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Abstract— Recent experimental studies have shown that traf-
fic management systems are vulnerable to cyber-attacks on
sensor data. This paper studies the vulnerability of fixed-
time control of signalized intersections when sensors measuring
traffic flow information are compromised and perturbed by an
adversary. The problems are formulated by considering three
malicious objectives: 1) worst-case network accumulation, which
aims to destabilize the overall network as much as possible;
2) worst-case lane accumulation, which aims to cause worst-
case accumulation on some target lanes; and 3) risk-averse
target accumulation, which aims to reach a target accumulation
by making the minimum perturbation to sensor data. The
problems are solved using bilevel programming optimization
methods. Finally, a case study of a real network is used to
illustrate the results.

I. INTRODUCTION

Recent experimental studies claim that about 200,000

vulnerable traffic control sensors are installed in important

cities around the world such as New York, San Francisco,

London, and Melbourne [3]. This indicates the presence

of cyber-threats to traffic management systems, since such

systems directly use the data measured by the vulnerable

sensors. In order to diminish these threats and design resilient

systems, the vulnerability of traffic control systems to cyber-

tampering of these sensors must be analyzed as an initial

step.

In the traffic management literature, queueing networks are

often used to model the movement of traffic [2], [12]. For

the traffic control purposes, various signal control policies

are defined based on the queue length information such as

max-pressure [14], [16], which is a feedback control policy,

and fixed-time control [11], which operates the signal in fixed

periodical cycles independent of the traffic state. Although

feedback control policies for signalized intersections have

advantages in terms of stabilizing the traffic flows, 90 percent

of all traffic signals in the US follow fixed-time control policy

[8].

Fixed-time control considers deterministic vehicle flows

subject to conservation constraints, constraints on saturation

flows, and simultaneous turn movements. The formulation

of fixed-time control policy leads to a characterization of

feasible demands and fixed-time control with minimum cycle

length to accommodate the feasible demands [13]. In this

direction, Muralidharan et al. showed that under fixed-time

control there is a unique periodic trajectory, which is globally

asymptotically stable, that is, every trajectory converges to
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this periodic trajectory [11]. From the periodic trajectory

one can easily calculate possible performance measures such

as delay, travel time, amount of service time wasted, and

progression quality.

Owing to the rising strategic risks of cyber-attacks, ex-

ploiting vulnerabilities of transportation systems to cyber-

attacks has been an active area of research. For instance,

recently Cerrudo has shown that wireless sensors can be

spoofed to manipulate traffic light timing [3]. Similarly, in

[5], Ghena et al. analyze the security of traffic infrastructure

in cooperation with a road agency located in Michigan.

The study reports three major weaknesses in the traffic

infrastructure: lack of encryption for the network, lack of

secure authentication, and vulnerability to known exploits.

Furthermore, Laszka et al. have recently proposed an ap-

proach for evaluating vulnerabilities of the transportation

network by identifying traffic signals with the greatest impact

on congestion [9]. They also present that the problem of

finding an optimal attack to maximize the congestion is

computationally hard, thereby, proposing a polynomial-time

heuristic algorithm for computing approximately optimal

attacks. Nevertheless, no vulnerability analysis of fixed-time

control policy has been done for transportation networks.

In this paper, we study the vulnerability of fixed-time

control when a malicious adversary compromises some sen-

sors and perturbs the data corresponding to the traffic flow

information. The attacker launches this integrity attack either

by directly compromising sensors or by gaining control over

the communication network. The tampered data can lead to

inefficient scheduling of traffic signals, and in some extreme

cases, it can lead to disastrous congestions. In this direction,

we formulate three attack problems: 1) Worst-case network

accumulation, which aims to destabilize the overall network

as much as possible; 2) Worst-case lane accumulation, which

aims to cause worst-case accumulation on some target lanes;

and 3) Risk-averse target accumulation, which aims to reach

a target accumulation by making the minimum perturbation.

