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Abstract—Passive wireless sensors have emerged as a new
technology to measure a vast majority of phenomena in our
daily life. Passive sensors require no power source, and therefore
their application domains are numerous, including health care,
infrastructure protection, and national security, among many
others. The deployment of wireless passive sensors and their
readers has changed how detection needs to be performed.
Passive sensors cannot pre-process the measurements as they
have limited computational power. Therefore, no local decision
is taken. Also, the reader polls the information from multiple
sensors at the same time, and this causes collisions and hence
packet drops and delays. In this paper, we formulate the detection
performance, with non-ideal channels, in a probabilistic way,
and compare with classical detection performance. We design
an optimal adaptive Neyman-Pearson detector, given the channel
probabilistic model, by formulating and solving a constrained
optimization problem.

Index Terms—Neyman-Pearson detection, intermittent obser-
vations, wireless passive sensor, ROC curve.

I. INTRODUCTION

In classical detection theory, statistical hypothesis testing is

applied to detect noisy signals. The main problem is to design

the optimal detector (according to some pre-defined criteria)

that distinguishes between two or more hypotheses (sometimes

referred to as phenomena or state of nature) given noisy

observations. This problem has been studied extensively [1],

and different detectors have been proposed. Examples are the

Neyman-Pearson (NP) detector and the Maximum Likelihood

(ML) detector [2]. Classical detection theory will be referred

to as centralized detection hereafter.

The emergence of distributed radar has given another

perspective for the detection problem, namely Decentralized

Detection (DD). DD has been an active area of research during

the 1980s and early 1990s. In DD, multiple sensors relay

information (after pre-processing) to a fusion center, and the

problem is to design both the optimal local decision rules and

the fusion rule to detect events as accurately as possible [3].

Recently, Wireless Sensor Networks (WSNs) have been

employed in DD applications, adding to the challenge of

detection the issue of channel imperfection, which causes

errors in the transmission. There is recent work that discusses

the effect of non-ideal channels on the design of decentralized

detectors [4], [5]. However, the main assumption is that the

sensor nodes have sufficient computational power to pre-

process the observations and take a decision. This assumption

is no longer valid in the case of passive wireless sensors.

In the last few years, passive wireless sensors have appeared

as a new technology for sensors that does not require any

power source. The basic idea is to use a powered reader to

poll the data from different passive sensors. The passive sensor

uses the incident power from the reader to energize its local

circuitry. A variety of ways exist for the sensor to modulate

the reader incident wave and relay its information back to the

reader. The most popular example for this architecture is RFID

technology [6].

Motivated by RFID technology, passive wireless sensors

have been developed to measure a vast majority of phenomena

in our daily life. In the environmental monitoring domain,

passive wireless sensors that detect bio-hazardous materials

are proposed in [7]. An example of a passive wireless sensor

for measuring temperature, stress, strain, acceleration and

displacement using Surface Acoustic Wave (SAW) transducer

is described in [8]. In the health care domain, a passive strain-

sensor technology for the measurement of small strains on

bones or fixation systems in the human body is presented

in [9]. In the automotive industry, passive wireless strain

monitoring of car tires is described in [10].

The introduction of passive wireless sensors as a replace-

ment for active sensors has changed how detection needs to

be performed. The main change comes from the fact that a

passive sensor has limited computational power and memory,

and therefore, it cannot pre-process the measurements before

transmission to the reader. Also, in a passive WSN architec-

ture, the reader polls the information from multiple sensors at

the same time, giving rise to collisions and hence packet drops

and delays.

Passive wireless sensors communication adheres to strict

industry standards. The standards deal with air interface pro-

tocols (the way tags and readers communicate), data content

(the way data is formatted), and conformance (ways to test

products). These are RFID standards, where passive sensors

communicate arbitrary sensor data by emulating an RFID tag

whose ID encodes the desired sensor data [11]. Conforming

to standards guarantees inter-operability between different

vendors’ passive sensors and readers, and reduces sensor cost,

which is the primary attractive feature for passive sensors, in

addition to their battery-less operation.



The fact that wireless sensors communicate using data

network packets, is not adequately addressed in the typical

work of DD in WSNs. This fact, although simple, has a great

impact on the way the DD system is represented and analyzed.

