

Verification and Design Exploration through
Meta Tool Integration with OpenModelica

Zsolt Lattmann2, Adrian Pop1, Johan de Kleer3, Peter Fritzson1, Bill Janssen3,
Sandeep Neema2, Ted Bapty2, Xenofon Koutsoukos2,

Matthew Klenk3, Daniel Bobrow3, Bhaskar Saha3, Tolga Kurtoglu3
1Department of Computer and Information Science

Linköping University, SE-581 83 Linköping, Sweden
2Vanderbilt University, Nashville, TN, USA

3Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 USA

lattmann@isis.vanderbilt.edu, {adrian.pop, peter.fritzson}@liu.se, dekleer@parc.com

Abstract
Modelica models are typically used for simulation to
investigate properties of a possible system designs.
This is often done manually or combined with optimi-
zation to select the best design parameters.

It is desirable to have systematic and partly auto-
mated support for exploration of the design space of
possible designs and verifying their properties vs. re-
quirements. The META design tool chain is being de-
veloped to support this goal. It provides an integration
framework for components, designs, design spaces,
requirements, and test benches, as well as verification
of requirements for the generated design models during
design exploration

This paper gives an overview of the META tools
and their integration with OpenModelica. The integrat-
ed environment currently has four main uses of
OpenModelica: importing Modelica models into the
META tool model structure, performing simulations
within test benches, analyzing Modelica models and
automatically adding fault modes, and extracting equa-
tions (DAEs) for formal verification tools, e.g. the
QRM using qualitative reasoning.

A prototype of the integrated tool framework is in
operation, being able to generate and simulate thou-
sands of designs in an automated manner.

Keywords: Modelica, simulation, design exploration,
verification, etc.

1 Introduction
A design tool chain (META tools, Figure 1) is being
developed for exploring design alternatives under cer-

tain condition and to verify their properties versus for-
malized requirements.

A design is built from component model building
blocks defining component dynamic behavior and is
defined as a composition of component models. A de-
sign space can represent different component alterna-
tives as well as different design architectures.

After a design or design space has been created, test
cases can be defined against the given requirement set.
The test cases, which are called test benches, are exe-
cutable versions of the system requirements.

From the test bench models, the META tools can
compose analysis packages over a design space for dif-
ferent domains such as simulation of DAEs (differen-
tial algebraic equations), formal verification, static
analysis, and structural analysis.

The integrated environment currently has four main
uses of OpenModelica: importing Modelica models
into the META tool model structure, performing simu-
lations within test benches, analyzing Modelica models
and automatically adding fault modes, and extracting
equations (DAEs) needed for formal verification tools.

2 The OpenMETA Tool Chain
The OpenMETA1

[5]
 tool chain is being developed under

DARPA’s Adaptive Vehicle Make (AVM) program
that contains a set of projects one of them is the META
project. The AVM program aims to reduce vehicle de-
sign and manufacturing time using the framework and
toolset provided by the META program.

1 Provided under MIT license

DOI
10.3384/ECP14096353

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

353

The tool chain consists of a language/meta-model
called Cyber Physical Modeling Language (CyPhyML),
a set of model transformation software components that
translate from CyPhyML models to various domain
tools, an analysis package executor (referred to as Job
Manager), and a visualizer (referred to as Project Ana-
lyzer) for inspecting and understanding the results of
analysis packages.

We present (a) the concepts defined in CyPhyML in
Section 2.1, (b) the integration points with and utiliza-
tion of OpenModelica in Section 2.2 and Section 2.3,
(c) collected analysis results in Section 2.4 and Section
2.5, and (d) the usage of formal verification methods in
Section 2.6.

2.1 Concepts

CyPhyML is a Domain Specific Modeling Language
(DSML) built for modeling cyber, physical, and manu-
facturing component models, composing the compo-
nent models, making architecture trade-offs using de-
sign spaces, and encoding test cases for various analy-
sis domain tools. CyPhyML is defined using the
MetaGME language in the Generic Modeling Envi-
ronment (GME [6]).

A CyPhyML Component model contains interfaces
(physical, structural, and data) of a physical entity or a
controller, key parameters of the component, and the
relationship between component level parameters and
domain model parameters. For instance, a mass com-
ponent can have a manufacturing domain model, a ge-
ometric domain model (CAD), and a behavior domain
model (Modelica model).

