
Model-Based Risk Analysis Approach
for Network Vulnerability and Security
of the Critical Railway Infrastructure

Himanshu Neema1(B) , Leqiang Wang1, Xenofon Koutsoukos1,
CheeYee Tang2, and Keith Stouffer2

1 Vanderbilt University, Nashville, TN 37212, USA
himanshu.neema@vanderbilt.edu

2 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
cheeyee.tang@nist.gov

Abstract. This study focuses on threat modeling, vulnerability anal-
ysis, and risk management within the critical railway transportation
infrastructure. The Railway Transportation System is a highly complex,
national critical infrastructure and its cybersecurity evaluation is cru-
cial, but is still an extremely hard problem. In this paper, a novel threat
modeling and risk management approach using a domain-specific mod-
eling environment is presented. Two risk analysis techniques based on
attack trees are developed to systematically model the potential risks in
a cyber-physical system and provide quantitative analysis of the vulner-
abilities. The automated risk assessment tool can prioritize component
level vulnerabilities for potential mitigation actions. A scenario language
and associated tools in the framework allow modeling and evaluation of
cyber-games using a library of system exploits and mitigation actions.
Cyber-games enable assessment of system-level risks and development of
comprehensive risk management plans. Another key capability is the han-
dling of dynamic network connections with variable vulnerability prop-
agation in railway communication networks where locomotives and its
devices are mobile. These capabilities are demonstrated with a case study
in the railway transportation domain.

Keywords: Risk analysis · Threat modeling · Metamodeling ·
Vulnerability analysis · Cyber-gaming · Security · Cyber-physical
system

1 Introduction

Designing and maintaining safety-critical infrastructures is a challenging task
that requires minimizing risks of cyber-attacks and building resilience into their
design to keep them operational despite cyber-attacks. For a reliable critical
infrastructure, its security assessment and the configurations and arrangement
of components must be carefully considered. As security mechanisms do impact
c© Springer Nature Switzerland AG 2021
D. Percia David et al. (Eds.): CRITIS 2021, LNCS 13139, pp. 79–98, 2021.
https://doi.org/10.1007/978-3-030-93200-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93200-8_5&domain=pdf
http://orcid.org/0000-0003-4908-1596
https://doi.org/10.1007/978-3-030-93200-8_5

80 H. Neema et al.

the system’s performance [1], we must evaluate if these mechanisms are necessary
and sufficient for the system’s cybersecurity [2].

Vulnerability assessment and risk management of critical infrastructure is
crucial in the modern world. Ongoing increases in network connectivity, dis-
tributed computing and control, and variability of network topology has dramat-
ically increased the attack surface and made vulnerability evaluation a highly
complex task, Traditional security analysis by domain experts is largely manual
and relies on the judgment of professionals to qualitatively assess system vulner-
ability. There are several drawbacks of this approach. First, the manual assess-
ment and reliance on personal experience, makes risk models subjective and often
inconsistent among organizations. Since an attacker only needs one opportunity
to succeed, this inconsistency could lead to a significant problem. Secondly, the
manual approach is not scalable as the system grows larger. Considering a sys-
tem as a graph, with components as its vertices and network interactions among
components as its edges, the worst-case complexity of the number of edges is
equal to the square of the number of vertices. For risk analysis of a system,
both the relations between components and properties of individual components
must be analyzed. Manually addressing this complexity is highly challenging,
time-consuming, and error-prone.

In this paper, we apply Model-Integrated Computing (MIC) techniques [3]
with software tools for quantitative risk analysis of Railway Transportation
Systems (RTSs). Traditional Cyber-Physical Systems (CPS) are systems that
involve tightly-coupled control, computation, and communication components
where the CPS’ functionality emerges from the interaction of components. Dig-
ital connectivity among CPS’ components and their interactions makes their
vulnerability assessment difficult. This is even harder in RTSs as these are geo-
graphically distributed with continuously changing network topology due to the
movement of locomotives and their on-board sensors and devices. We describe
our work on designing a web-based Risk Analysis Framework (RAF) for this
purpose. RAF is developed using WebGME [4] – a web-based platform that
allows not only metamodeling, but also developing custom visualizers and plu-
gins. The framework develops two core components: the RAF metamodel and
the risk assessment and visualization tools. The RAF metamodel allows model-
ing the system architecture with different system components and their network
topology, network interconnections among components, the risks and vulner-
abilities of CPS components, and cyber-games for dynamic risk management.
The RAF analysis plugins read and calculate vulnerability scores and save the
internal property data in the system model itself. The RAF visualization tools
(called visualizers) generate and display (using a novel layout algorithm) risk
propagation trees and risk values in WebGME. Both the analysis plugins and
visualizers are developed in WebGME and implemented in JavaScript.

The organization of this paper is as follows. Section 2 surveys the related
work in the area of cyber-physical system and threat modeling and risk analysis.
Section 3 presents the system architecture with a detailed description of key
technical issues in the implementation. An example from the railway domain is

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 81

presented in Sect. 4. Finally, Sect. 5 concludes the paper and provides directions
for future research.

2 Related Work

Threat modeling and vulnerability analysis is an established field with many
works. A real-world quantitative vulnerability assessment of critical infrastruc-
tures in Norway appeared in [5]. It uses real-world tools for scanning internet
connected systems and assesses their vulnerabilities. Our work is focused on
model-based risk analysis for effective evaluation of risk management plans.

Standards and background knowledge for threat modeling in the railway sys-
tem domain can be found in [6]. It introduces a state-of-art railway framework
based on European Railway Traffic Management System (ERTMS) and elabo-
rates the general logic when designing railway threat modeling systems including
the modeling of components and processes. The basic concepts of attack trees
and risk propagation techniques could be found in [7].