We formulate these problems as bilevel programs, in which

one optimization problem is embedded within the other.

Bilevel programs are intrinsically hard to solve, and even

the simplest instance, the linear-linear case, is known to be

strongly NP-hard [7]. The existing algorithms for solving

bilevel programs include branch-and-bound, extreme point,

complementary pivot, descent methods, penalty function,

and trust-region [4]. We solve the problems using existing

implementations of branch-and-bound. Further, we present a

case study of vulnerability analysis of a real road network



segment in the city of Nashville.

The remainder of this paper is organized as follows.

Section II defines the system model. In Section III, we

present the attacker model and formulate the problems. In

Section IV, we discuss how the problems can be solved.

Sevtion V presents the case study of vulnerability analysis

of a real road network. Finally, we conclude the paper in

Section VI with a discussion and future work.

II. SYSTEM MODEL

A. Network Model

We use the network model presented in [13] with minor

modifications in notation. Consider a network of roads mod-

eled as a directed graph with road links being edges i ∈ Lall

and intersections being nodes n ∈ N . A link can be either

an internal link (i ∈ L) that goes from its start node to its

end node, an entry link (i ∈ Lent) that has no start node, or

an exit link i ∈ Lexit that has no end node.

A movement (i, j) describes an intention to travel from a

link i to a link j. Let the flow corresponding to movement

(i, j) be denoted by f(i, j). This means the rate of vehicles

intending to leave link i and enter link j per sample period is

f(i, j). Flow conservation imposes the following constraint

on all i ∈ L,
∑

h∈In(i)

f(h, i) =
∑

j∈Out(i)

f(i, j) (1)

where In(i) and Out(i) are the sets of upstream and

downstream links connected to i. This represents the same

concept as the formulation presented in [13], with routing

proportions being implicit in the formulation of each flow

f(i, j).
Intersections are modeled as nodes and traffic signals are

placed at every node to limit the set of permitted movements.

Defining a phase as a pair of links with j ∈ Out(i) and

i ∈ L ∪ Lent, saturation flow of phase (i, j) is denoted by

c(i, j). This means that if phase (i, j) is activated, up to

c(i, j) vehicles can move from i to j per sample period.

At an intersection n, certain subsets of phases may be

simultaneously activated, which is defined as a stage. Let

I(n) and O(n) denote the set of links entering and leaving in-

tersection n. As shown in Fig. 1, each stage is represented by

an intersection control matrix Sn = {Sn(i, j), i ∈ I(n), j ∈
O(n)} with entries Sn(i, j) = 1, if the phase (i, j) is

activated, or 0 otherwise. A collection of intersection control

matrices Sn, one for each intersection, can be combined into

the single network control matrix S, with S(i, j) = 1 if for

some intersection n, i ∈ I(n), j ∈ O(n), and Sn(i, j) = 1;

otherwise S(i, j) = 0. The matrix S can be put in block-

diagonal form with the intersection matrices Sn along the

diagonal and all other entries zero. The set of all network

control matrices S is denoted by S, which is a finite set of

0, 1 matrices.

B. Fixed-time Control

Fixed-time control is a collection of network control ma-

trices S1, ..., Sk, and corresponding durations λS1 , ..., λSk ,

Fig. 1: The eight phases of a standard intersection and the

control matrix S corresponding to the stage (NW, SE).

TABLE I: Flow data used in the example

From To Flow From To Flow

1
6 2

8
13 2

4 2 11 2

3
14 8

10
7 4

6 4 13 2

5
2 2

12
9 2

14 4 7 4

7
4 6

14
11 6

2 2 9 6

expressed in fractions of a cycle length T [13]. Let L be a

fixed lost time per cycle. The minimum cycle length T is

defined as T = L
1−(

∑
λS)τ , where τ is the sample rate in

seconds. Suppose F = {f(i, j)} is a fixed flow matrix. The

following linear program (LP) solves the fixed-time control

problem

min
∑

S∈S

λS

s.t.
∑

S∈S

λSc(i, j)S(i, j) ≥ f(i, j), all (i, j)

λS ≥ 0, all ∀S ∈ S

(2)

Denote by λ∗ the minimum value of (2). Flow matrix F

is feasible if and only if λ∗ < 1 [13]. The fixed-time LP

(2) is easily solvable since it decomposes into small linear

programs, one per intersection.

