
OASiS: A Programming Framework for
Service-Oriented Sensor Networks1

Manish Kushwaha, Isaac Amundson, Xenofon Koutsoukos, Sandeep Neema, Janos Sztipanovits
Institute for Software Integrated Systems (ISIS)

Vanderbilt University
Nashville, TN 37235, USA

{manish.kushwaha, isaac.amundson, xenofon.koutsoukos, sandeep.neema, janos.sztipanovits}@vanderbilt.edu

Abstract— Wireless sensor networks consist of small, inexpen-
sive devices which interact with the environment, communicate
with each other, and perform distributed computations in order
to monitor spatio-temporal phenomena. These devices are ideally
suited for a variety of applications including object tracking,
environmental monitoring, and homeland security. At present,
sensor network technologies do not provide off-the-shelf solutions
to users who lack low-level network programming experience.
Because of limited resources, ad hoc deployments, and volatile
wireless communication links, the development of distributed
applications require the combination of both application and
system-level logic. Programming frameworks and middleware for
traditional distributed computing are not suitable for many of
these problems due to the resource constraints and interactions
with the physical world.

To address these challenges we have developed OASiS, a
programming framework that provides abstractions for object-
centric, ambient-aware, service-oriented sensor network appli-
cations. OASiS uses a well-defined model of computation based
on globally asynchronous locally synchronous dataflow, and is
complemented by a user-friendly modeling environment. Appli-
cations are realized as graphs of modular services and executed
in response to the detection of physical phenomena. We have
also implemented a suite of middleware services that support
OASiS to provide a layer of abstraction shielding the low-level
system complexities. A tracking application is used to illustrate
the features of OASiS. Our results demonstrate the feasibility
and the benefits of a service-oriented programming framework
for composing and deploying applications in resource-constrained
sensor networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) are inherently dynamic
in nature due to node mobility, limited resources, and un-
reliable communication links. It is therefore imperative that
WSN applications consider these issues in order to ensure
their correct execution. Unfortunately, tackling the problem of
dynamic network behavior places a substantial burden on the
programmer. In addition to an application’s core functionality,
the programmer must implement low-level operations such
as robust communication protocols, resource management
algorithms, and fault tolerance mechanisms. Unlike traditional
network programming, WSN programming requires a coupling
between application-level and system-level logic for resource
management and sensing operations. Not only does the im-
plementation of these components require substantial time and

1OASiS is partially supported by Microsoft External Research, NSF grant
CCR-0225610, and grant ARO SA5212-11087.

effort on behalf of the programmer, but it also increases the
risk of deploying incorrect code, due to the often unanticipated
behavior of distributed network applications.

In this paper, we present OASiS, an Object-centric,
Ambient-aware, Service-oriented Sensornet programming
framework which enables the development of WSN appli-
cations without having to deal with the complexity and un-
predictability of low-level system and network issues. The
framework provides a well-defined model of computation
based on globally asynchronous locally synchronous dataflow
[1], and is complemented by a user-friendly modeling environ-
ment. OASiS decomposes specified application behavior and
generates the appropriate node-level code for deployment onto
the sensor network.

In object-centric programming, an object is a logical el-
ement which represents some physical phenomenon being
monitored by the network. The application is driven by the
object, and its behavior is governed by the object’s current
state. The programmer is able to specify this behavior from
the viewpoint of the object, and need not worry about how the
behavior is implemented at the node level.

Object-centric programming by itself does not address the
issues of network failures and dynamic network topology.
Ambient-aware programming [2] has emerged as a paradigm
for mobile computing in which each node in the network
has up-to-date knowledge of its neighborhood. This includes
awareness of its neighbors and the services they provide.

OASiS takes a service-oriented approach to behavioral
decomposition and application execution. In a service-oriented
WSN application, each activity (sensing, aggregation, service
discovery, etc.) is implemented as a separate service. The
advantages of using a service-oriented architecture for WSN
applications are similar to those of Web services. Services
are modular, autonomous, and have well-defined interfaces
which allow them to be described, published, discovered, and
invoked over a network. These properties permit services to
be dynamically composed into complete applications.