A metamodeling approach [8] for risk analysis in a railway temperature mon-
itoring system model by modeling the railway system and corresponding prop-
erties aligns well with our work. This work only covers modeling the system
architecture, while our work includes the risk analysis algorithms as well as risk
management planning.

A method was presented in [9] for quantifying system-level cybersecurity risk
by analyzing the risks at individual system components as well as the information
and control flows among them. In our approach, we consider realistic network
simulation and network topology that enables a fine-grained evaluation. In addi-
tion, our ongoing work (see Sect. 5) is on interfacing model-based risk evaluation
with integrated simulation based impact assessments, which requires simulating
the network and cyber-attacks.

A consideration of both cyber and physical attack paths appeared in [10].
Even though the use-cases we modeled involved only cyber-attacks, our frame-
work can be directly applied to model physical-attacks.

The idea of chaining vulnerabilities to evaluate impact of exploitation of mul-
tiple vulnerabilities in attack paths and prioritizing attach paths was discussed in
[11]. However, our approach for dynamic risk management to evaluate multiple
attack paths along with mitigation actions is much broader and powerful.

An approach to model attack paths using a weighted colored petri net
and modeling threat propagation using incomplete information Bayesian games
appeared in [12]. In contrast, our approach uses models to intuitively specify the
system architecture and network topology that mirrors what is found in real-
world applications, and provides automation tools for vulnerability propagation
as well as risk management using attacker-defender games.

The basic concepts of modeling threats using the attack-centric, asset-centric,
and software-centric approaches were introduced in [13], and later used for
designing a risk analysis method in [14].

82 H. Neema et al.

Our paper combines theoretical problem modeling with a real-world scenario
in the railway traffic domain and highlights the core technical issues and presents
our solutions for designing a realistic risk analysis framework. Importantly, none
of the works cited above are able to deal with dynamic connections that arise
due to changing network topology of systems.

3 System Architecture

3.1 Modeling Approach

A metamodel is a model of the model, i.e., a simplified model of an actual model
of a circuit, system, or software like entity [3,15]. A metamodel can be a mathe-
matical relation or algorithm representing input and output relations. A model
is an abstraction of a phenomenon in the real world; a metamodel is yet another
abstraction, highlighting properties of the model itself. A model conforms to its
metamodel in the way that a computer program conforms to the grammar of
the programming language in which it is written. Various types of metamod-
els include polynomial equations, neural network, and Kriging. Metamodeling
is the construction of a collection of concepts (things, terms, etc.) within a
certain domain and describing how these concepts are related. Metamodeling
typically involves studying the output and input relationships, the organization
and association of different concepts in the domain, and then designing the right
metamodel tools that capture their run-time behavior.

3.2 Modeling Environment

The RAF’s metamodel is developed using WebGME [4], which is a web-based,
collaborative meta-modeling environment with a centralized version-controlled
model storage. WebGME is a client-server based application, where both the
client (browser) and server-side (NodeJS) use JavaScript. The clients carry a
significant amount of the workload and the role of the server is mainly to store
and retrieve the raw model data and propagate events between collaborating
clients. A simplified and partial view of RAF’s metamodel is shown in Fig. 1.

3.3 Modeling Railway Infrastructure and Communications

Device Components. Devices are basic elements in a system model. A device
can contain other children devices, which represents hierarchical decomposition
of the system. In metamodel perspective, a device can be either high-level device
or base-level device. The base-level devices are basic hardware components con-
tained in the upper-level abstract device component. The design of device com-
ponents metamodel not only consists of the metamodels for all devices (e.g., sen-
sors and repeaters), but also includes the connections between those components,
which are typically network connections (e.g., wired or wireless) only between
base devices. Due to the communication property and nature of WebGME’s con-
nection type component, the connections are directional from one component to

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 83

Fig. 1. RAF metamodel (simplified and partial view)

the other; even when these connections in reality are mostly bidirectional. The
topology component in RAF allows connecting base-level devices.

For the devices, there is an abstract model called Device with a set of inher-
ited nodes representing specific devices. For the railway networks, the device
models currently include Railway Signal, Sensor, Router, Repeater, Central Sta-
tion, and Gateway, and the specific network connections modeled are WIFI,
wireless, and IP Network. Three properties of the Device meta node are inher-
ited by all devices, viz. authentication method, authorization mechanism, and
communication protocol. Authentication method and authorization mechanism
both affect the risk propagated from other devices through their connections and
the risk spawned within the device itself. Communication protocol is one of the
key factors affecting how risks propagate among devices.

Risk Components. The risk components are abstract elements representing
a risk that can occur or some intermediate event, or vulnerable points that can
be exploited by malicious actors. The external risk analysis is formally modeled
using a system attack graph (SAG). We provide risk dependencies and attack
ports for it. Risk dependency connects different device components under the
crosscut of a graph table. Crosscuts in WebGME allow viewing and connecting
metamodel elements spread across containment hierarchy and different modeling
pages. The STRIDE Dependency is a connection component type modeled as
a child of the first-class object (FCO) in WebGME and is contained in the
graph table. STRIDE Dependency has STRIDE risk [16] and attack port as its
source and destination respectively. To model risk to risk dependencies in the
dependency graph, we use a separate type of connection called Dependency for

84 H. Neema et al.

STRIDE risk to attack port dependency, and this has both attack port and
STRIDE risk as destination nodes, but only attack port as source nodes.

As described before, attack port is an abstraction of some potentially risky
behavior that can indirectly cause risk. It can be considered as a specific potential
attack surface. Attack port meta node is a direct child of the abstract type risk
component, which shares the common property called vulnerability score. The
attack ports are contained in a device component like the other risk components.