C. Example

Figure 2 presents a network of 2 intersections with

16 phases. Suppose vehicles flow through the network

as the flow data shown in Table I. Consider four stages

(NS,SN), (WE,EW), (NE,SW), and (WN,ES) for each

intersection. More specifically, define the stages ϕ1 =
{(3, 14), (7, 4)}, ϕ2 = {(1, 6), (5, 2)}, ϕ3 = {(3, 6), (7, 2)},

and ϕ4 = {(1, 4), (5, 14)} for the first intersection, and

ϕ5 = {(14, 11), (10, 7)}, ϕ6 = {(12, 9), (8, 13)}, ϕ7 =
{(14, 9), (10, 13)}, and ϕ8 = {(12, 7), (8, 11)} for the sec-

ond intersection.



Fig. 2: An example of a network with 2 intersections

TABLE II: Fixed-time durations

Stage ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

Duration .25 .062 .125 .125 .25 .083 .25 .166

Suppose the capacities for all the phases of the first and

second intersection are respectively, 32 and 24, and let λ =
(λϕ1

, λϕ2
, λϕ3

, λϕ4
, λϕ5

, λϕ6
, λϕ7

, λϕ8
). Solving the LP (2)

for each intersection, the fixed-time durations are obtained

as shown in Table II. Consequently, for the first and second

intersections we obtain λ =
∑4

1 λϕi
= 0.5625 and λ′ =∑8

5 λϕi
= 0.75, respectively. Assuming L = 1, if the same

cycle length is required for the entire network, it is computed

as T = 1
1−max(λ,λ′)τ = 4τ , where τ is the sample rate in

seconds.

III. ATTACKER MODEL

In this section, we provide a formulation for attacker

models that could result in congestion on road networks

implementing fixed-time control policy. We assume that the

attacker knows the network model, fixed-time algorithm,

implementation, and can thus compute the optimal schedule.

a) Action Space: The attacker compromises some of

the sensors measuring flows and perturbs their data. For-

mally, it selects a subset Q̃ of sensors and perturbs their flow

values to F̃ . Note that we assume the attacker cannot directly

change the schedule. But, this can be done indirectly through

perturbing the sensor data. This assumption is realistic since

it complies with the real-life cyber-attacks launched in the

previous experimental studies [3].

b) Objective: To define the attacker’s objective, we first

define the notion of a movement being unstable.

Definition 1: Unstable Movement: A movement (i, j) is

unstable if its service rate, i.e.,
∑

λSc(i, j)S(i, j)), is lower

than its flow rate f(i, j).
We assume the adversary’s objective is to make some

movements unstable, which in turn leads to the network

becoming unstable. More specifically, we consider the fol-

lowing different strategies for the adversary:

1) Worst-case network accumulation which aims to desta-

bilize the overall network as much as possible;

2) Worst-case lane accumulation which aims to cause

worst-case accumulation on some target lanes;

3) Risk-averse target accumulation which aims to reach a

target accumulation by making the minimum perturba-

tion.

c) Constraints: We assume the attacker is resource-

bounded, which means that there exists a budget B such

that the number of compromised sensors |Q̃| is less than

or equal to B, i.e., |Q̃| ≤ B. Further, we assume the sensor

data and the resulting schedules can only be changed to valid

values since otherwise the attack can easily be detected. This

means that first, the flow conservation (1) must be satisfied,

and second, the schedule obtained using perturbed data must

be feasible, i.e., λ∗ < 1. We formulate the attacker problems

assuming traffic signals are timed according to the optimal

fixed-time schedule.