Typical work on DD in WSNs assumes a finite alphabet for

local sensors, that are transmitted using orthogonal set of

signals, and the objective is to study the effect of the channel

(fading and noise) on the received waveforms [3], [12]. In

typical WSNs, sensor data is submitted in a frame that includes

header information, the error correcting code, in addition to

other packet overhead. Effect of the channel on the received

waveforms is of interest only to the detection task performed

by the digital communication system at the physical layer

level, to infer the transmitted symbol (representing a string

of bits). As far as the sensor data (in the packet payload) is

concerned, the data may not arrive, or arrive with arbitrary

delay.

As an illustrating example, fading is one of the common

phenomena affecting the transmitted signals [13]. In a data

network, fading may cause an error in the received packet,

which for all practical purposes, is detected at the receiver

with very high probability. Therefore, the packet may be in

error, and a retransmission may be requested, or the packet

may arrive with no errors. Therefore, the effect of fading on

the data network can be captured at a higher level, by modeling

the data network in a probabilistic way.

In previous work, we studied the degradation in the detector

performance as a result of channel imperfection [14]. We

assumed a single passive sensor to reader communication over

a Bernoulli channel, to model the missing observations effect

of a typical data network. Since passive sensors lack compu-

tational power, raw observations, without pre-processing, are

assumed to be sent directly to the reader. We obtained the de-

tector performance both analytically and through Monte Carlo

simulations, and proposed a heuristic approach to restore the

detector performance, by increasing the number of samples,

and hence increasing the delay for detection.

In this paper, we formalize the NP detector performance

analysis with intermittent observations, in a probabilistic

framework. We also formulate, and solve, the optimization

problem to obtain the optimal design for the detector in the

case of non-ideal channel. In contrast with our previous work,

we do not put any restriction on the detector, such as existence

of a sufficient statistic. Rather, we assume any detector with a

general ROC curve. We also assume a generic probabilistic

channel model and emphasize the mathematical difference

between the detection problem in both the ideal and the non-

ideal channel cases.

The rest of the paper is organized as follows: In Section

III, we formulate the detection problem using passive wireless

sensors, with a non-ideal channel between the sensors and

the detector. We explain the network effect on the detection

system, and highlight the difference between this formulation

and other formulations reported in the related work. We

present some preliminary results from our previous work in

Section IV. In Section V, we give a probabilistic interpre-

tation for the performance of the detector with non-ideal

channel, using Neyman-Pearson (NP) criterion. In Section VI,

we formulate and solve the constraint optimization problem,

resulting in an optimal adaptive detector design, working with

intermittent observations. Finally, we conclude the work with

future research directions in Section VII.

II. RELATED WORK

Classical detection theory, with particular attention to signal

processing applications, is discussed in [1], [2]. The research

on decentralized detection is largely attributed to the seminal

work of Tenney and Sandell [15]. The optimal decision rules

for the local nodes and the fusion center are derived under

various problem settings and different optimality criteria. For

a more comprehensive survey in this area, the readers are

referred to [3], [5] and the references therein.

For DD under WSN constraints, fusion rules with fading

channel, given fixed local decision rules, are studied in [12],

with a problem revisit in [13] to relax the assumption of

channel state information availability at the fusion center.

The optimality of the Likelihood Ratio (LR) test for local

sensor decisions, with non ideal channel, is proved in [4].

The detection and estimation performances, when the sensors

and the fusion center communicate over multi-access fading

channel are studied in [16], where it is assumed that the

sensor transmits to the fusion center the type of the sensor

observations. The variations in the false alarm and detection

probabilities of a DD system due to the errors caused by the

links between sensors and the fusion center are studied in [17],

where a Rayleigh fading channel is assumed. The design of

the optimal quantizer and fusion rule, using both Bayesian and

Neyman-Pearson approaches, when the transmission is subject

to noise and inter-channel interference is discussed in [18]. The

distributed detection problem over Multiple Access Channel

(MAC), as opposed to the traditional assumption of parallel

access channel, is studied in [19].

The performance analysis for NP detectors, with non-ideal

channel, is studied in [14]. A Bernoulli communication chan-

nel is assumed, and a closed form expressions are obtained for

the performance metrics, provided a sufficient statistic exists

for the data samples. The analysis is augmented by Monte

Carlo Simulation studies, and an adaptive detector design is

proposed, with the penalty of increasing the delay for detec-

tion. In this paper, as opposed to the previous work, where

the performance analysis of the already designed detector is

carried out, we derive the optimal performance that can be

obtained given the probabilistic channel model.