Several other meta nodes are modeled for Component Attack Trees (CAT).
The STRIDE meta (not shown for brevity) demonstrates how meta nodes relate
to risks, specifically how the internal risks, which are analyzed via CATs, are
organized. In CATs, the children’s risk can be combined using AND and OR
relations. With AND relation, all the children risks must happen together in
order to trigger the parent event.

A significant difference in a CAT from a SAG is how vulnerability scores are
related. In a SAG node, if one of its children nodes’ risk event occurs, its risk
event is also considered to have occurred. In other words, all children’s risk values
are combined with an OR relationship. However, it can also be a combination
of AND/OR relations which can be formalized by a logical expression. In an
AND/OR logical expression, the AND operator has higher priority than the
OR operator. The expression is computed using a tree logic, with AND and
OR operands such that each AND operation is treated as an operation inside a
bracket, which sits deeper in the computation process in the tree. The flat layer
of the computation tree is always an expression combined with OR relations
unless there is only one expression. Therefore, we treat a single intermediate
node as a special case of the OR expression, and, by default, all children under
a node are combined with OR. If there is an AND expression embedded in the
whole expression, we model this by putting an All Combo node on top of them,
and putting those nodes under it by combining them using AND relations.

Graph Data Component. In order to facilitate easier risk analysis by users,
we needed to build automation tools for both the user interaction and data pro-
cessing. The risk analysis is based on CAT and SAG, both of which use tree-based
data structures and their processing time grows exponentially with the system
size. Visualizer should be light-weight components with low computational over-
head. Therefore, we used a temporary, read-only data structure (called Graph
Data) to store the system information, and restricted visualizer to read data
lazily only before rendering the results. All devices must contain one and only
one graph data component. However, as WebGME does not generate contained
components while creating a parent component, we must subsequently create the
graph data component if it is absent after running the plugin (described later).

The content property of graph data component is of asset type. This property
type in WebGME supports values having complex data structures such as a file or
a self-defined data in JavaScript. We use it to store a JavaScript dictionary with
six STRIDE risks as keys and value to each key also a dictionary with key named
CAT or SAG. The RAF plugin goes through the system and generates these

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 85

graphs and saves them to the graph data components in devices in a structured
format. When the user switches to CAT or SAG visualizer, the visualizer reads
the graph data component and renders the trees in WebGME.

3.4 Component Attack Tree

A Component Attack Tree (CAT) represents how vulnerabilities propagate inside
a component. The root node of a CAT is one of the risks in the STRIDE category
(Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,
Elevation of Privilege) [16]. The leaf nodes are the source causes of the risk at
the root node. For example, the cause memory access implies that if the memory
for running task of a component is accessible and modifiable externally, there
can be some unusual behavior caused by unexpected memory access. Between
the root node and leaf nodes are intermediate nodes, which represent internal
behavior or phenomenon caused by other leaf nodes or intermediate nodes.

Fig. 2. Component attack tree for Tampering risk of a sensor

Each node contains a vulnerability score property which represents the prob-
ability of exploitation and is given by domain experts that access known vul-
nerabilities and likelihood of those getting exploited. The vulnerability scores
are propagated from bottom to top. The event of each node can occur for any
combination of the occurrence of the events of its children nodes. By default, the
children nodes are in an OR relationship with each other, which means if one of
the children event occurs, the parent event will also occur.

Leaf nodes can contain, in addition to a vulnerability score, a mitigation
score that represents a security mechanism that users put in place in order to
mitigate the risk to a certain degree. For example, Log access is a potential
source of risk which can be a leaf node of a CAT. We can use some access
control techniques, such as authentication or a privileges system, to prevent the
malicious log access behavior. The mitigation score indicates how much these
security mechanisms can prevent the vulnerability from propagating. Thus, the
final vulnerability propagated to the component due to log access behavior is
given by: vulnerability score * (1 - mitigation score).

Figure 2 shows an example of a CAT for Tampering risk of a sensor in the
case study system described in Sect. 4. The red block on the top is the objective

86 H. Neema et al.

of this tree which is the risk itself. The children of the root node in black are
intermediate nodes representing intermediate cause in one of the risk propagation
paths. The leaf nodes in yellow represent the root causes of the risk.

We briefly described earlier how vulnerability scores are propagated. The
AND logical relation among Corrupt State and its children is shown by horizon-
tal line. It implies that Corrupt State can occur if and only if both Power Drain
and Memory Access issues occur.

3.5 System Attack Graph

Similar to the CAT modeling process, the System Attack Graph (SAG) encom-
passes a root node, intermediary nodes, and leaf nodes. The root node corre-
sponds to a target component STRIDE threat category, which also represents
that component’s CAT root node. An intermediary node represents a compo-
nent attack port, which is used for propagating risk between components. As
mentioned earlier, these attack ports are dependent on respective CAT root
node risk levels, leading to the STRIDE threat categories represented by the
CAT root nodes to be assigned as children leaf nodes of the attack ports. One
difference in SAG from CAT is that the connections between nodes represent a
path to reach a target instead of a hierarchical relationship.

When developing the SAG, the scoring assignment methodology is similar to
the CAT. For the leaf nodes in the SAG, which are CAT root nodes, the score
achieved from the CAT risk propagation process is used. Therefore, the score of
the SAG leaf node should be the same as the CAT root node for the respective
component STRIDE threat category.

Since the component attack ports do not have assigned risk scores, the inter-
mediary nodes start as unassigned. Further, the root node also begins as unas-
signed. From this point, the risk from the SAG is propagated to the intermediary
nodes until the root node has an assigned risk score. Next, the threat modeler
can compare the SAG score for the root node to the relating CAT root node score
to analyze whether the highest component threat is internal or via system-level
propagation, and choose mitigation measures accordingly.