We have developed a suite of middleware services which
support such object-centric, ambient-aware, service-oriented
applications. The services include components for managing
internal sensor node operations, communication, service dis-
covery, and object maintenance. The middleware serves as a
layer of abstraction, shielding the programmer from the low-



level complexities of sensor node operation.
The OASiS programming framework can be used to develop

any type of dataflow application including vehicle tracking,
fire detection, and distributed gesture recognition. As proof
of concept, we have developed a simplified indoor tracking
experiment, which monitors a heat source as it travels through
the sensor network. The case study highlights the various
features of OASiS, and demonstrates the feasibility and utility
of a service-oriented WSN programming model.

The paper is organized as follows. Section II describes
the design principles and challenges involved in developing
a programming framework for WSNs. In Section III, we
describe the OASiS programming framework. Section IV de-
scribes the OASiS programming model, followed by a detailed
description of the middleware in Section V. We demonstrate
the capabilities of OASiS in Section VI. In Section VII,
we compare our research to similar work that has recently
appeared in the literature. Section VIII concludes.

II. DESIGN PRINCIPLES AND CHALLENGES

In this section, we discuss the challenges and design choices
involved in WSN programming framework development. Un-
til recently, WSN application programming has followed an
approach that leaves the programmer with the responsibility
of implementing many low-level details such as sensing,
communication between nodes, and efficient use of energy.
Not only does this extra work consume valuable time and
resources, but it also increases the chances of delivering error-
prone code.

A more robust approach makes use of a programming
framework which provides higher levels of abstraction, en-
abling the developer to program from a global point of
view. The developer can then focus on the desired overall
behavior of the application, without having to be concerned
with the complexities associated with distributed systems. Pro-
gramming frameworks typically accept a desired application
behavior as input and by means of compiler or interpreter,
and often a framework API library, generate a functional
network application as output. The output can either take the
form of executable code or a byte-string instruction set to be
interpreted by a network virtual machine. The application runs
on top of a layer of middleware services which handle the
underlying hardware and network operations.

Design principles for traditional distributed computing mid-
dleware are not directly applicable to WSNs for the following
reasons:

• Sensor nodes are small-scale devices with a limited
power supply, directly affecting computation, sensing,
and (especially) communication.

• WSN middleware services often depend on the physical
phenomenon being monitored.

• Node mobility, failure, and volatile communication links
produce a dynamic underlying network.

• Variation in node hardware, computation, communica-
tion, and sensing abilities introduces heterogeneity.

• Sensor nodes often operate unattended for prolonged
periods of time.

The design of a successful WSN middleware must address
the various challenges imposed by the aforementioned char-
acteristics. Many middleware challenges have already been
identified [3] and are summarized below.

Limited resources: Every aspect of middleware design
should attempt to include resource optimizations, and an
analysis of resource utilization is important for preventing
unintentional abuse. Power is of significant importance, espe-
cially in terms of communication where a single transmission
consumes an amount of energy equivalent to more than a
thousand computations.

Dynamic network topology: WSN topology is subject to fre-
quent changes due to node mobility, node failure, and volatile
communication links. A WSN middleware must support robust
and reliable sensor network operations by providing mecha-
nisms for fault tolerance, network awareness, and application
self-reconfiguration.

Heterogeneity: As WSNs become more prevalent and di-
verse, middleware will be required to operate gracefully in
heterogeneous environments. This not only requires the mid-
dleware to maintain communication and distributed computa-
tion mechanisms across different architectures, but quality of
service guarantees as well.

Real-world Integration: WSN applications interact with the
physical world and react to an evolving environment over time
and space. This requires middleware services which provide
spatio-temporal abstractions, as well as real-time functionali-
ties.

Application knowledge: Although middleware is intended
to be application independent, knowledge of the application
domain may improve overall performance. Therefore, pro-
viding middleware with parameterized services that accept
configuration options as input will increase robustness and
improve usability.

Data aggregation: The popularity of WSNs is due in no
small part to their ability to accumulate environmental data
over a wide physical area. However, the data sampled by each
node is often meaningless until it is combined and analyzed.
Middleware can play a key role by providing an efficient
mechanism for collecting data located across the network.

Quality of service: Not only should middleware be capable
of maintaining network-related quality of service guarantees,
but also guarantees relating to the performance of the WSN
application. Without such guarantees, application behavior
becomes less stable and predictable.

III. THE OASIS PROGRAMMING FRAMEWORK

This section describes the three stages of development
within the OASiS programming framework, and the advan-
tages of OASiS in view of the design challenges presented in
Section II.