The component model level parameters can affect
all domain model parameters at the same time, i.e., if
the mass has dimension and density parameters, then
the CAD model and the behavior model are parameter-
ized with exactly the same values respecting unit con-
versions.

When the CAD and behavior models are composed,
all parameters will be consistent across all domain
models. CyPhy Component models do not contain any
internal details of the domain models; they capture in-
formation only about interfaces and links to the domain
models.

A CyPhy Component Assembly model can contain
any number of CyPhyML Components and other
CyPhyML Component Assemblies, which together
provide system and subsystem concepts. This language
feature makes hierarchical composition possible
through interfaces (ports and parameters). A full system
model is often called a point design or a single design
configuration.

A CyPhyML Design Space model can encode mul-
tiple design configurations (i.e., component assemblies)
by using alternative and optional containers inside the
design space. Design space models generate a discrete
design space in the form of design configurations using
the Design Space Exploration Tool (DESERT [5]).

For instance, if the design space contains a mass
component, alternative mass components can be added
(e.g. using different geometric sizes, material, etc.); if
3 options are added for the mass component, the design
space will grow to 3 design configurations. If we have
a mass, spring, and damper system (similar to a very
simplified suspension assembly) and 3 options are

Figure 1. Design flow in the OpenMETA Tool Chain.

Verification and Design Exploration through Meta Tool Integration with OpenModelica

354 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096353

available for each, then the overall design space would
be 27 configurations.

To solve the design space exploration problem,
CyPhyML supports design space constraints that can be
expressed as auto-generated range constraints, property
constraints (e.g. component level parameter limits),
visual constraints (e.g. compatibility between compo-
nents/material or symmetry), or as Object Constraint
Language (OCL) constraints. Constraints are used to
prune the exponentially large combinatorial design
space to a feasible and manageable set of configura-
tions.

Once a CyPhyML Design or Design Space is built,
we can define the evaluation of designs using
CyPhyML Test Bench models. CyPhyML Test Bench-
es are used to set up boundary and environmental con-
ditions for designs in which they should be evaluated.
Test benches also provide sufficient information and
any additional models (e.g. stimulus, load, external
‘test’ components) to the system to make simulation
and analysis possible with a domain-specific tool.

CyPhyML supports various types of test benches,
including Dynamics (i.e., Modelica simulations), for-
mal verification, CAD (e.g. composing the 3D model
and computing center of gravity or mass), finite ele-
ment analysis, computational fluid dynamics, blast,
ballistic, conceptual manufacturing, detailed manufac-
turing, and reliability analysis.

In this paper we focus on formal verification and
Dynamics (Modelica) simulation test benches only.
CyPhyML Test benches contain a top level system un-
der test (design or design space), input parameters that
can change environment, load, stimulus conditions (test
component parameters), and outputs called metrics.

2.2 Importing Modelica Models

CyPhyML Components have associated behavior mod-
els in the form of linked Modelica models. Only
Modelica parameters and Modelica connectors need to
be represented in the CyPhyML Component model.
The behavioral model aspect of a CyPhyML Compo-
nent can be viewed as a lightweight wrapper around a
Modelica model, which can be built using the
OpenMETA tool set and its editor GME.

Building the Modelica model interface representa-
tion in GME can be cumbersome and a time consuming
activity. All information about the interface exists in
the Modelica model, already including the following:
model name, model type, connector names, connector
types, parameter values (e.g. default value, minimum
value, and maximum value), and class restrictions.

The user has to provide a set of Modelica models in
textual form (.mo files or one .mo package). A wide set

of Modelica models can be imported in an automated
way as CyPhyML Components or CyPhyML Test
Components using the OpenModelica Compiler (OMC)
API. There is a seamless integration between the
OpenMETA tools and the OMC API. The OMC API
provides functionality to load model files and libraries
(i.e., packages), query containment and inheritance re-
lationship between types, and navigate through model
elements using the abstract syntax tree.

The Modelica model importer has certain limita-
tions and it does not support the entire Modelica lan-
guage. Conditional ports and parameters, enumerated
types, and parameterized ports (which can change their
internal structure) are not supported. ‘Replaceable’ el-
ements have a limited support, for instance models with
fluid port connectors can be imported and the ‘Medi-
um’ type is correctly set in the CyPhyML Component.