3.6 Algorithms for Vulnerability Propagation

The EvaluateSystemLevelRisks plugin is executed by clicking the play button
in the top-left corner in WebGME and it affects the model only when executed
under a Folder, Device, or a STRIDE risk component. In this section, we provide
the key techniques in the plugin implementation (written in JavaScript). When
this plugin is executed, WebGME creates an instance of this module and calls its
main function. WebGME’s Core API [4] is the major developer interface used
for developing this plugin. The Core API provides the developer an interface
for reading and modifying data in WebGME projects. The goal of the plugin
execution is generating graph data for the visualizer. As described below, the
code is organized into three parts: layered execution, reading and validation of
the graph table, and generation of graphs.

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 87

Layered Execution. The EvaluateSystemLevelRisks plugin can be executed
only inside a system folder, a device component, or a STRIDE risk within a
device. Those three types have a containment relationship from top to bottom.
A system folder contains devices, which contain STRIDE risks (given by domain
experts based on known vulnerabilities). The execution also proceeds in a layered
manner. When executed under a device, the plugin updates all the STRIDE risks
under it. When executed under a system folder, the plugin collects all devices,
recursively updates the devices, which in-turn updates all the STRIDE risks.
We avoid repeated loading of graph data during accessing system components
by putting the graph data component and its data in the function call so that
the data is acquired only when it is undefined. The impact of exploitation is
assessed through calculating system level risks (Sect. 3.8) and the system’s safety
is assessed through cyber gaming of exploitations and mitigations (Sect. 3.9).

Reading and Validating Graph Table. The graph table component under
the system folder is the key for generating SAGs. When the plugin is executed,
the graph table information is processed for graph generation. The plugin pro-
ceeds only when it finds no rule violations in the graph. If it finds violations, it
warns the user showing the part of the graph containing errors.

The extracted data from the graph table is organized in a JavaScript dictio-
nary. The graph table contains a directed graph of risk dependency. The keys in
the dictionary are Component ID of the nodes under the graph table’s crosscut,
and the values are a list of component IDs that represent the out-degree nodes
of the key’s node. Since the dependency connections are a contained element of
the graph table, the code iterates through all of the graph table’s children, which
are dependency connection components, and modifies the graph data dictionary.

Errors are collected in a list throughout the graph building process. At each
dependency, the source and destination nodes are validated. Although even with
a single error the SAG is not generated, the plugin still continues going through
the whole dependency graph to detect and present all the errors in the model
to the user for tracking the error sources. After iterating through the depen-
dency connections and generating the graph’s out-degree dictionary, the algo-
rithm checks for any cycles in the graph.

Graphs Generation. The result of plugin execution is the CAT and SAG data.
For each node in the graph, its children property lists the children trees. Both
CATs and SAGs are stored in a JavaScript dictionary in the following form:

{“name”: <string>, “risk”:<string>, children: [<graph dict>]}
Both CAT and SAG are generated recursively. For CAT, the plugin first

generates the CAT for all children, then calculates the risk value based on its
children’s risk values, puts children in the list, and then returns the tree dictio-
nary of current node. The RAF metamodel has specific types for intermediate
node and leaf node. The leaf of the CAT tree must be of type leaf node, which
represents the source cause of internal risks. If a non-leaf node does result from
any leaf node cause, in the recursion it will return a NULL. During recursion,

88 H. Neema et al.

if a non-leaf node does not have children, or all children result in a NULL, the
current return value will be a NULL and recursion will exit.

For SAG, the plugin generates a result dictionary from the graph table data.
Dictionary data extracted from the graph table provides directed edge infor-
mation. Starting from the root node, the SAG generation function recursively
accesses out-degree node from the current node in the dependency graph. Simi-
lar to CAT, SAG only allows STRIDE risk as the leaf nodes of its tree structure
and when recursion function is on an attack port, and if it does not have any
child or all its children result in a NULL after recursion, the current return value
will be NULL. The branch with attack port as leaf node will be cut off.

The CAT and SAG generated by the plugin are both tree-based structures
with the same risk value propagation mechanism. In the tree, each node has
a real numbered value ranging from 0 to 1 representing the probability of the
risk occurrence. In both CAT and SAG, the root node is the final target for the
whole tree, which is one of the STRIDE risks and is the ultimate goal of the
vulnerability propagation.

3.7 Tree Visualization and Algorithms

RAF has separate visualizers for CATs and SAGs. These two visualizers differ
slightly. In the sections below, we describe two major implementation issues with
visualizers. The first is about handling events because the project information
comes as asynchronous events and the code should handle them properly before
rendering the graph. Secondly, the layout for the visualized graph must be cor-
rectly setup for efficiently and accurately rendering the graph’s visual elements.

Event Handling. When switching to a visualizer, a reload event occurs in the
browser. Upon switching the visualizer context, the client sends a request to
the server for background data while refreshing the page. The requested data
includes the current WebGME node and its children nodes. Loading the page
content consists of several parts, each of which is processed in an asynchronous
manner, and a callback is called when it is finished. Rendering cannot start as
soon as the visualizer code is executed from the entry function because the key
data may not be loaded by then. However, due to the asynchronicity of the
loading event, we cannot determine which node is loaded last so that we can
render the graph after that. Therefore, we designed a graph data component
to store all the visualization information such that the visualizer only needs to
load the graph data before rendering. The visualizer initializes the graph data
variable as NULL. When a node is loaded, the code will render the graph only
if the variable is assigned with node content. To avoid duplicated rendering, we
use a flag indicating whether the graph is already rendered at current context.