At present, users wishing to deploy WSN applications must
be adept at developing the sensor network middleware, the
domain-specific functionality, and perhaps even an interactive



Fig. 1. OASiS: Programming Framework

front-end. Application development will benefit from a pro-
gramming paradigm that provides these separation of concerns
(SoC). In software engineering, SoC is the process of breaking
a program into distinct features that overlap in functionality as
little as possible [4]. In the application development context it
can be redefined as the process of breaking the responsibilities
of application development into distinct stages for program-
mers with different skills. OASiS is a programming framework
that facilitates these SoCs for application development through
a multilayer development process. Figure 1 illustrates the
relationship between each development stage in OASiS.

In OASiS, core sensor network functionality is bundled as
middleware services including service discovery, service graph
composition, failure detection, node management, and others.
We present the OASiS middleware in detail in Section V. The
domain services development layer provides domain-specific
service libraries developed by domain experts, which can then
be used by the application developer. OASiS then wires the
domain services onto the middleware to produce node-level
executable code for deployment on the network. Application
development in OASiS does not require any expertise in
sensor network programming. Instead, complete applications
are developed using model-integrated computing techniques
[5].

In addition to providing multilayer development, the pro-
gramming framework addresses many of the aforementioned
design challenges in Section II. Our ambient-aware middle-
ware supports dynamic service discovery and configuration
to address changes in network topology due to failures and
unreliable communication links. Heterogeneity is solved by
our service-oriented approach, where well-defined services
on heterogeneous platforms can be composed together in a
seamless manner. For example, resource-intensive Web ser-
vices can easily be plugged into OASiS applications, and are
treated as ordinary WSN domain services. OASiS supports
real-world integration in application design by providing the
means to specify spatio-temporal service constraints. Many
localization algorithms, for example, require sensing services
to be situated in a precise spatial configuration, such as sur-
rounding the physical phenomenon. The ability to attach such
constraints to services before they are invoked is an important
aspect of WSN application programming. Due to the service-
oriented approach of OASiS, we are able specify in-network
data aggregation by connecting multiple sensor services to
a single aggregator service. OASiS supports specification of

both application-specific and network QoS requirements. QoS
violations are gracefully handled by application reconfigura-
tion to satisfy QoS requirements.

IV. OASIS PROGRAMMING MODEL

The OASiS programming model is organized into three key
paradigms: service-oriented, object-centric, and ambient-aware
programming.

Service-Oriented Architecture

A service-oriented architecture (SOA) simplifies WSN do-
main development by providing standards for data represen-
tation, service interface description, and service discovery
facilitation. By wrapping application functionality into a set
of modular services, a programmer can then specify execution
flow by simply connecting the appropriate services together.
The resulting service graph is a concise representation of the
application which can then be executed irrespective of the
physical location of the distributed services.

In OASiS, a service is the basic unit of application func-
tionality. Services have well-defined interfaces consisting of
input and output ports, as well as the data types supported by
each. A well-defined interface is important when binding two
services together. A data type mismatch between the output
port of one service and the input port of the next will cause an
execution violation. OASiS catches these types of violations,
preventing undesirable execution behavior.

Wiring a group of domain services together results in a
service graph describing application flow. In OASiS, services
can be wired together to compose a service graph representing
any type of data flow application. In addition to services
and their connections, a service graph can include constraints
which restrict where and when a service can be invoked.

Because services must communicate asynchronously with
each other, OASiS employs the globally asynchronous, locally
synchronous (GALS) model of computation [6]. GALS main-
tains asynchronous communication between services, while
intra-service communication, such as method calls, exhibit
synchronous behavior.

Dynamic network topology in WSNs can cause problems
during application execution such as service unavailability
and violation of constraints. Querying a centralized service
repository each time a new service instance is needed can be
expensive, especially when the repository is located multiple
transmission hops away. In OASiS, each node maintains two



service repositories, a local service repository (LSR) that cata-
logs the application services available locally, and a discovered
services repository (DSR) that catalogs the remote application
services that have been discovered in the past. The combined
use of these two repositories allows the system to be more
responsive in the event of service unavailability.

Service discovery is passive in that service providers wait
for a specific request before advertising a service. This passive
approach was found to be the most energy efficient for mobile
ad hoc networks with limited power resources [7]. Requests
are flooded a limited number of hops throughout the network,
and all providers of the requested service respond with a
message specifying their node ID, physical location, and power
level. This information can be used to discard any service
provider which fails to satisfy the constraints specified in the
service graph.