A. Worst-Case Network Accumulation Attack

The attacker’s goal here is to destabilize the network as

much as possible and to cause the worst possible traffic

congestion. An attack A has two components of selecting

a subset of sensors Q̃ and choosing flow perturbation values

F̃ . The problem is formally defined below.

Problem 1: Worst-case Network Accumulation Attack:

Given a network of signalized intersections and a budget B,

find a worst-case attack A = (Q̃, F̃ ) such that it minimizes

the service rate of the entire network.

This problem can be formulated as the bilevel program

below.

max
Q̃,F̃

∑

ij

max(0, (fij −
∑

S

λ̃ScijSij))

s.t. λ̃S ∈ FT(F̃ )
∑

λ̃S < 1
∑

h

f̃(h, i) =
∑

j

f̃(i, j)

|Q̃| ≤ B

f̃(i, j) ≥ 0, all (i, j)

(3)

In the formulation above, the term fij −
∑

S λ̃ScijSij ,

describes the difference between the flow and the service

rate. The malicious attacker is only concerned with the

positive values for this difference, since negative difference

means extra service time, which indeed results in no accumu-

lation. Therefore, the max function is used in the objective

function to avoid the negative differences. The first constraint

represents the inner-level problem, where FT(F̃ ) corresponds

to the fixed-time LP (2) with flow matrix F̃ as its input. The

other constraints represent the feasibility of schedule, flow

conservation, and attacker’s budget respectively.



B. Worst-Case Lane Accumulation Attack

In a targeted attack, the attacker’s goal is to maximize

the accumulation rate of a particular lane, or similarly

to minimize its corresponding service rates, as much as

possible.

Problem 2: Worst-Case Lane Accumulation Attack: Given

a network of signalized intersections, budget B, and a target

lane la, find an attack A = (Q̃, F̃ ) that minimizes the service

rate of movements corresponding to the lane la.

This problem is formulated as

min
Q̃,F̃

∑

j

∑

S

λ̃Sc(l
a, j)S(la, j)

s.t. λ̃S ∈ FT(F̃ )
∑

λ̃S < 1
∑

h

f̃(h, i) =
∑

j

f̃(i, j)

|Q̃| ≤ B

f̃(i, j) ≥ 0, all (i, j)

(4)

The objective function is defined as the sum of the service

rates of all movements starting from la. By minimizing this

function, the target lane la will have a minimum service

time. Note that similar to the previous case, the attacker is

restricted by the feasibility of schedule, flow conservation,

and budget constraint.

C. Risk-Averse Target Accumulation Attack

A risk-averse attacker has the strategy of reaching a target

accumulation rate while minimizing the perturbations. That

is, the difference between the perturbed and actual flow

values (i.e., ‖F̃ − F‖) must be minimal.

Problem 3: Risk-Averse Target Accumulation Attack:

Given a network of signalized intersections, find an attack

A = (Q̃, F̃ ) that leads to an unstable service rate of {αij} for

some set of target movements Qa = {(i, j)}, via causing a

minimum perturbation ‖F̃ −F‖. This problem is formulated

as the optimization problem below.

min
Q̃,F̃

‖F̃ − F‖∞

s.t. λ̃S ∈ FT(F̃ )
∑

S

λ̃Sc(i, j)S(i, j) ≤ αij , ∀(i, j) ∈ Qa

∑
λ̃S < 1

∑

h

f̃(h, i) =
∑

j

f̃(i, j)

|Q̃| ≤ B

f̃(i, j) ≥ 0, all (i, j)

(5)

Note that any other desired norm function can also be used

in the objective function.

IV. VULNERABILITY ANALYSIS

In this section, we present solution and evaluation methods

followed by an example.