If the model or library does not conform to the
Modelica Specification and/or the OMC API cannot
load the package, then the automated import functional-
ity is not available in the OpenMETA tools, requiring
users to build the CyPhyML Components manually.

We are currently working on supporting a more
complete set of the Modelica language and multi-
fidelity models where one CyPhyML Component can
be linked to more than one Modelica model and where
the different Modelica models represent different level
of modeling abstraction of the behavior of the physical
component.

The OpenMETA tools already have a limited sup-
port for multi-fidelity component models, but they have
to be built manually. For any CyPhyML Test Bench the
component fidelity selection can be specified for a class
of components, e.g., spring or damper component mod-
els.

2.3 Generating Modelica Models

Once a set of Modelica components are imported into
the CyPhyML we can build design models, design
space models and test-bench models. These models are
composed through interfaces (i.e., connectors and pa-
rameters), which is sufficient information to generate
composed Modelica models of test bench models for a
design or for the entire design space.

The generated Modelica models preserve the hierar-
chical decomposition of the system and organize all
generated models into packages and sub-packages
based on the CyPhyML project structure to ease navi-
gation in the generated model. Each generated compo-
nent model, used in the design, ‘extend’ the referenced
Modelica model and overwrites the parameters with the
CyPhyML Component instance values.

Session 2E: Modelica Tools 1

DOI
10.3384/ECP14096353

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

355

From each dynamics CyPhyML Test Bench there
are two generated models in the Modelica package that
are used to run analysis. One of them is a simulation
model and the other one is an augmented version of the
simulation model for formal verification purposes.

Figure 2. Mass-Spring-Damper in Modelica

Figure 3. Mass-Spring-Damper design space in OpenMETA
tools

Figure 4. Mass-Spring-Damper design space tree and alter-
native options

We use a Mass-Spring-Damper (MSD) system, which
contains Modelica Standard Library components, as a
simple use case to show the workflow and the results of
the formal verification tool for two configurations from
a CyPhyML Design Space. Modelica model of the
MSD system structure is shown in Figure 2. Figure 3
depicts the design space in the OpenMETA tools,
where each component Mass, Spring, and Damper con-
tains alternative components. The hierarchical structure
and alternative options are shown in Figure 4. There are

10 alternatives in each design container, thus the design
space generates 10x10x10 (1000) configurations. We
have selected two configurations (#1 and #8) for further
analysis by the verification tool.

Configuration #1 and configuration #8 have the
same architecture, i.e., the same number and kind of
components and the same connections among the com-
ponents, but configuration #1 uses Mass 9 (m=9 kg),
Spring 9 (c=9 N/m), Damper 9 (d=9 N.s/m) and con-
figuration #8 uses Mass 3 (m=3 kg), Spring 8
(c=8 N/m), Damper 8 (d=8 N.s/m).

Figure 5 shows configuration #1 of a generated
Modelica model for formal verification. The verifica-
tion model inherits the simulation model and includes:
the definition of the requirement status (success, un-
known, violated), all physical limit definitions (e.g.
Limit1: maximum absolute force cannot exceed a cer-
tain value) and requirements for the system, and defines
all conditions under which the limits (e.g.
abs(Spring.f)>17) and requirements are violated.

Figure 5. Modelica model of MSD configuration #1.

2.4 Model translators and Job Manager

CyPhyML analysis model translators (i.e., analysis in-
terpreters) are built to generate analysis packages from
CyPhyML test benches, which contain domain tool
specific input files, data structures, and scripts to per-
form the execution and collect results.

The OpenMETA tools can generate analysis pack-
ages for all test benches over the entire design space.
This raises another scalability issue: executing all anal-
ysis packages may take significant time. In order to
reduce the overall runtime, the META Job Manager [8]
can run the individual/independent analysis packages in
parallel either locally utilizing multiple CPU cores, or

Verification and Design Exploration through Meta Tool Integration with OpenModelica

356 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096353

on a remote compute cloud provided by the
VehicleFORGE [8] platform. After analyses are exe-
cuted, the results are stored locally.