OASiS is intended for resource-constrained devices which
are unable to use current Web service standards such as SOAP,
WSDL, and UDDI due to their bulky XML-based messaging
format. Instead, OASiS uses a compact byte-sequence message
structure for accessing services and passing data between
them. However, the OASiS SOA does provides a straight-
forward mechanism for accessing Web services, and similarly,
for granting Web services access to the WSN application [8].
This capability allows WSN applications to perform compu-
tations and access information using methods unavailable to
resource-constrained nodes.

Object-Centric Programming

Complexity in OASiS is minimized by providing the appli-
cation developer with a means for specifying global network
behavior; that is, behavior from the viewpoint of the physical
phenomenon of interest. For example, the global network
behavior for target tracking involves nodes taking sensor
measurements of the environment until a target is detected, and
then organizing to localize the target and follow its movement.
Global behavior does not involve specifying how nodes take
their sensor measurements, which nodes communicate with
each other once the target is detected, or how target localiza-
tion is accomplished.

In OASiS, a physical phenomenon of interest is represented
by a finite state machine (FSM), also referred to as the
logical object. We selected the FSM representation because
this model of computation is an intuitive method for describing
the distinct states a physical object might exhibit. Each FSM
mode corresponds to a different physical state, and contains
a service graph specifying the appropriate actions to take for
the specific situation. An example object FSM is shown in the
application development stage part in Figure 1.

Before a logical object is instantiated, a physical phenom-
enon must be detected. This is achieved by comparing sensor
data with an object context. The object context defines the
physical phenomenon in logical terms. For example, we might
declare an object context for fire as

TEMPERATURE ≥ 100oC.

The object context also contains information on how fre-
quently the environment should be sampled.

Because multiple nodes may detect the same physical phe-
nomenon at roughly the same time, a mechanism is required to
ensure only one logical object is instantiated. To provide this
guarantee, OASiS employs an object-owner election algorithm,
similar to that of [9]. The object creation protocol, executed
by each node, is outlined in Algorithm 1.

Algorithm 1 Object Creation Protocol
1: if object creation condition == TRUE then
2: declare yourself a candidate
3: if owner election not already in progress then
4: initiate owner election
5: end if
6: if elected object owner then
7: declare ownership
8: populate the object state variables
9: identify the object default mode

10: initiate dynamic service configuration
11: end if
12: end if

After the object creation protocol completes, exactly one
node, referred to as the object node, is elected owner of
the logical object corresponding to the physical phenomenon.
The object initiates in the default mode of the FSM and
starts the process of dynamic service configuration (see be-
low), after which the application begins execution. The object
maintenance protocol evaluates the mode transition conditions
every time the object state is updated. If a mode transition
condition evaluates true, the protocol makes the transition to
the new mode. The mode transition involves resetting any
object variables, if applicable, and configuring the new service
graph corresponding to the new object mode.

The object also has a migration condition, which if evaluates
true, invokes the object migration protocol. The selection
policy for migration destination is tied to the migration con-
dition that triggers the migration protocol. In tracking appli-
cations, for example, an increase in the variance of location
estimate can serve as a migration condition, and the owner
selection policy will choose the node closest to the physical
phenomenon. Other migration conditions include an object-
node running low on power, in which case the selection policy
locates a node with a sufficient power reserve. The migration
process consists of first running the owner election algorithm
to select the migration destination based on the selection
policy, and then transferring the object state to the new object
node. The migration protocol is outlined in Algorithm 2.

When the sensor network is no longer able to detect the
physical phenomenon, the logical object must be destroyed.
This is a simple matter of resetting the logical object state to
null. After an object has been destroyed, the sensor network
begins searching for a new object context.



Algorithm 2 Object Migration Protocol
1: if object migration condition == TRUE then
2: remove current object node as candidate for owner
3: initiate owner election
4: transfer the object to new owner
5: end if

Ambient-Aware Programming

Nodes in an ambient-aware sensor network always have
up-to-date knowledge of their neighborhood, including which
services are available, and the properties of the nodes provid-
ing them. Ambient-awareness is built into OASiS to ensure
efficient service discovery, minimal downtime in the event
of communication failure or node dropout, and service graph
constraint satisfaction.

OASiS allows constraints to be placed on services associ-
ating them to a specific physical location or to the relative
locations of other services. This is because correct execution
of an application may only be possible if sensing services
are provided by nodes surrounding the physical phenomenon.
Such real-world integration requires a dynamic service con-
figuration mechanism. Dynamic service configuration instan-
tiates the service graph by satisfying constraints, binding the
services together, checking for any constraint violations, and
reconfiguring the application when a violation is found.

