, at the time the fault is introduced, the abrupt fault
parameter value is unknown. Hence, it takes some time for
the correct fault model estimates to converge to the observed
measurements, as we can see in the error plots obtained by
the first fault model. A statistical test is employed on the
sum of estimation errors across all the measurements to detect
statistically significant sum of mean squared estimation errors.
This statistical test detects a statistically significant sum of
mean squared estimation error obtained by both the DBN-F
fault models at times t = 101.3 s and t = 101.9 s, respectively.
However, the sum of mean squared estimation errors from the
R2 DBN fault model do not converge even after sd = 150 s,
whereas, the sum of mean squared estimation errors from the
C2 DBN fault model converges to the observed measurements
from t = 105.0 s. Hence the true fault is isolated to be C±a

2 /C±i
2

fault at t = 251.3 s. In order to determine whether the fault is
an abrupt or incipient fault in C2, we run a window-based Z-
test on the difference between the known nominal parameter
value and the estimated state variable. At t = 171.7 s, the
statistical test shows that the estimated parameter evolves in
a (−0) manner, implying it is an abrupt fault, and that it
converges. By taking a mean of the values for 20 time steps
after the abrupt fault is isolated, we obtain ∆a

C2
=−0.897. The

actual value of ∆a
C2

is −0.900. Thus, there is a 0.33% error in
estimating ∆a

C2
. The estimate for the faulty parameter is shown

in Fig. 6(c). Notice the initial set of fault hypotheses generated
in the distributed scheme is smaller than that generated in the
centralized approach for the same fault experiment.

Table II summarizes the results of different distributed and
centralized diagnosis experiments we ran on the electrical
circuit example. For each experiment, we conducted 5 runs,
and took the average of the time to fault detection, time to
single fault isolation, time for the estimated parameter value
to convergence to the true value, and the percentage error in
the estimates of the true fault parameter. On comparing the
results obtained from the centralized and distributed Bayesian

(a) DBN-F Fault model for
C−a

2 /C−i
2 .

(b) DBN-F Fault model for
R+a

2 /R+i
2 .

Fig. 5. DBN-F Fault models for distributed diagnosis experiments.
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Fig. 6. Quant-FHRI using C2 and R2 DBN-F fault models.

diagnosis experiments, we observe that the computational ex-
pense of the local diagnosers is less than that of the centralized
diagnosers, since if each local diagnoser is implemented on a
separate process, the worst case efficiency of our distributed
diagnosis scheme is determined by the largest DBN-F fault
model used for tracking faulty measurements, and, by con-
struction, the largest DBN-F will still be smaller than the
global DBN.

Also, compared to the centralized diagnosis approach, the
distributed diagnosis approach results in comparable parameter
estimation errors to the centralized diagnosis approach. In
addition, the parameter estimates made by the distributed
approach took longer to converge in terms of the number
of measurement points required than the centralized scheme.
We attribute this difference to the proportional distribution of
particles based on the size of each factor, keeping the sum total
of particles used by all the PFs the same. Moreover, the use
of a noisy sensor to compute the value of a state variable
also contributed to this degraded accuracy. The centralized
diagnosis scheme has access to more sensors and the state-
estimates are not as noisy as those computed in terms of
measurements in the distributed scheme. If the individual
local diagnosers are executed on different processors, then
we can increase the number of particles for each diagnoser,
and our intuition is that this will improve the estimation
accuracy and identification time of the local diagnosers. Thus,



TABLE II
RESULTS OF DIAGNOSIS EXPERIMENTS ON THE TWELFTH-ORDER

ELECTRICAL CIRCUIT

Distributed Diagnosis with Particles Used Proportional to
the Total Number of States Per Factor

Fault Magnitude Detection Isolation Conv. % Mean Param.
Time (s) Time (s) Time (s) Est. Error

C−a
2 −0.90 1.04 55.06 5.88 0.64

L−a
3 −0.90 0.50 4.32 6.56 1.11

C−a
3 −0.90 0.20 3.02 3.64 0.13

R+a
7 +5.00 118.30 163.30 128.64 0.66

Centralized Diagnosis
Fault Magnitude Detection Isolation Conv. % Mean Param.

Time (s) Time (s) Time (s) Est. Error

C−a
2 −0.90 1.26 53.80 4.76 0.27

L−a
3 −0.90 0.50 3.98 5.08 0.49

C−a
3 −0.90 0.2 2.8 3.26 0.12

R+a
7 +5.00 196.8 377.4 115.6 0.48

our experimental results on the twelfth-order electrical circuit
illustrates the accuracy versus efficiency trade-off due to the
factoring of the DBN into DBN-Fs.

VII. DISCUSSION AND CONCLUSIONS

PFs have been used extensively for system health mon-
itoring and diagnosis of hybrid systems [5], [14]. These
approaches, however, do not alleviate the sample impover-
ishment problem, where low probability particles representing
the faulty state are dropped during the re-sampling process.
Several solutions have been proposed, e.g., [15] rank fault
hypothesis based on their likelihoods, and report the most
likely fault mode. Our approach to increasing them decreasing
the variance of the unknown faulty parameters, similar to [11]
addresses this issue successfully.

[16] propose an approach for combining look-ahead Rao-
Blackwellised PFs (RBPFs) with Livingstone 3 (L3) for di-
agnosing faults in hybrid systems. The nominal RBPF-based
observer tracks the system evolution till a fault is detected,
after which L3 generates a set of fault candidates that are
then tracked by the fault observer (another RBPF). All the
fault hypotheses are included in the same model, and tracked
by the fault observer. In contrast, our approach executes the
qualitative and quantitative fault isolation schemes in parallel,
and uses separate fault models for each fault candidate.

The BK algorithm, presented in [17], creates the individual
factors by eliminating causal links between weakly interacting
subsystems. The belief state derived from the individual factors
is an approximation of the true belief state, but the error is
bounded. But the bounds may not be sufficiently precise for
online diagnosis, leading to missed alarms and less precise
diagnoses, or even false alarms and wrong diagnoses. The
Factored Particle Filtering (FPF) scheme [18] reduces esti-
mation errors by applying the particle filtering scheme to the
BK factored inference approach. Our distributed estimation
approach uses the particle filtering scheme for inference using
DBNs and preserves the overall system dynamics in the
factored form, and does not approximate the belief state.
Hence, we produce accurate state estimates efficiently.

The effectiveness of our approach relies on the assumptions
that the sensors associated with measurements converted to
inputs are not faulty, and components whose parameters are
used in the algebraic functions do not fail. In the future,
we seek to relax these assumptions. In addition, we would
like to analyze the accuracy, scalabality, and efficiency of our
methodology in large, industrial applications.
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