2.5 Analysis Results

The raw analysis results are cumbersome and can be
extremely difficult to compare. To address this issue,
CyPhyML defines metrics for the key performance pa-
rameters of design configurations. These numbers,
which are often driven by system requirements, provide
the basis for design trade-offs and ranking, as well as
for making decisions under specific circumstances
about which design configuration is best.

Metrics are stored in a manifest file that contains the
key information about the design configuration, test
bench, and the projection of results. This single file is
much smaller than the raw data and makes design space
comparisons significantly easier. In general, we noticed
roughly a three orders of magnitude size reduction
when using only the compact manifest file (e.g. 15 GB
of raw analysis data -> 10 MB).

The OpenMETA tools provide a data visualizer
called the Project Analyzer. The Project Analyzer can
be used locally in a web browser or deployed on
VehicleFORGE (or another server). It loads all analysis
data from the manifest files (no data from raw files is
loaded) and provides different visualization techniques
to display results, visualize requirements, rank designs
based on the user’s weighting preference on metrics,
show physical limit violations on components, display
constraint plots, show formal verification results, etc.

Figure 6. Mass-Spring-Damper simulation results configura-
tion #1 force on the spring component

OpenModelica can be used to visualize the raw simula-
tion results if needed. Figure 6 shows the force [N] on
the spring component for design configuration #1.

The Project Analyzer provides various visualization
techniques using different widgets to visualize the re-
sults over a design space. Figure 7 shows the parallel
axes plot widget, where the vertical axes correspond to
the metrics (velocities) and each colored line between
the axes represent a design configuration. The require-

ments objective and threshold values are shown on the
right hand side of the axes.

Figure 7. Project Analyzer parallel axes plot

Figure 8. Project Analyzer user preferences settings

Figure 9. Project Analyzer designs by user preferences and
color coded based on requirements

Figure 10. Project Analyzer designs by user preferences and
color coded based on ranking

Users can set their weighting preference (Figure 8) for
each metric value, which would determine the ranking

Session 2E: Modelica Tools 1

DOI
10.3384/ECP14096353

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

357

of the designs shown in Figure 9 and Figure 10. De-
signs on each widget can be color coded based on re-
quirements (Figure 9), ranking (Figure 10), limit viola-
tions, or design scores.

2.6 Simulation and Verification of Generated
Modelica Models

We have chosen to separate the verification and the
simulation models in the generated code. We aim to run
the simulations as fast as it possible, since running the
test benches over a design space can take significant
time even if parallel execution is used.

Using the OpenMETA tools and the parallel execu-
tion capability provided by the Job Manager we run
hundreds of design configurations over tens of test
benches. The simulation model does not need to con-
tain verification properties and unnecessary auxiliary
variables. Therefore, the simulation can first be execut-
ed, and then a post processing script can validate the
limit violations and requirements on the simulation re-
sults.

This approach will give us a faster execution time
for simulation models. The OpenMETA tools use
OpenModelica to execute the generated simulation
models.

Modelica models for verification are translated to
Differential Algebraic Equations using the
OpenModelica Compiler. The Mass-Spring-Damper
configurations are translated to DAEs and then a formal
verification tool analyzes both configurations.

Figure 11. Verification results for MSD configuration #1.

Figure 12. Verification results for MSD configuration #8.

The limit restrictions and requirements are the same for
configuration #1 and #8. Figure 11 and Figure 12 de-
pict the results of the formal verification results for
configuration #1 and configuration #8 respectively.
Section 3 and Section 4 describes the integrated formal
verification method and reliability analysis in more
detail respectively.

3 Qualitative Reasoning Module
The Meta tool suite includes a Qualitative Reasoning
Module (QRM) which performs qualitative analyses of
system behavior. In contrast to Modelica solvers which
produce exact numerical results given exact numerical
inputs and parameter values, qualitative simulators pre-
dict the possible time evolution of a system in qualita-
tive terms.

Qualitative values are characterized by ranges, for
example Q+ represents any possible positive value.
Qualitative values can be demarcated with landmarks,
for example [l,u] where the value lies between l and
u. A qualitative analysis may show that a particular
design cannot ever meet its requirements—something
that is impossible to show with numerical solvers.

One challenge to more widespread use of Qualita-
tive Reasoning is the lack of extensive qualitative mod-
el libraries. One cannot expect a designer to write their
own qualitative models. Therefore we have spent con-
siderable time and effort into automatically translating
Modelica models into terms suitable for qualitative
analysis.