A. Solution

The three problems described above are all strongly NP-

hard, but can be solved with the using of integer program-

ming and decomposition algorithms [4] [15]. Although the

computational results and finer details of these algorithms

have been suppressed here due to space limitations, we

discuss some preprocessing steps carried out in order to be

able to use known algorithms for solving bilevel programs.
1) Preprocessing: In order to handle the max function in

the objective function of the first problem, one can convert

the problem to a bilevel mixed-integer quadratic program

(BMIQP) as follows. In the objective function, for each term

of the form max(0, (fij −
∑

S λ̃ScijSij)), we introduce an

auxiliary binary variable yij ∈ {0, 1}, and add the constraint

fij −
∑

S λ̃ScijSij ≤ Myij , where M is a sufficiently large

constant. Then, we replace the previous objective function

with:

max
F̃

∑

ij

(yijfij − yij
∑

S

λ̃ScijSij)

s.t. fij −
∑

S

λ̃ScijSij ≤ Myij

(6)

In order to solve the risk-averse attacker problem, we rewrite

the objective function min ‖F̃ − F‖∞ as

min y

s.t. − y1 ≤ F̃ − F ≤ y1
(7)

where 1 is a vector of ones.
2) Solver: The problems are solved using methods for

solving bilevel mixed integer programs. Existing algorithms

in the literature include branch-and-bound, cutting planes,

etc. [4]. We use the optimization solver Gurobi to solve

the attacker problems [6]. We use the MATLAB toolbox

YALMIP to invoke Gurobi’s bilevel solver [10]. Also, note

that because of the worst-case nature of the first and second

problems, the optimal value of corrupted flow has to be as

small as possible, and thus, the solver can skip considering

different values of F̃ and only try extreme values.

B. Evaluation

1) Metrics: In order to quantify the vulnerability to worst-

case network accumulation attack, we define the network

vulnerability as follows:

Definition 2: Network Vulnerability: The vulnerability of

a network to cyber-tampering is

NV =
Accumulation Rate

Total Flow
(8)

In the definition above, accumulation rate is the to-

tal difference between traffic flow and service rate, i.e.,∑
ij max(0, (fij −

∑
S λ̃ScijSij)), and total flow is the sum

of all flow values, i.e.,
∑

ij f(i, j). The value of network

vulnerability represents the relative traffic congestion caused

by an attack. We also define lane vulnerability as follows:

Definition 3: Lane Vulnerability: The vulnerability of a

lane to cyber-tampering is

LV =
Lane Accumulation Rate

Lane Total Flow
(9)
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Fig. 3: (a) Network vulnerability as a function of attacker’s budget in the case of worst case network attack. (b) Lane

vulnerability as a function of attacker’s budget in the case of worst case lane attacks. (c) Risk-averse target attack. The

attacker’s goal is to reduce the service time fractions to 0.05 by making the minimum perturbation.

where similarly, lane accumulation is the difference between

flow and service rate of the lane, and lane flow is the sum

of its corresponding flow values.

2) Critical Sensor: Besides quantifying the vulnerability

of network and lanes, we define critical sensors, which have

the highest effect on congestion, as follows:

Definition 4: Critical Sensor: A sensor is critical with

respect to an attacker’s strategy, if it is included in the worst-

case attack.

Identifying the critical sensors allows us to locate the

most vulnerable elements of a network, which should be

strengthened first to increase the network’s resilience. For

instance, if there is a security budget that permits us to

replace only a subset of the sensors with more secure ones,

then we should start with replacing the critical sensors.

C. Example

We now study the attacker problems for the network of

Fig. 2. We first solve the worst-case accumulation rate prob-

lem (3). The results are shown in Fig. 3a as a function of the

attacker’s budget B. As the budget increases (i.e., the attacker

is able to compromise more sensors), the accumulation rate

increases as well. Also, the results indicate that by controlling

only 4 sensors, the attacker can decrease the total service

time by up to 35%.