III. PROBLEM FORMULATION

Figure 1 illustrates the detection system architecture. We

consider the binary hypothesis testing problem where the

state of nature is represented by one of two hypotheses, H0

and H1. Every passive sensor, Si, obtains an observation

vector, xi from the environment, and employs a local decision

rule, g(xi), to make a decision yi. The local decision rule

may widely vary from submitting the raw observations to
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Fig. 1. Detection with Passive wireless sensors

submitting just a hard decision (event present/not present). For

passive sensors, because of lack of computational power, the

sensors submit the raw observations without preprocessing.

Therefore, yi = g(xi) = xi. We further assume that sensor

observations are Independent and Identically Distributed (IID)

through space and time, so that the reader is using the

observations received, for decision, without regard to their

source.

The set of local observations are transmitted over an unre-

liable wireless channel to the reader. Since sensor data is sent

using data network packets, we model the channel as a data

network, capturing its effect on the transmitted packets.

Figure 2 illustrates the various effects of the communication

channel, and how they map to only two data network effects,

namely packet (observation) loss and observation delay. For

example, a fading channel may cause the packet to be received

in error. Being in error state, and depending on the commu-

nication protocol, a retransmission may be requested by the

receiver. If the packet is retransmitted successfully after the re-

transmission request, then the final effect of the data network is

an observation delay. If, on the other hand, the communication

protocol is configured with a retransmission timeout, and the

timeout elapsed, then the packet is considered dropped, and

the final effect of the data network is an observation loss. By

similar reasoning, all other channel effects shown are mapped

to only two data network effects: packet delay and packet loss.

In this discussion, we neglect the probability that a packet

error will not be detected at the receiver. For modern digital

communication systems, this probability is very small, and

could be neglected without impact on the analysis [20].

In this paper, we assume only the missing observations

effect of the data network. Assuming that the reader takes

a decision every time period T , a reasonable probabilistic

model for the channel would be defining the total number of

samples received over the network, in that time period, as a

random variable K, with a PDF pK(K = k; T ). Since the total
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Fig. 2. Data network effect

number of samples carried by the communication channel is a

function of other parameters, like channel capacity, we denote

the PDF by pK(K = k; θ), assuming the vector θ captures all

dependencies.

Upon receiving a subset of the observations (due to packet

loss), the reader takes a binary decision u (event present/not

present). The reader has a probability of false alarm and

detection, denoted by Pf and Pd, respectively. The relationship

between Pd and Pf defines the well-known Receiver Operat-

ing Characteristics (ROC) curve. More observations translate

to better performance, and hence sharper-step ROC curve.

Therefore, we have a family of ROC curves for different

values of K. Also, for every ROC curve, we change the

operating point by varying the detector threshold, γ. These

facts are illustrated in Figure 3. We use the terms reader and

detector interchangeably in this paper, since the detector has

the additional role of polling the passive sensor data.
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The main idea of the adaptive detector block in Figure 1

is to use different threshold values for different number of

observations received, K. The threshold values are obtained

by solving the constraint optimization problem formulated in

Section VI, and requires knowledge about the probabilistic

channel distribution. The resulting adaptive detector is optimal



in the sense of maximizing the expected value of the proba-

bility of detection, given a constraint on the expected value of

the probability of false alarm.

IV. PRELIMINARIES

In this section, we present some of the results obtained in

our previous work [14]. The results summarize the perfor-

mance of NP detector, for DC level in WGN, with ideal, and

Bernoulli communication channels. The equations presented

here will be referred to, as an example, during our discussion

about detector performance and optimal detector design in

Sections V and VI, respectively.
The performance of the detector with ideal channel is given

by:

Pf = Q

(
γ√

σ2/K

)
(1)

Pd = Q

(
γ −A√
σ2/K

)
(2)

Pd = Q

(
Q−1(Pf )−

√
KA2

σ2

)
(3)

where the error function Q(x) =
∫∞

x
1√
2π

e−
1
2 t2dt

With Bernoulli communication channel modeled by:

pk(K = k) =
(N

k

)
(1− λ)kλ(N−k) (4)

where λ is the channel drop rate. The degraded performance
is expressed as:

E[Pf ] =

N∑
v=0

(N
v

)
(1− λ)vλ(N−v)Q

(
γ√
σ2/v

)
(5)

E[Pd] =

N∑
v=0

(N
v

)
(1− λ)vλ(N−v)Q

(
γ −A√

σ2/v

)
(6)

V. DETECTOR PERFORMANCE: A PROBABILISTIC

VIEWPOINT

From Figure 3, it is clear that both Pd and Pf are functions

of the number of received observations, K. Given the proba-

bilistic description of K, it is easy to show that both Pd and Pf

are random variables (transformations of the random variable

K), defined on the sample space for K. To stress this fact, we

denote the probability of detection for a specific realization

of the random variable K = k by P k
d (γ) (dependence on

the threshold γ is noted). Similarly, we define P k
f (γ) as the

probability of false alarm for the realization K = k.