Our translator starts with the exported DAE from
OpenModelica. This has required significant extensions
of model importers to qualitative algorithms. In addi-
tion, the DAE exporters have had to be extended to
provide additional information. Qualitative reasoning
requires declarative models. Any Modelica model used
by AVM which is not purely declarative is being con-
verted to declarative form manually.

Qualitative reasoning is most useful in early stages
of conceptual design where the parameters, topologies,
and requirements have not been completely articulated.
Topologies which cannot possibly achieve customer
requirements can be eliminated without having to de-
termine specific parameters.

Qualitative analysis can also analyze a design which
fails to meet some requirement and suggest qualitative
parameter changes which will bring the design closer to
meeting a requirement. The screenshot (Figure 13)
illustrates analyzing a mass-spring-damper system to
identify qualitative changes to meet a requirement.

Verification and Design Exploration through Meta Tool Integration with OpenModelica

358 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096353

4 Reliability Analysis
The Meta tool suite includes a reliability analysis tool.
This tool automatically allows a designer to evaluate
the reliability of various components as well as various
design configurations. The reliability tool has three
major modules: (1) automatic construction of Modelica
fault models, (2) determination of the fault probability
distributions, (3) computing system reliability given (1)
and (2).

Our fault augmenter takes a MSL model as input
and automatically constructs its fault modes, which
includes power port failures such as open and shorts as
well as important parameter shifts. For each fault mod-
el, we construct damage maps which provide a proba-
bility density function for important parameters and is
indexed by the type of material the particular compo-
nent is constructed out of (e.g., steel), CAD properties,
and Modelica variable values. The damage maps are
constructed through a separate probabilistic process.
More details can be found in [13]. In this paper we will
focus on how the reliability tool is used by a designer
(i.e., the third module).

Figure 14. Braking distance / the coefficient of friction

Suppose a designer needs to choose brake in their de-
sign (vehicle drive train) that will meet its stopping
requirement of 28 m from 60 kph. Given a fault aug-
mented model, we can determine stopping distance by
running multiple Modelica simulations.

From the Modelica simulations we can see that the
stopping criterion fails after a fault amount of 0.27.
Using the reliability formula and given a reduction in
friction the actual physical damage is 0.85.

Figure 13. Using QRM for analysis of a mass-spring-damper system.

Session 2E: Modelica Tools 1

DOI
10.3384/ECP14096353

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

359

Figure 15. ACEI Wear damage / coeff. of friction.

Finally we refer to the damage map to determine the
probability that the vehicle will meet its braking re-
quirement after 75 missions.

Figure 16. ACEI Wear damage / cumulative distribution.

With the reliability tool the designer can choose the
component, requirement, number missions, desired
probability of success, etc.

Figure 17. Reliability tool.

The needed Modelica simulations required to render
these reliability calculations are expensive. Our ap-
proach is to pre-compute as much as possible. For ex-
ample, the damage maps are all pre-computed. For the
simple vehicle model analysis presented here we have

pre-computed all Modelica simulations (and use inter-
polation) to enable the reliability tool to respond in-
stantly. However, for complex novel designs the relia-
bility calculations will take hours and possibly days on
a single machine. Fortunately, reliability calculations
scale linearly with the number of processors.

5 OpenModelica Tool Support
OpenModelica is used in four different places in the
OpenMETA tool chain:

• importing Modelica models and associating them
with CyPhyML component models,

• performing simulations of composed Modelica
models, i.e., CyPhyML test benches,

• analyzing Modelica models and automatically add-
ing fault modes, and

• extracting Differential Algebraic Equations (DAEs)
for formal verification tools.

The OpenModelica compiler (Figure 18) has been
slightly extended to facilitate integration with the ME-
TA Tool chain.

 Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Modelica model

Flat Model

Sorted equations

Optimized sorted
equations

C Code

Executable

Rewrite
Engine

Equations DAE as XML

Figure 18. The OpenModelica compiler (OMC) structure and
simulation execution. A rewrite engine and enhanced DAE
XML output have been added for Meta Tool usage.

5.1 User-defined Rewrite Rules for Model Sim-
plification

In order to make it feasible to apply formal verification
to models they need to be simplified as much as possi-
ble so that their complexity is drastically reduced.