Layout Method. The rendering objective is drawing a tree on a HyperText
Markup Language (HTML) web page. HTML elements can be configured with
width, height, and position. The key problem with the layout algorithm is how to

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 89

set up the position and size information of each node’s elements. We truncate the
scores as they are floating-point numbers and limit string names to three units
in size. The exact position of a node is determined by not only its topological
position in the tree, but also the position and size of other nodes. In the visualizer,
we used a recursive function to generate another tree dictionary that records
layout information for all nodes.

3.8 Risk Profile

To assess the system-level risk, the EvaluateSystemLevelRisks plugin updates the
value of a risk profile component inside a system folder. This value represents
the overall risk of the whole system and six STRIDE risk values along with their
corresponding weights that contribute to the overall risk assessment score.

Each STRIDE risk values in the risk profile is calculated from all the cor-
responding risks of top-level devices as well as lower-level devices if they are
under risk and there is a path by which the risk can be propagated to the logi-
cal upper-level system. The weight represents how each kind of risk contributes
to the system-level risk and it can be customized by users. The risk weights
are normalized during the computation. The overall risk value is calculated by
combining all normalized risk values with OR logic.

In addition, we developed a tool that computes system-level risks when one
of the device’s risks is being exploited. When a device risk is ongoing, its risk
value is temporarily changed to 1.0 and its sibling risks are turned to 0.0. The
risks in other devices remain the same. Such change can have the effect on other
risks through risk propagation and result in different system-level risk values,
which show how vulnerable the system is when a device risk is actually being
exploited. This can help to find the weakest points in the system. The tool rank
orders the system vulnerabilities by sorting the corresponding system-level risk
values in descending order. These risk analysis results can be downloaded after
this tool is executed. RAF generates a hyperlink in the output to directly open
the associated risk components that are listed in the above priority order.

3.9 Cyber Gaming for Risk Management

We also have a metamodel (not shown for brevity) for risk management plan
modeling. An example risk management plan model is shown in Fig. 3. We can
further connect our risk analysis model with attack behavior models to facilitate
users evaluating the effectiveness of counterattack strategies. The ultimate goal
of doing risk analysis is to make the system more secure. By implementing the
risk profile features, we can spot the specific points that trigger the risk eas-
ily. But the actions available for us to mitigate vulnerabilities are limited. In
addition, different mitigation actions (e.g., firewall, encryption, etc.) take time
to implement and also incur a cost on performance of the system. Therefore,
we must consider which mitigation actions could be applied and under what
circumstances. In addition, certain mitigation actions may be kept secret from
potential attackers and used only when absolutely needed. Attackers usually do

90 H. Neema et al.

not just exploit one weakness in a device. Instead, a series of exploitations that
interact with counterattack mitigations is used. Thus, it is important to model
the attack and counterattack behaviors and analyze the risks step by step.

We developed the metamodel for risk management plans as a separate sub-
group. The risk management plan allows us to model cyber gaming scenarios
that allow combining and evaluating vulnerability exploitation against mitiga-
tion actions. The attack and counter-attacks can be modeled up to any depth.

Fig. 3. Sample risk management plan with an example of uncertain dependency

The model represents a timed execution flow in which each process unit
can take a certain amount of model time before its successors start running.
There are two major types of processing units, exploitation and mitigation. They
both associate with a risk component in the system architecture model via set
relationship called Risk match. An exploitation activates a certain risk by setting
the vulnerability score to 1.0 and disabling the sibling risks under same device
by setting their vulnerability score to 0. A mitigation reduces the chance of a
device being exploited with a certain risk. Mitigation nodes have an attribute
mitigation rate that ranges from 0.0 to 1.0 and determines what percent of risk
can the mitigation reduce. After a mitigation is processed, the vulnerability of
the risk associated with the mitigation node will be reduced by the mitigation
rate. In addition, RAF has a delay component that only delays the model time
in the amount of specified time units. Since exploitation and mitigation are
the simulation of an actual behavior, their processing time should have some
associated variance. The duration attribute can be used to specify the time
delay and delay variance attribute can be used to specify the variance of the
randomized processing times according to a Gaussian distribution.

Exploitation and mitigation components have a dependency limitation of
what device they can be associated with. A device can be exploited with one
of the risks only if any of its children is exploited. The device architecture is
in a hierarchical structure – the nodes at the bottom are base devices and the
others are high-level devices. At the beginning, only base devices are available

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 91

for exploitation. After a risk of a device is exploited, the device’s parent device is
available for further exploitation. The plugin will check for a possible dependency
problem that one exploitation might be associated with an unavailable device at
the time of execution. Because of the parallelism in the execution and uncertainty
of the process time, we cannot determine whether an exploitation is associated
with an available device at the time of execution. But we can determine whether
an exploitation is guaranteed to be associated with an available device. On the
right side of Fig. 3, the DoS attack (in the upper branch) exploits a risk in base
device A, and an Increase 10 percent attack (in the lower branch) exploits device
B (which is a parent of device A). Here, if none of the exploitations on B’s chil-
dren were finished, B’s availability will be indeterminable when Increase 10pct
attack starts. If DoS attack finishes before the Increase 10 pct attack, then B will
become unavailable for Increase 10pct attack. However, if DDoS attack (prede-
cessor of both DoS attack and Increase 10 pct attack), exploits one of the B’s
children C, but is not finished, then B will still be available for Increase 10 pct
attack. The plugin checks for device availability before executing exploitations.

As the example shows, modeling of cyber-games allows parallel branches.
From one process node, the model allows multiple next steps from it. Each
parallel branch represents a time independent execution flow. A join node serves
as a synchronizing point of parallel branches. Join nodes allow multiple input
flows but there is only one output flow. Each input flow will suspend on the join
point until all other input flows are finished. A conditional fork allows random
selection of outgoing branches based on probabilities specified on them. When
the sum of probabilities on all conditional branches does not equal to 1.0, the
plugin normalizes all of the probabilities.