The fact that the performance metrics Pd and Pf are no

longer deterministic is very important in the performance

analysis and design of optimal detectors. We give an example

to better illustrate the main idea.

Example 1. Equations (1) and (2) define the Pf and Pd as

transformations for the random variable K. Figure 4 shows the

distribution of Pf and Pd, for γ = 0.1, A = 0.2, and σ = 1.

With an ideal channel, K, Pd, and Pf are deterministic, and

therefore, no probabilistic description is assigned to them.
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Given this fact, the performance of the NP detector should

be expressed in terms of the statistical properties of the

distributions of the random variables Pf and Pd. Therefore,

optimizing the performance of the detector is done by modify-

ing the distributions of Pf and Pd. For example, by referring

to Figure 4, we may seek to separate the two distributions by

controlling their first and second order moments.

One of the parameters that could be adjusted to modify

the distributions is the detector threshold, γ. As an example,

we used the value γ = 0.1 in Example 1 to produce the

distributions in Figure 4. By using γ = 0.3, we obtain Figure

5.
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Extending the idea of threshold adjustment, we can have

more control on the distributions of Pd and Pf if we allowed

individual thresholds to change. In other words, for every

realization of the random variable K = k, we employ a

different threshold γk for the detector. In fact, this has the

effect of controlling the transformations of the random variable

K to Pf and Pd. Therefore, we express the probability of false

alarm and the probability of detection as P k
f (γk) and P k

d (γk),



respectively, noting that different values of the threshold γ
are used for different realizations of the number of samples

received, K. This idea is used in the next section to obtain

the optimal detector design.

VI. OPTIMAL DETECTOR DESIGN

The traditional optimal NP detector design is based on

maximizing the probability of detection, Pd, subject to a

constraint on the probability of false alarm, Pf , and by

Neyman-Pearson Lemma [1], the optimal detector design (the

critical region) is obtained.

With intermittent observations, the Neyman-Pearson

Lemma defines the optimal detector design for a specific

value of the observations received, K = k. In other words,

the test optimizes the detector performance for a specific

realization of the random variables K, Pd, and Pf . Since the

probability of false alarm, Pf , is now a random variable,

defining the constraint of the optimization problem in the

form Pf = α is no longer applicable.

One natural choice for the statistical quantity to be opti-

mized is the expected value for Pd and Pf . Therefore, we seek

to maximize the expected value of the probability of detection,

subject to a constraint on the expected value of the probability

of false alarm:

max E(Pd)
E(Pf ) = α

where:

E(Pf ) =

∞∑
k=0

pK(K = k)P k
f (γk)

E(Pd) =

∞∑
k=0

pK(K = k)P k
d (γk)

Since P k
d and P k

f are related by the ROC curve, we can

assume the relationship has the functional form P k
d = f

(
P k

f

)
Accordingly:

E(Pf ) =

∞∑
k=0

pK(K = k)P k
f (γk) (7)

E(Pd) =

∞∑
k=0

pK(K = k)f
(
P k

f (γk)
)

(8)

and the constraint optimization problem could be expressed
as:

max
Pf

E(Pd)

E(Pf ) = α

0 ≤ P k
f ≤ 1, k = {0, 1, 2....}

where Pf is the vector of realizations of the random variable
Pf :

Pf = [ P 1
f (γ1) P 2

f (γ2) . . .]

In practical applications, the vector Pf cannot be with infinite

dimension, since the probability of receiving a large number

of samples, P (K = k), in a finite duration T , approaches 0

as K → ∞, for any practical channel.