Verification and Design Exploration through Meta Tool Integration with OpenModelica

360 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096353

To support model simplification a rewrite engine
for user-defined rewrite rules has been added to the
OpenModelica compiler (Figure 18).

Note that this simplification could be applied by the
formal verifier tool on the final DAE, but if the rewrite
rules are applied as early as possible inside the
Modelica compiler further simplifications can be dis-
covered and applied.

The final model representation form as reduced and
optimized symbolic equations is output in an XML rep-
resentation for further processing by the Meta Tools
QRM module.

The user defined rewrite rules have the form:
rewrite(old_expression, new_expression);

Note that old_expression and new_expression can
contain special component references in the form of
quoted identifiers starting with $, for example: '$1', '$2',
'$x', '$y', etc.

The part of the expression tree where the special
component reference appear is bound to that compo-
nent reference.

As an example, consider the rule:
rewrite(
 abs('$1'),
 if ('$1' >= 0) then '$1' else -'$1');

which could be applied to an expression:

 abs(y + z)

In this case $1 will be bound to y+z and the trans-
formed expression becomes:
if ((x+y) > 0) then (x+y) else -(x+y)

The bounding operation is similar to pattern matching
or unification in languages that support such features.
Some examples of user-defined rewrite rules:
rewrite(
 abs('$1'),
 if ('$1' >= 0) then '$1' else -'$1');

rewrite('$1' ^ 2, '$1' * '$1');

rewrite(semiLinear(0.0, '$1', '$2'), 0.0);

rewrite(noEvent('$1'), '$1');

rewrite(
 Modelica.Fluid.Utilities.regStep(
 '$1', '$2', '$3', '$4'),
 if ('$1' > '$4') then '$2' else '$3');

The rules are loaded from a file given by the user and
the rules are matched/applied to the expressions appear-
ing in the abstract syntax tree.

Note that the application of the rules happen during
semantic checking of expressions so that the resulting
type before and after the application of the rule can be

checked. In the cases where the bound expressions are
arrays the operation is applied for each element, for
example:
rewrite(
 Modelica.Math.Matrices.isEqual('$1',
 '$2', '$3'),
 '$1'=='$2');

applied to:

Modelica.Math.Matrices.isEqual({{x,y},
 {z,w}}, {{a,b},{c,d}}, eps)

will result in:

x == a and y == b and z == c and w == d

One can see that in some cases not all variables are
used as for example eps above. For the purpose of
formal verification the given expression is enough as
the eps is used only for robustness of simulation.

6 Integrated OpenModelica Meta
Tools Environment

The following summarizes the main capabilities of the
integrated OpenModelica – META Tools environment:

• Parse Modelica models (OpenModelica compiler
API called through Python) and import model inter-
faces (parameters and connectors) into the META
tool chain.

• Run simulations of composed Modelica models us-
ing the OpenModelica (OMC compiler).

• Be able to formally evaluate verification properties
of system designs using OpenModelica and verifica-
tion tools QR/HybridSal (XML DAE).

• OpenMETA tools can compose simulation models
over a design space including different architecture
variations in an automated way.

• Verification problems and simulation models can be
encoded as test bench, which can be evaluated over
a design space.

• Using the OpenMETA tools the JobManager pro-
vides sufficient capabilities to utilize all CPU cores
in the user's computer.

• The analysis simulation/verification can run locally
or on a remote execution cluster.

• Simulation and verification results are collected and
visualized through a common interface called Pro-
ject Analyzer.

7 Related Work
Automated verification of dynamic behavior of design
models against formalized requirements is described in

Session 2E: Modelica Tools 1

DOI
10.3384/ECP14096353

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

361

[10] and [11]. A prototype of an integrated tool chain
for model based functional safety analysis is presented
in [12].

8 Conclusions
This paper has presented an overview of the META
tools for design space exploration and design verifica-
tion, and their integration with OpenModelica.

The integrated environment currently has four main
uses of OpenModelica: importing Modelica models
into the META tool model structure, performing simu-
lations within test benches, analyzing Modelica models
and automatically adding fault modes and extracting
equations (DAEs) for formal verification tools, e.g. the
QRM using qualitative reasoning.