Risk assessment node calculates the overall risk at the time point it is
assigned. The risk calculation is the same as the static calculation, but it also
includes dynamic connections – a key feature of RAF that existing works men-
tioned in Sect. 2 do not support. In each physical (network) connection, there is
an active condition attribute that specifies when the connection is established
in model time. The active condition attribute is of string type and its value is
an expression using the variable t such that it must evaluate to true or false.
By default, the value for this attribute is true, which means the connection is
always active. If the attribute is t >3, for example, it means the connection is
active when the model time is greater than 3. The expression can also incorpo-
rate periodic patterns such as (t%5 >1) & (t%5 <2), which means there is an
active period with length of 1 in every 5 model time units. The overall risk value
is calculated by propagating the risk through the dependency table. Each depen-
dency is a directed connection between risks and attack ports that either relies
on hierarchical relation or physical connection between the risks and ports. For
those dependencies between two base devices that are connected with a physical
connection, the status of this dependency depends on the active condition of the
connection.

The decision branch after a risk assessment node uses a true/false expression
to determine whether to continue with any following nodes (e.g., a mitigation).

92 H. Neema et al.

The expression is written using the value of variable name attribute of previous
risk assessment (which will represents the corresponding risk value). For example,
if we set variable name as r, the expression on decision branches after the risk
assessment can be r >0.1, 1/r <3, etc. When expressions on multiple decision
branches are true, the nodes following them are executed in parallel.

4 Case Study from a Railway Cyber Network

4.1 Railway System Model

There are two default visualizers at the top level folder of the example project,
viz. meta and composition. Meta is a built-in visualizer that always shows the
global metamodel design at any component folder of the system and is the default
one when opening the project. The composition visualizer next to the meta
visualizer shows the model components, as shown in Fig. 4.

Fig. 4. Railway system example model

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 93

In the top folder of the main project, the component with a blue folder icon
(named Railway Example) is an example Railway Transportation System built
using the metamodel described earlier. This a very simple model of a railway
control system with a few sensors placed on the railway track to collect real-
time signal data, a repeater for receiving, filtering, and transmitting the raw
data, a gateway and a router as parts of the network, and a central station that
receives all data globally and sends out control commands. The directed lines
with arrows between devices show the connection from one device to another,
with type names along with the line. In the example system, all connections
are bidirectional, so there are always arrows at the end of lines between devices
in its composition. There is also a graph table which is unique to the system
and used to specify the risk propagation dependencies between attack ports and
STRIDE risk components. Each type of component is assigned with an SVG
icon to its metamodel. Figure 4 shows the composition of the example system,
the constituents inside Zone 1 device of the top folder, and the topology of base
devices under the crosscut panel of Topology component in the system.

When double-clicking on a device component (e.g., speed sensor) for example,
the composition will show the internal component of this device, as shown in
Fig. 4. The blue boxes with letters on them are STRIDE risk components, which
contain a CAT organized with the folder hierarchy which will be further discussed
below. The white components with red borders are attack ports. Attack ports
represent certain attack behavior that can interact with an external device. For
example, sending malicious packets can be an attack port of the central station
because the central stations are able to send packets that may possibly cause
unexpected behavior and can cause risk to the system if the packets are somehow
sent with a malicious intention. If malicious packets are sent, that may further
cause integrity problems in a repeater, or disrupted communication of a router
or gateway, and finally result in one of the STRIDE risks in one of the devices.
Such risk propagation is modeled and captured by SAG, that is described below.
There is also a small circle component called Graph Data. This is used to store
the results of computations performed by the plugin and read by visualizers to
show the risk analysis graphs. It is not intended to be used by users directly.

When the user enters into one of the STRIDE risk components in a device,
there may be a few children components that are in the CAT under the root node.
The visualizers work for STRIDE components here and enable the Componen-
tAttackTree and SystemAttackGraph panels inside the STRIDE component. If
the user switches to one of these visualizers, the visualized tree structure for the
corresponding structure will be displayed. Figure 2 shows the CAT of Tampering
risk of a sensor and Fig. 5 shows its SAG.

Another component is the Graph Table, with table like SVG icon. On select-
ing it, the composition view (empty) is shown, by default. However, if the user
switches to the visualizer crosscut, a graph is shown with blue STRIDE com-
ponents and red attack port components and have a directional edge between
the nodes (see Fig. 5). This graph is defined by the user and it summarizes the
paths of how external risks can propagate from one component to the other. The
nodes of a crosscut are not contained in the graph table component but they are

94 H. Neema et al.

simply references to devices in the system folder. The connection components
are included by the parent component but they are not shown in the composition
due to inherited containment relationship to the Graph Table model.

Fig. 5. SAT and risk associations

4.2 Modeling the System

To create our own model based on the project, we need to first create a Project
Folder component at the top-level hierarchy of the main project. The name of
a component is the metamodel’s name, so it is important to rename the system
folder component with a proper name for the system after creating it.

In the system folder, we can build the system topology with device compo-
nents and connections. On the left there is an area with all available components
in the current context are shown. Dragging an icon from the left panel to the
white space can create the corresponding component. Dragging lines between
device components can create connections between them. There is a prompt
choice for the type of connection after drawing a line from one device to another.

Inside a STRIDE risk component, we can put intermediate nodes or leaf
nodes. Those nodes are constituents of the CAT of the parent STRIDE risk
device. The risk nodes inside a STRIDE risk component are organized in a tree
structure based on their hierarchical relations. For each node, its children nodes
are the direct causes of it. The leaf nodes require the user to input the risk values
based on their domain knowledge and optionally fill the property of mitigation
information.