We have identified several different types of constraints
that can be placed in the service graph. Depending on the
scope of the constraint, it can be atomic (applying to a single
service) or compositional (applying to a group of services).
Constraints can be further categorized as either property-based
or resource-allocation-based. Property constraints specify a
relation between the properties of the scoped services, while
resource-allocation constraints define a relation between nodes
that provide the scoped services. For example, ’the node pro-
viding SERVICE-A must have power level more than 85%’ is an
atomic property constraint, while ’SERVICE-A and SERVICE-
B must run on the same node’ is a compositional resource-
allocation constraint.

An important constraint for real-world integration is en-
close. The constraint ENCLOSE(L) over S = {s1, s2, s3},
specifies that the location L must be enclosed by the sensor
nodes that provide services s1, s2 and s3. The definition of
ENCLOSE varies for different sensor domains. For example,
one domain can define an enclosed region to be the overlap of
member sensing ranges. The enclosed region in case of camera
sensors with orientation and limited field-of-view (FoV) is the
intersection of FoVs recorded by all member cameras.

We model service graph configuration as a constraint sat-
isfaction problem (CSP). A feasible solution to the CSP is
the provider sensor node assignment for each service in the
service graph. The main idea of the algorithm is to prune the
service graph design space as much as possible for all different
types of constraints, followed by backtracking until a feasible
solution is found. The specific pruning method depends on

the constraint under consideration. Additional details on types,
representation, and satisfaction of service constraints can be
found in [8].

V. THE OASIS MIDDLEWARE

We have developed a suite of middleware services that
support the programming model features presented in Section
IV. The OASiS middleware comprises a set of services which
includes a Node Manager, Composer, Service Discovery Pro-
tocol, and Object Manager. Figure 2 shows the relationship be-
tween the OASiS middleware and the sensor network. Figure
3 shows the connections between the different middleware ser-
vices and domain services at the sensor node level. Note that

Fig. 2. Middleware

Figure 3 follows the TinyGALS [1] notation of actors, ports,
components, and interfaces. Each of the middleware services
are implemented as TinyGALS actors. Actors communicate
asynchronously by placing messages on their output ports. The
output ports are connected to the input ports of other actors,
and the messages are transferred to the event queues of these
input ports. The scheduler removes each message from the
event queue and calls the method linked to the input port,
passing the message as its argument. Components residing
inside an actor communicate using synchronous method calls.

Fig. 3. Middleware node architecture

Node Manager: The Node Manager is responsible for
message routing between services, both local and remote, and
is essentially a dispatching service. The Node Manager sends
and receives radio messages using the sender and receiver
components, respectively. All messages handled by the Node
Manager contain a control structure which contains source and
destination node IDs (2 bytes each), source and destination
service IDs (1 byte each), and message type (1 byte). The Node
Manager resolves the appropriate destination for the message
based on this control structure and forwards the message to
the proper node.



Service Program memory
(bytes)

Required RAM
(bytes)

Node Manager 8500 367
Service Discovery Protocol 3858 313
Composer 8036 509
Object Manager 3560 151
GALSC queues & ports 702 1013
Total 40248 2820

TABLE I
IMPLEMENTATION CODE MEMORY REQUIREMENTS

Service Discovery: The Service Discovery module im-
plements the service discovery protocol described in section
IV. The component locates domain services by broadcasting a
service request message. The request message contains the ID
of the desired service, as well as the ID of the node requesting
it. Any node providing the requested service will return a
reply message containing its ID, and other node attributes.
This information gets recorded in the Discovered Services
Repository for rapid future access.

Object Manager: The Object Manager is responsible for
1) parsing the object-code byte string, 2) detecting the object
context and evaluating the object creation condition at each
sample period, 3) invoking the object creation protocol and
owner election algorithm, and 4) maintaining the object state
variables and evaluating the migration condition. Essentially,
the Object Manager implements the object-centric program-
ming described in section IV.

Composer: The Composer is responsible for 1) parsing
the service graph and sending service requests to the Ser-
vice Discovery module, 2) instantiating a service graph by
satisfying all specified constraints, and 3) creating a binding
message for each instantiated service in the service graph. The
binding message informs each service where to send its output
data. The constraint satisfaction and dynamic reconfiguration
functionalities of the Composer facilitates the ambient-aware
programming paradigm of OASiS.