A prototype of the integrated tool framework is in
operation, being able to generate and simulate thou-
sands of designs in an automated manner.

9 Acknowledgements
This work was partially sponsored by The Defense Ad-
vanced Research Agency (DARPA) Tactical Technolo-
gy Office (TTO) under the META program and is Ap-
proved for Public Release, Distribution Unlimited. The
views and conclusions in this document are those of the
authors and should not be interpreted as representing
the official policies, either expressly or implied, of the
Defense Advanced Research Projects Agency or the
U.S. Government.

This work has also been partially supported by the
Swedish Governmental Agency for Innovation Systems
(Vinnova) within the ITEA2 MODRIO project, and by
the Swedish Research Council (VR).

References
[1] Modelica Association. ModelicaA Unified Ob-

ject-Oriented Language for Physical Systems
Modeling: Language Specification Version 3.2
rev 2. Available at http://www.modelica.org, Au-
gust, 2013.

[2] Modelica Association. Modelica Standard Li-
brary 3.2 rev 1. http://www.modelica.org. Aug.
2013.

[3] Peter Fritzson. Principles of Object Oriented
Modeling and Simulation with Modelica 2.1,
ISBN 0-471-471631, Wiley-IEEE Press. 2004.

[4] Peter Fritzson. Principles of Object Oriented
Modeling and Simulation with Modelica 3.3, Ac-
cepted for Publication, Wiley-IEEE Press. 2004.

[5] Adaptive Vehicle Make.
http://www.darpa.mil/Our_Work/TTO/Programs/
Adaptive_Vehicle_Make__(AVM).aspx

[6] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J.
Garrett, C. Thomasson, G. Nordstrom, J. Sprin-
kle, and P. Volgyesi, "The Generic Modeling En-
vironment", Workshop on Intelligent Signal Pro-
cessing, Budapest, Hungary, May, 2001.

[7] Sandeep Neema, J. Sztipanovits, G Karsai, and
K. Butts. Constraint-based design-space explora-
tion and model synthesis". In Embedded Soft-
ware, R. Alur and I. Lee, eds., pp. 290–305, Vol.
2855 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2003.

[8] Laszlo Juracz, Zsolt Lattmann, Tihamer
Levendovszky, Graham Hemingway, Will
Gaggioli, Tanner Netterville, Gabor Pap, Kevin
Smyth, Larry Howard. VehicleFORGE: A Cloud-
Based Infrastructure for Collaborative Model-
Based Design., In Proc. of 2nd International
Workshop on Model-Driven Engineering for High
Performance and CLoud computing (MDHPCL),
MODELS 2013, Miami, Fl., USA, 2013.

[9] Raj Minhas, Johan de Kleer, Ion Matei, Bhaskar
Saha, Daniel G. Bobrow and Tolga Kurtoglu. Us-
ing Fault Augmented Modelica Models for Fault
Diagnostics. Submitted to Modelica'2014. Dec
2013.

[10] Wladimir Schamai. Model-Based Verification of
Dynamic System Behavior against Requirements -
Method, Language, and Tool. Linköping Studies
in Science and Technology, Dissertation No.
1547, www.ep.liu.se, Nov 12, 2013.

[11] Wladimir Schamai, Philipp Helle, Peter Fritzson,
and Christiaan Paredis. Virtual Verification of
System Designs against System Requirements. In
Proc. of 3rd International Workshop on Model
Based Architecting and Construction of Embed-
ded Systems (ACES’2010). In conjunction with
MODELS’2010. Oslo, Norway, Oct 4, 2010.

[12] Lena Rogovchenko-Buffoni, Andrea Tundis,
Muhammed Zoheb Hossain, Mattias Nyberg, Pe-
ter Fritzson. An Integrated Tool chain For Model
Based Functional Safety Analysis. Accepted to
Journal of Computational Science, June, 2013.

[13] Johan de Kleer, Bill Janssen, Daniel G. Bobrow,
Tolga Kurtoglu, Bhaskar Saha, Nicholas R.
Moore and Saravan Sutharshana, Fault Augment-
ed Modelica Models, 24th International Work-
shop on Principles of Diagnosis, Jerusalem, pp.
71-78, 2013.

Verification and Design Exploration through Meta Tool Integration with OpenModelica

362 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096353