This problem could be solved by using a Lagrangian mul-
tiplier method, as follows:

F = E(Pd) + ζ[E(Pf )− α)]

=

K=∞∑
K=0

pK(K = k)P k
d (γk) + ζ

[
K=∞∑
K=0

pK(K = k)P k
f (γk)− α

]

Differentiating with respect to P k
f , and equating to zero, we

get:

dP k
d (γk)

dP k
f (γk)

= −ζ = β k = 0, 1, ...∞ (9)

The constraint is expressed as:

K=∞∑
K=0

pK(K = k)P k
f (γk) = α (10)

Assuming that k is upper bounded by N , which is the

case for finite capacity channels, then Equation (9) represents

N equations in P k
f , β, and together with the constraint in

Equation (10), we can solve N + 1 simultaneous equations in

P k
f , β, where k = {0, 1, 2..., N}. The thresholds are obtained

using the inverse of the relationship P k
f (γk). The next example

shows a practical application.

Example 2. Consider the problem of detecting DC level in
WGN, presented in Section IV. Applying Equation (9) on
Equation (3) and simplifying 1, we get:

P k
f = Q

(√
kA2

4σ2
+

√
σ2

kA2
ln β

)
(11)

From Equations (4), (10), and (11) we get:

N∑
k=0

(N
k

)
(1− λ)kλ(N−k)Q

(√
kA2

4σ2
+

√
σ2

kA2
ln β

)
= α (12)

Equation (12) could be solved numerically for β, and with
substituting back for β in Equation (11), we get P k

f for k =
{0, 1, 2..., N}. We get the threshold values from Equation (1):

γk =

√
σ2

k
Q−1

(
P k

f

)
(13)

We give now some interpretations for the solution of the

optimization problem. The left hand side of Equation (9) is the

derivative of the ROC curve. So, this shows that the optimal

solution is the set of points where the derivatives of the ROC

curves (corresponding to different K values) are equal. Since

we may have infinite number of solutions, the one satisfying

the constraint in Equation (10) results in the optimal solution.

Another interpretation for Equation (9) could be given. We

have from the properties of ROC curves, that the derivative of

the ROC curve at any point is equal to the threshold γ (with

respect to the original likelihood ratio, not the log ratio) [2].

This shows that the likelihood ratio test is still the optimal

1We used the fact that
dQ(x)

dx
= 1√

2π
e−x2/2 and

dQ−1(x)
dx

=√
2πe[Q−1(x)]2/2



test in the case of intermittent observations, with the same

fixed threshold (likelihood ratio threshold). However, if the

likelihood ratio test results in a sufficient statistic (as in the

case of DC level detection), the individual thresholds depend

on the number of samples received, k (as in Equation (13)).

In fact, the optimization problem seeks the most probable

detector case (with respect to the number of samples received,

k) and puts more weight on its performance, such that, on

the average, the overall detection performance approaches its

design objective. The adjustment in performance is achieved

by varying the individual threshold, γk. On the other hand,

if we have a very improbable k value, then the probability of

false alarm, P k
f (γk), for that case could be put arbitrarily large,

without affecting the overall performance. This fact is easily

shown by investigating Equation (7) and noting the weighting

factors of pk(K = k).
Now the detector works as follows: Every time period, T ,

the detector decides on the state of nature, based on the number

of observations received, K = k. For every value of K, there

is a corresponding threshold value, γk, used by the detector

for decision making (refer to Figure 1). The original detector

design (with ideal channel), in terms of the test statistic, is not

changed, but the threshold is adapted based on the observations

received.

The results presented in the paper are general, and ap-

plicable to any NP detector, receiving a varying number of

observations, as a result of the communication channel. In

this paper, we explained the results on the reader decision. If

there is a higher layer fusion center, collecting decisions from

geographically spaced readers, then the analysis is applicable

as well on the fusion center, since the decision fusion problem

can be viewed as a two hypothesis detection problem with

individual detector decisions being the observations [21].

VII. CONCLUSION

In this paper we studied the optimal detector design, accord-

ing to NP criterion of maximizing the probability of detection,

given a constraint on the probability of false alarm, using

wireless passive sensor networks, with intermittent observa-

tions. We have shown that the optimal design reduces to the

likelihood ratio test, with a fixed threshold value, regardless

of the number of observations received, k. We illustrated, by

an example, the fact that although the optimal design does

not change when a probabilistic channel exists, the detector

implementation may need to be adapted, by adapting the

threshold, to correctly implement the likelihood ratio test, for

all values of the observations received, k.

As future work, we seek to optimize the detector per-

formance with respect to other channel parameters. We are

working also on the data fusion problem when there are

multiple readers, reporting hard decisions to a fusion center.

The overall system performance in this extended architecture

is of interest. Other probabilistic channel models that capture

the delay effect are also under research.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Foundation under Grant CNS-06152140, and NASA NRA

NNX07AD12A.