Prototype Implementation

We implemented our middleware on the Mica2 mote hard-
ware platform [10], running TinyOS [11]. The code was
developed using galsC [1], a GALS-enabled extension of nesC
[12], the programming language for the motes. Table I lists
each middleware service, with its code size and memory
requirements. These memory requirements are sufficient for
executing an application on the motes, which has approxi-
mately 128 KB of programming memory and 4 KB of RAM.
It should be noted that these components can be optimized
to further reduce memory size, however there is a trade-off
between an application’s compactness and its robustness.

VI. CASE STUDY: HEAT-SOURCE TRACKING

As a concrete example of using OASiS, we consider a
simplified indoor sensor network for tracking a heat source.
The case study can be viewed as an example of a more
general class of applications for tracking an object such as a
vehicle or a chemical cloud. Tracking is a representative sensor
network application that illustrates a number of interesting
challenges, such as application-specific QoS metrics including

detection accuracy and latency, in-network data aggregation,
and ambient-aware adaptation.

Fig. 4. Experimental Setup

Our experimental setup consists of the sensor network
shown in Figure 4. There are five sensor nodes in the field
each having a unique ID. Each node also contains a number
of pre-loaded services. Table II summarizes the sensor node
attributes. The heat source follows the trajectory along the path
shown in the figure. The path is a straight line from [180, 180]
to [670, 670] with Gaussian process noise (N [0, 10]).

Node ID Position Preloaded Services
143 [200 0] READ TEMP, NOTIFY
113 [0 500] READ TEMP, NOTIFY, LOCALIZE TRACK
109 [700 400] READ TEMP, NOTIFY
101 [400 800] READ TEMP, NOTIFY
109 [800 1000] READ TEMP, NOTIFY

TABLE II
EXPERIMENTAL SETUP

The object context is set to “TEMPERATURE ≥ 30”. The
object FSM consists of a single mode with a service graph
shown in Figure 5. Sensor nodes equipped with a temperature

Fig. 5. Heat-source tracking application
sensing service, called READ TEMP, are capable of sampling
the local temperature, which indicates the proximity of the heat
source. READ TEMP is a wrapper service for the temperature
sensing component on the sensor nodes. Once a heat source
is detected, three temperature sensing services report their
location and temperature measurement to a node providing
the localization service, called LOCALIZE TRACK, which cal-
culates the estimated heat source location based on the sensor
input data and the previous estimate. For this experiment, we
implemented the localization service as an extended Kalman
filter. The localization service sends the location estimate to



a notification service, NOTIFY, which reports the estimated
location to the user.

Constraints are associated with each service, limiting the
number of allowable application configurations. The alldiffer-
ent constraint shown in Figure 5 on the three READ TEMP
services requires them to be on three different sensor nodes.
The enclose-fire constraint requires the locations of the three
READ TEMP provider nodes to surround the heat source. By
specifying such geometric constraints we can improve the
probability of localization accuracy. Atomic constraints on all
the services (not shown) require the provider nodes to have a
minimum amount of energy, providing the application with a
degree of power-awareness.

In addition to property and resource-allocation constraints,
quality of service (QoS) constraints can be specified in an
application. For our tracking example, an application-specific
QoS constraint requires the variance of the location estimate
from the localization service to be below a certain threshold.

Our goal is to demonstrate the feasibility and effectiveness
of OASiS to create, maintain, and migrate an object in the
example object-centric tracking application. We present the
number of messages communicated, which is an indicator of
bandwidth utilization and energy consumption for the sensor
node. We also present the delay for each stage, which indicates
the responsiveness of the application.

Experiment 1: Object creation and application execution

The heat source is originated at [180, 180]. Node 143 and
113 register temperatures higher than the detection thresh-
old and start the object creation protocol. Since node 143
registered a higher temperature, it is elected as the object-
node and instantiates an object. The object then parses the
object-code, retrieves the service graph for the current object
mode, and initiates dynamic service configuration. Dynamic
service configuration includes service discovery, constraint
satisfaction and service binding. The application is configured
by invoking instances of the READ TEMP service on nodes
143, 113, and 109, the LOCALIZE TRACK service on node 113,
and the NOTIFY service on node 143. Once the service graph
is configured, application execution commences. The number
of message transmissions for object creation and application
configuration is summarized in table III. The delay for object
creation and application configuration is 2000 and 3000 time
units, respectively (1024 time-units = 1 second). The time
delay for each action depends on predefined timeout values;
owner-election timeout for object creation, and service config-
uration timeout for service graph configuration. The timeout
values must be large enough to ensure completion of the object
creation and application configuration processes, but small
enough to respond rapidly to the monitored phenomenon, and
were selected based on experimental tests.