The EvaluateSystemLevelRiskss plugin can be executed under three types of
components: project folder, device, and STRIDE risk component. These three
types of components have hierarchical relations. A project folder contains devices
and a device contains STRIDE risks. When the plugin is executed under the
project folder, all devices and the risks under them will be updated. If the plugin
runs under a device, only the risks under the current device will be updated.
If the current running environment is just one of the STRIDE risks, only the
information related to this risk will be renewed. Updating globally can take a

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 95

while if the system is large. If we need the result for only part of the system or
if we modify only a part of the system before the update, local updates (device,
risk level) can be used.

4.3 Risk Dependencies

A graph table uses the crosscut visualizer instead of the composition visualizer
to model dependency relations between STRIDE risks and attack ports of var-
ious devices. In composition, all elements shown in the white space are direct
children of the current element being inspected, and connections are created by
dragging from one component to another and permissible only between nodes
with a common parent. In RAF, crosscuts are used for modeling risk propaga-
tion dependencies across component hierarchies by creating connections between
references of existing nodes.

The direct graph under the crosscut of a graph table must be checked for
validity, so the RAF’s plugin first checks that. There are three rules for the graph
validity. First, there should not a cycle. The graph is built for summarizing risk
dependencies and the directed edges are a representation of the potential path
for risk propagation. A cycle would be logically incorrect because a risk should
have its ultimate source and destination in the graph. Even if there are cycles
due to the device property, the user assigning the dependency should resolve
it using domain knowledge. The dependency can be from an attack port to
another attack port, an attack port to a STRIDE risk, and a STRIDE risk to
an attack port. For the attack port to attack port dependency, the attack ports
must be from different components. For the dependency from STRIDE risk to an
attack port, they cannot be within the same device. For the dependency from
attack port to a STRIDE risk, they must be within the same device. This is
because the graph and dependency relations are used for external risk analysis.
Risk occurrence in each device is triggered by factors in other devices when the
attack port is either triggered by another attack port, or internally by a risk
within the device. Any errors in graph model are reported with locations.

4.4 Risk Management Plan

Figure 3 shows a full example of the risk management model. Similar to modeling
the system architecture and risk node, the components are simply added from
the left panel and connected by drawing from one point to the other.

From the start node, the first node is a DDoS attack and it will result in
spoofing risk of one of the traffic lights. Figure 6 shows the topology associated
to this example risk management plan. The device that first DDoS attacks is
Signal 1 marked by a red circle and it has an IP network connection with a
switch. The active condition attribute for the marked connection from Signal 1
to the switch is t >1 & t <2 which means the connection is only active during
the time interval (1, 2). Figure 6 shows a part of the port table associated with
the risk management plan. The spoofing risk marked with a red circle is the
exploited spoofing risk of Signal 1. The first relay is the relay inside Signal 1

96 H. Neema et al.

and the second relay after it is in the switch. Signal 1 and the switch are both
base devices, so the dependency between two relays is built upon this conditional
connection. Such dependency inherits the condition of the connection and the
dependency is also active when the connection is active. In this example, the
tampering and spoofing risks only propagate to the top during the time interval
(1, 2).

Fig. 6. Part of the network topology and port table

The risk assessment followed by next steps of mitigation nodes shows an
example of the conditional action based on risk assessment result. The vari-
able name specified in the risk assessment is risk var. The first branch has the
expression risk var >0.5 & risk var <0.6 and second branch has (risk var **
2) >0.3. Those branches will proceed if the expression is true. In this case, the
execution path is not determined before each run because there is uncertainty
of the risk assessment value. The connection between Signal 1 and the switch is
only active during time interval (1,2) and whether it is active or not has impact
on the overall risk value since there is a risk propagation dependency that is
established upon the connection. On the other side, the actual running of first
DDoS is uncertain because the actual time the exploitation takes is randomly
assigned based on a normal distribution with given mean and variation. If we let
the expected execution time of the DDoS exploitation be 1, the actual finish time
could be somewhere around 1.0 (e.g., 0.99 or 1.01). If the risk assessment takes
place at 0.99, the important dependency that propagates that risk is inactive
at this time point and the exploitation will have no effect on the overall risk.
Conversely, if the risk assessment runs the risk propagation at the time point
at 1.01, the exploited spoofing will be propagated to the top and increase the
risk value. Therefore, the action of the next step will also be random due to the
randomness of risk assessment result.

After parallel branches merges at the join point, there is a conditional fork
node after it. The connections that follow the conditional fork are of type con-
ditional step and have a probability attribute. The sum of probabilities from

Model-Based Risk Analysis Approach for Critical Railway Infrastructure 97

the fork point should be 1.0. However, when the user enters probabilities that
do not add up to 1.0, the plugin will normalize the values. Only one branch is
selected during the execution, and the selection is a weighted random based on
probabilities of active branches.

5 Conclusion and Future Work

In this paper, we demonstrated the use of the model-integrated computing (MIC)
technique to build a metamodel for risk analysis and demonstrated it using a
railway transportation system case study. Our web-based Risk Analysis Frame-
work (RAF) provides a set of risk analysis and visualization tools that aim to
provide a user-friendly platform for risk analysis and risk management planning.

After modeling the system architecture and network topology, risk analysis
tools are used for automatically propagating the risk values, and visualization
tools are used to visually inspect the component attack trees of specific compo-
nent risks and system attack graphs that also consider how risks can propagate
across components via their network interconnections. In addition, our auto-
mated risk assessment tool can analyze all the modeled system vulnerabilities,
evaluate them for their impact on overall system-level risk, and rank order them
for targeting mitigation actions against most damaging vulnerabilities. We also
provided a novel approach to handle dynamic network connections for analyzing
risks amidst changing network topology of infrastructure components, such as
mobile locomotives and its on-board devices in the railway transportation sys-
tems. The quantitative approach to risk analysis and model-based design and
automated analysis tools provides a highly powerful framework for analyzing
risks of critical infrastructures, such as a railway transportation system.