REFERENCES

[1] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2:
Detection Theory, ser. Prentice Hall Signal Processing Series, A. V.
Oppenheim, Ed. Prentice Hall PTR, 1998.

[2] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms
for Signal Processing. Prentice Hall, Upper Saddle River, NJ, 2000.

[3] J.-F. Chamberland and V. V. Veeravalli, “Wireless sensors in distributed
detection applications,” IEEE Signal Processing Magazine, 2007.

[4] B. Chen and P. K. Willett, “On the optimality of the likelihood-ratio test
for local sensor decision rules in the presence of nonideal channels,”
IEEE Transactions on Information Theory, vol. 51, no. 2, pp. 693–699,
Feb. 2005.

[5] B. Chen, L. Tong, and P. K. Varshney, “Channel-aware distributed de-
tection in wireless sensor networks,” IEEE Signal Processing Magazine,
July 2006.

[6] S. Lewis, “A basic introduction to RFID technology and its use in the
supply chain,” LARAN RFID, Tech. Rep., 2004.

[7] H. Yoon, J. Xie, J. Abraham, V. Varadan, and P. Ruffin, “Passive
wireless sensors using electrical transition of carbon nanotube junctions
in polymer matrix,” Smart Materials and Structures, Institute of Physics
Publishing, UK, vol. 15, no. 1, 2006.

[8] P. Li and Y. Wen, “Design and fabrication of passive wireless sensor
array system using composite coding resonant saw transducer.” Mea-
surement Science and Technology, Institute of Physics Publishing, UK,
vol. 17, no. 2, 2006.

[9] F. Umbrecht, M. Wendlandt, D. Juncker, C. Hierold, and J. Neuen-
schwander, “A wireless implantable passive strain sensor system,” IEEE
Conference on Sensors, pp. 4 pp.–, Oct.-3 Nov. 2005.

[10] R. Matsuzaki and A. Todoroki, “Passive wireless strain monitoring of
actual tire using capacitance-resistance change and multiple spectral
features,” Sensors and Actuators A: Physical, Elsevier B.V., vol. 126,
no. 2, 2005.

[11] A. P. Sample, D. J. Yeager, P. S. Powledge, and J. R. Smith, “Design
of a passively-powered, programmable sensing platform for UHF RFID
systems,” in IEEE International Conference on RFID, 2007.

[12] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel aware
decision fusion in wireless sensor networks,” IEEE Transactions on
Signal Processing, vol. 52, no. 12, pp. 3454–3458, Dec. 2004.

[13] R. Niu, B. Chen, and P. Varshney, “Fusion of decisions transmitted
over rayleigh fading channels in wireless sensor networks,” IEEE
Transactions on Signal Processing, vol. 54, no. 3, pp. 1018–1027, March
2006.

[14] A. Tantawy, X. Koutsoukos, and G. Biswas, “Detection using inter-
mittent observations for passive wireless sensors,” American Control
Conference, ACC2009, St. Louis, Missouri, 2009, to appear.

[15] R. R. Tenney and N. R. Sandell, “Detection with distributed sensors,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-17,
no. 4, pp. 501–510, July 1981.

[16] G. Mergen and L. Tong, “Sensor-fusion center communication over mul-
tiaccess fading channels,” IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 05, vol. 4, pp. iv/841–iv/844
Vol. 4, March 2005.

[17] M. Madishetty, V. Kanchumarthy, R. Viswanathan, and C. Gowda,
“Distributed detection with channel errors,” Proceedings of the Thirty-
Seventh Southeastern Symposium on System Theory, SSST ’05., pp. 302–
306, March 2005.

[18] T. Duman and M. Salehi, “Decentralized detection over multiple-access
channels,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 34, no. 2, pp. 469–476, Apr 1998.

[19] W. Li and H. Dai, “Distributed detection of a deterministic signal in
correlated gaussian noise over mac,” IEEE International Symposium on
Information Theory, pp. 2134–2138, July 2006.

[20] D. Bertsekas and R. Gallager, Data Networks. PRENTICE HALL,
Englewood Cliffs, New Jersy, 1992.

[21] Z. Chair and P. Varshney, “Optimal data fusion in multiple sensor de-
tection systems,” Aerospace and Electronic Systems, IEEE Transactions
on, vol. AES-22, no. 1, pp. 98–101, Jan. 1986.