The worst-case lane accumulation problem is solved sim-

ilarly. Fig. 3b shows the results for the lanes 3, 7, and 14 as

targets according to different budgets. Finally, for the case of

risk-averse target accumulation attacks, assume the attacker’s

objective is to find the minimum perturbation that leads to

the target service rate of 0.05, which is indeed unstable for

any stage. Fig. 3c shows the minimum perturbation for each

stage.

V. CASE STUDY

We analyze the vulnerability of a real road network

segment in the city of Nashville, TN. The area spans between

1st Ave, 8th Ave, Demonbreun St, and Charlotte Ave. The

network under consideration comprises 15 intersections (12

four-way and 3 three-way), and 104 movements. In order

to perform vulnerability analysis, we use real traffic history

TABLE III: Sensor measurements with the highest frequency

of being attacked.

Sensor measurement Frequency

Charlotte Ave-8th Ave (WE) 98%

Broadway-8th Ave (NW) 97%

Charlotte Ave-8th Ave (SE) 95%

Demonbreun St-8th Ave (NE) 95%

Charlotte Ave-5th Ave (WE) 94%

Charlotte Ave-3rd Ave (NE) 94%

Broadway-8th Ave (WE) 91%

Broadway-5th Ave (WE) 83%

data provided by Tennessee Department Of Transportation

(TDOT) [1]. For lanes with no available data, we estimate

their demands using data from their adjacent lanes. Also,

since our dataset only provides demands for unidirectional

movements, we estimate bidirectional demands considering

flow conservation constraints. We assume that fixed-time

schedule is computed based on hourly demand, with the total

demand being approximately 15000 vehicles per hour.

Figure 5a presents the results for the worst-case network

accumulation problem. The results indicate that by compro-

mising roughly 21 sensors, which is 20% of the total sensors,

the attacker can cause an accumulation of up to 4000 vehicles

per hour. Table III shows the sensors that appeared most

frequently in the worst-case attacks scenarios.

Next, we solve the worst-case lane attack problem for

some target lanes. The results are shown in Fig. 5b for some

different budgets. The data shows that on average, it is easier

to cause a disastrous congestions on Broadway-2nd Ave than

the other two lanes.

Finally, we solve the risk-averse target attack problem. As

the target, we assume the attacker has the goal of reducing

the service rate of an intersection by at least 50%. The

results are shown in Fig. 5c for all 15 intersections. The

second and thirteenth intersections (i.e., Charlotte Ave-5th

Ave and Demonbreun St-3rd Ave) need the highest and

lowest perturbations respectively.
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Fig. 5: (a) Network vulnerability as a function of attacker’s budget in the case of worst-case network attack. (b) Lane

vulnerability as a function of attacker’s budget in the case of worst-case lane attacks. (c) Minimum perturbation needed to

reduce the service time of each intersection by at least 50%, in the case of risk-averse target accumulation attack.

Fig. 4: Traffic heatmap of case study after one hour has

passed from a worst-case network accumulation attack.

Green represents normal traffic and red represents congested

traffic.

VI. CONCLUSIONS

We studied the vulnerability of fixed-time control of sig-

nalized intersections when sensors measuring traffic flow in-

formation are perturbed by an adversary. As the threat model,

we considered an attacker that has the objective of congesting

the road network. We formulated three attacker problem

and solved them using bilevel programming optimization

methods. We found that fixed-time control is vulnerable to

cyber-attacks and by compromising only a small number of

sensors, an attacker can create severe network congestion.

Our approach also identified critical sensors, which have the

highest impact on congestion. We illustrated our approach

by analyzing the vulnerability of a real road network.

This paper forms the initial step towards more resilient

traffic control systems. We aim to extend our results in two

directions: first, to design a resilient fixed-time control of

signalized intersections so that even if some of the sensors

are tampered with, a relatively congestion-free traffic flow

is still ensured; and second, to perform the vulnerability

analysis of feedback control policies to cyber-tampering.
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