Experiment 2: Object migration

Once the physical object moves out of the enclosure of
nodes 143, 113, and 109, the variance in the location estimate
starts to grow. This increase in location estimate variance

number of messages
object creation 5 (owner-election messages)
service graph configuration 15 (3 service request messages)

(9 service information messages)
(3 service binding messages)

TABLE III
EXPERIMENT 1 RESULTS

causes a QoS violation and triggers object migration. As
part of the migration protocol, node 143 starts a new owner
election by broadcasting a migration message. Nodes reply
to the migration message with their most recently sampled
temperature values. The current owner elects the node with the
highest temperature value as the migration destination, sends
the object to it, and unbinds all other services. In this case,
node 143 sends the object to node 109. Table IV presents
the number of messages communicated for object migration
and service graph unbinding. Object migration latency is
approximately 2000 time units.

number of messages
object migration 8 (5 migration messages)

(1 object-migration)
(1 object-migration ack)
(1 object-migration notification)

service graph unbinding 3 (un-binding messages)

TABLE IV
EXPERIMENT 2 RESULTS

Our experiments indicate that OASiS incurs an overhead
on the number of messages required and the time delay for
object creation, maintenance, migration and service graph
maintenance. The tables above demonstrate that the number of
messages communicated is reasonably small. The admissible
time delays, which are dependent on various timeout intervals
exhibit the responsiveness of our ambient-aware OASiS.

A comparative analysis of OASiS with EnviroTrack [13]
for our tracking case study is presented in [14], along with
a scalability analysis based on comprehensive simulations.
Currently, we are developing a target tracking application for
networks with tens of sensor nodes.

VII. RELATED WORK

Recently, the WSN community has seen the emergence of
a diverse body of macroprogramming languages, frameworks,
and middleware which provide solutions for various aspects
of sensor network programming [3].

SONGS [15] is a declarative service-oriented programming
model which dynamically specifies application functionality
in response to user-generated queries. While this technique
works well as an information retrieval system, SONGS was
not designed to alter its behavior based on a change in
environmental conditions.

The object-centric paradigm has been successfully used
in the EnviroSuite programming framework [9]. EnviroSuite
and OASiS provide a similar layer of abstraction to the
application developer, however by employing a SOA, OASiS is
able to incorporate aspects of modular functionality, resource
utilization, and ambient-awareness more efficiently.



Ambient-awareness is the primary focus of AmbientTalk
[2]. The AmbientTalk programming language provides primi-
tives for ambient-aware application behavior, however its use
is intended for mobile ad hoc networked devices that are more
resource-constrained than the motes.

Agilla [16] adopts a mobile agent-based paradigm. Au-
tonomous agents, each with a specific function, are injected
into the network at run-time, a technique referred to as
in-network programming. For this approach, the underlying
network middleware is uploaded once onto the node hardware,
after which applications can be swapped out or reconfigured
at any time, even after the nodes have been geographically
dispersed in the field. In-network programming in Agilla is
realized using a virtual machine instruction set architecture
based on that of Maté [17].

The Abstract Task Graph (ATaG) [18] is a macroprogram-
ming model which allows the user to specify global application
behavior as a series of abstract tasks connected by data
channels for passing information between them. Currently, the
ATaG is only a means for describing application behavior.
A model interpreter must be employed to decompose this
behavior to node-level executable code. In addition, the ATaG
provides no means for delegating tasks to sensor nodes which
satisfy specific property or resource constraints.