It is important to note that the algorithms and approaches developed in this
work are equally applicable to other types of critical infrastructures. We are
currently working on applying it to energy, water distribution, and healthcare
domains. Also, we are working on integrating the risk analysis framework with
the networked co-simulations of dynamical systems (e.g., Cyber-Physical Sys-
tems Wind Tunnel (CPSWT) [17,18]) for validating and improving risk scores
as well as for conducting informed, simulation-based cybersecurity evaluations.

Acknowledgement. This work is supported by the US National Security Agency
(NSA) (award #H98230-18-D-0010) and the US National Institute of Standards and
Technology (NIST) (award #70NANB20H020). No approval or endorsement of any
commercial product by NSA or NIST is intended or implied. Certain commercial
equipment, instruments, or materials are identified in this paper in order to specify
the experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by NSA or NIST, nor is it intended to imply that
the materials or equipment identified are necessarily the best available for the purpose.
This publication was co-authored by United States Government employees as part of
their official duties and is, therefore, a work of the U.S. Government and not subject
to copyright. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of NSA
or NIST.

98 H. Neema et al.

References

1. Koutsoukos, X., et al.: Performance evaluation of secure industrial control system
design: a railway control system case study. In: Resilience Week, pp. 101–108 (2016)

2. Myagmar, S., Lee, A.J., Yurcik, W.: Threat modeling as a basis for security
requirements. In: Symposium on Requirements Engineering for Information Secu-
rity (SREIS), vol. 2005, pp. 1–8 (2005)

3. Sztipanovits, J., Karsai, G.: Model-integrated computing. Computer 30(4), 110–
111 (1997)

4. Kecskes, T., Zhang, Q., Sztipanovits, J.: Bridging engineering and formal model-
ing: WebGME and formula integration. Technical report in Department of EECS,
Vanderbilt University, Nashville, TN (2017)

5. Liao, Y.-C.: Quantitative information security vulnerability assessment for norwe-
gian critical infrastructure. In: Rashid, A., Popov, P. (eds.) CRITIS 2020. LNCS,
vol. 12332, pp. 31–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58295-1 3

6. Schmittner, C., et al.: Threat modeling in the railway domain. In: Collart-Dutilleul,
S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 261–
271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6 17

7. Saini, V., Duan, Q., Paruchuri, V.: Threat modeling using attack trees. J. Comput.
Sci. Coll. 23(4), 124–131 (2008)

8. Martins, G., Bhatia, S., Koutsoukos, X., Stouffer, K., Tang, C., Candell, R.:
Towards a systematic threat modeling approach for cyber-physical systems. In:
Resilience Week (RWS 2015), pp. 1–6. IEEE (2015)

9. Kavallieratos, G., Spathoulas, G., Katsikas, S.: Cyber risk propagation and opti-
mal selection of cybersecurity controls for complex cyber-physical systems. Sensors
21(5), 1691 (2021)

10. Stellios, I., Kotzanikolaou, P., Grigoriadis, C.: Assessing IoT enabled cyber-physical
attack paths against critical systems. Comput. Secur. 107, 102316 (2021)

11. Garg, U., Sikka, G., Awasthi, L.K.: Empirical analysis of attack graphs for miti-
gating critical paths and vulnerabilities. Comput. Secur. 77, 349–359 (2018)

12. Liu, X., Zhang, J., Zhu, P., Tan, Q., Yin, W.: Quantitative cyber-physical security
analysis methodology for industrial control systems based on incomplete informa-
tion Bayesian game. Comput. Secur. 102, 102138 (2021)

13. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
14. Potteiger, B., Martins, G., Koutsoukos, X.: Software and attack centric integrated

threat modeling for quantitative risk assessment. In: Proceedings of the Symposium
and Bootcamp on the Science of Security, pp. 99–108 (2016)

15. Garitselov, O., Mohanty, S.P., Kougianos, E.: A comparative study of metamodels
for fast and accurate simulation of nano-CMOS circuits. IEEE Trans. Semicond.
Manuf. 25(1), 26–36 (2011)

16. Microsoft Security Development Lifecycle (SDL) Threat Modeling Tool. https://
docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool. Accessed
27 Aug 2021

17. Neema, H., Sztipanovits, J., Steinbrink, C., Raub, T., Cornelsen, B., Lehnhoff, S.:
Simulation integration platforms for cyber-physical systems. In: Proceedings of the
Workshop on Design Automation for CPS and IoT, pp. 10–19 (2019)

18. Neema, H.: Large-scale integration of heterogeneous simulations. Ph.D. dissertation
Research. Vanderbilt University (2018)

https://doi.org/10.1007/978-3-030-58295-1_3
https://doi.org/10.1007/978-3-030-58295-1_3
https://doi.org/10.1007/978-3-030-18744-6_17
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

	Model-Based Risk Analysis Approach for Network Vulnerability and Security of the Critical Railway Infrastructure
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Modeling Approach
	3.2 Modeling Environment
	3.3 Modeling Railway Infrastructure and Communications
	3.4 Component Attack Tree
	3.5 System Attack Graph
	3.6 Algorithms for Vulnerability Propagation
	3.7 Tree Visualization and Algorithms
	3.8 Risk Profile
	3.9 Cyber Gaming for Risk Management

	4 Case Study from a Railway Cyber Network
	4.1 Railway System Model
	4.2 Modeling the System
	4.3 Risk Dependencies
	4.4 Risk Management Plan

	5 Conclusion and Future Work
	References