VIII. DISCUSSION

The ability to specify application behavior from an object-
centric viewpoint in terms of modular dataflow blocks makes
OASiS a powerful tool for WSN programming. The use of a
service-oriented architecture benefits all aspects of the applica-
tion development process. Application functionality is neatly
distributed across the network as services with well-defined
interfaces which are easily discovered and invoked. Similarly,
middleware functionality is bundled into services which use
the same invocation mechanisms as their domain service coun-
terparts. The service-oriented architecture provides efficient
solutions for many WSN programming challenges. Dynamic
network topology, heterogeneity, and data aggregation issues
are simplified due to service modularity and autonomy. By
following the object-centric programming paradigm, OASiS
provides the application developer with a layer of abstraction
that simplifies programming and reduces the opportunity for
deploying error-prone code. Object-centric programming is a
logical approach because most WSN applications are driven by
the state of the physical object. The object’s internal function-
ality such as creation, migration, and destruction are handled
by the run-time system, leaving the developer to focus solely
on the application’s overall behavior. Programming from the
viewpoint of the object also facilitates real-world integration
and maintaining quality of service guarantees. This is because
the application is driven by the object, which monitors and re-
acts to changes in the environment. The ambient-aware OASiS
middleware supports application development by providing
protocols for service discovery, constraint satisfaction, and
communication. Furthermore, these protocols ensure efficient

resource utilization and were designed to function in the
presence of a dynamic network topology.

At present, the OASiS middleware only provides support for
managing a single object at a time. This functionality can be
greatly enhanced by enabling the detection of multiple objects,
of multiple object contexts. Such a mechanism should be
capable of disambiguating between two similar objects in close
proximity to each other. The volatility of communication links
in WSNs necessitates reliable communication failure detection
and recovery mechanisms. Failures can occur for various rea-
sons including network congestion, insufficient transmission
power, transmission interference, and node dropout. Because
most WSN applications must exchange data in an efficient and
timely manner, handling these types of failures gracefully is
essential. Although the OASiS middleware currently tackles
certain aspects of dynamic network behavior, it requires a
robust failure detection component to allow an application to
continue execution in the presence of unpredictable network
behavior. This is the subject of our current work.

REFERENCES

[1] E. Cheong and J. Liu, “galsC: A Language for Event-Driven Embedded
Systems,” in DATE, 2005.

[2] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, and W. D. Meuter,
“Ambient-Oriented Programming,” in OOPSLA, 2005.

[3] S. Hadim and N. Mohamed, “Middleware: Middleware Challenges and
Approaches for Wireless Sensor Networks,” in IEEE Distributed Systems
Online, vol. 7, no. 3, 2006.

[4] Multi-Dimensional Separation of Concerns: Software Engineer-
ing using Hyperspaces. IBM Research. [Online]. Available:
http://www.research.ibm.com/hyperspace/

[5] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-Integrated
Development of Embedded Software,” in Proc. IEEE, vol. 91, no. 1,
2003.

[6] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “TinyGALS: A Program-
ming Model for Event-driven Embedded Systems,” in SAC, 2003.

[7] P. Engelstad and Y. Zheng, “Evaluation of Service Discovery Architec-
tures for Mobile Ad Hoc Networks,” in WONS, 2005.

[8] I. Amundson, M. Kushwaha, X. Koutsoukos, S. Neema, and J. Szti-
panovits, “Efficient Integration of Web Services in Ambient-aware
Sensor Network Applications,” in BaseNets, 2006.

[9] L. Luo, T. Abdelzaher, T. He, and J. Stankovic, “EnviroSuite: An
Environmentally Immersive Programming System for Sensor Networks,”
in TECS, 2006.

[10] TinyOS Hardware Designs. U.C. Berkeley. [Online]. Available:
http://www.tinyos.net/scoop/special/hardware#mica2

[11] P. Levis and et. al., “The Emergence of Networking Abstractions and
Techniques in TinyOS,” in NSDI, 2004.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC Language: A Holistic Approach to Networked Embedded
Systems,” in PLDI, 2003.

[13] T. Abdelzaher and et. al., “Envirotrack: Towards an environmental
computing paradigm for distributed sensor networks,” in ICDCS, 2004.

[14] I. Amundson, M. Kushwaha, X. Koutsoukos, S. Neema, and J. Szti-
panovits, “OASiS: A Service-Oriented Middleware for Pervasive
Ambient-Aware Sensor Networks,” Institute for Software Integrated
Systems, Vanderbilt University, Tech. Rep. ISIS-06-706, 2006.

[15] J. Liu and F. Zhao, “Towards Semantic Services for Sensor-Rich
Information Systems,” in Basenets, 2005.

[16] C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid Development and Flexible
Deployment of AdaptiveWireless Sensor Network Applications,” in
ICDCS, 2005.

[17] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine for Sensor
Networks,” in ASPLOS X, 2002.

[18] A. Bakshi, V. Prasanna, J. Reich, and D. Larner, “The Abstract Task
Graph: A Methodology for Architecture-Independent Programming of
Networked Sensor Systems,” in EESR, 2005.


