
Annual Conference of the Prognostics and Health Management Society, 2010

Efficient Tracking of Behavior in Complex Hybrid Systems via
Hybrid Bond Graphs

Benjamin Podgursky 1, Gautam Biswas 1, and Xenofon Koutsoukos 1

1 Dept of EECE/ISIS, Vanderbilt University, Nashville, TN, 37235, United States
benjamin.t.podgursky@vanderbilt.edu

gautam.biswas@vanderbilt.edu
xenofon.koutsoukos@vanderbilt.edu

ABSTRACT

For many real-world systems, which exhibit complex,
nonlinear, and hybrid behavior, it is important to accu-
rately track and monitor the state and health of these sys-
tems. The continuous state estimation problem has been
well studied, and a number of extensions of the Kalman
filter to nonlinear systems have been proposed. Hy-
brid state estimation poses an additional challenge, be-
cause the model must be quickly updated during a mode
change to facilitate accurate, real time tracking. This
paper discusses an approach to minimize the amount of
equation regeneration necessary when the system under-
goes hybrid mode changes. These equations are used as
the state update equation for an Unscented Kalman Fil-
ter that tracks the system’s state. We demonstrate the
effectiveness of our approach by tracking the hybrid be-
haviors of NASA’s ADAPT test bench. Results show that
our algorithm scales well for tracking large nonlinear and
hybrid systems.

1. INTRODUCTION
Many mission critical systems, such as aircraft and
power generation systems, exhibit complex nonlinear
and hybrid behaviors. Hybrid systems are characterized
by intervals of continuous behavior interspersed with
discrete changes. With increased needs for safety and
reliability, it is becoming important to monitor system
behavior online, and couple the monitoring system with
accurate fault detection and isolation mechanisms. In an-
other example, accurate and robust tracking is the pri-
mary functionality of aircraft avionics systems.

Accurate tracking of complex, nonlinear hybrid be-
haviors is in itself a major challenge. In realistic sit-
uations, this challenge is further compounded by noisy
sensors and inaccuracies in the system models. Kalman
filters and their extensions (Lefebvre, Bruyninckx &

This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

Schutter, 2004) have been used extensively for track-
ing online behaviors. We briefly discuss two of the for-
malisms: (1) the Extended Kalman Filter (EKF) (Welsh
& Bishop, 2006), and (2) the Unscented Kalman Filter
(UKF) (Julier & Uhlmann, 1997) in the next section.

Tracking the hybrid system mode and state adds addi-
tional challenges to the nonlinear continuous state esti-
mation problem since the modes, i.e., the configurations
of the system, and therefore, the dynamic system model
change during system behavior evolution. For example,
aircraft operate in different modes that include taxi, take-
off, cruise, descend, and land. Traditionally hybrid sys-
tems have been modeled as Hybrid Automata (Cuijpers
& Reniers, 2005), (Henzinger, 1996), where each mode
of operation is described as a state of the automaton, and
the automata specifies the transitions between different
modes of operation. Within each mode, the continuous
state of the system is modeled by a set of differential
equations. This representation works well for modeling
small systems; however, modeling of large, complex sys-
tems requires complete enumeration of all of the system
modes. Pre-enumerating all of these modes is wasteful
in both space and time, because most modes may not oc-
cur at runtime. On some large systems, complete mode
enumeration may be completely infeasible.

A more efficient method for tracking hybrid behav-
ior is to generate models for each mode only when that
mode is visited. However, model generation after a mode
change must occur quickly, before the state estimate di-
verges from the true state.

In this paper, we adopt the Hybrid Bond Graph
(HBG) approach to model nonlinear hybrid systems
(Mosterman & Biswas, 1998). Real world systems are
large, nonlinear, and may have lots of switching com-
ponents. HBGs represent a paradigm for representing
these large complex systems in a compact form. This is
because in the HBG representation, system modes do not
have to be pre-enumerated, instead they are generated at
runtime when a transition occurs to that mode. We use
the equations generated from the HBG model in a mode
to formulate the equations for the Unscented Kalman Fil-
ter, which tracks the behavior of the system.

Section 2 defines the filtering problem and discusses
the strengths and weaknesses of the Extended Kalman

1

Annual Conference of the Prognostics and Health Management Society, 2010

Filter and Unscented Kalman Filter approaches for track-
ing system state. Section 3 describes an efficient incre-
mental regeneration process to derive the system state
equations when mode changes occur. Section 4 dis-
cusses an implementation of our modeling framework
in the Generic Modeling Environment (GME), and the
use of interpreters within the environment to generate
the state equations and the filter to estimate the system
state. In section 5 we run comparative analysis exper-
iments with the generated UKFs and EKFs on several
nonlinear systems at varying noise levels. We also show
how the structure of our equation representation allows
us to improve runtime performance by caching interme-
diate results. Last, we show how automated equation
generation and state tracking via the UKF allows us to
easily model large hybrid systems.

2. STATE ESTIMATION USING KALMAN
FILTERS

The Kalman filter (Welsh, 2006) is known to be an op-
timal filter for linear time invariant dynamical systems
where modeling errors and measurement noise are Gaus-
sian. Unfortunately, solutions to the corresponding opti-
mal nonlinear filtering problem are infinite-dimensional
in the general case, and nonlinear filters must approxi-
mate the optimal solution using linearization or sampling
methods. EKFs and UKFs are extensions of the linear
Kalman filter to nonlinear systems.

2.1 The Extended Kalman Filter
The Extended Kalman Filter (EKF) was for a long time
the standard algorithm for nonlinear state estimation; an
excellent description of the EKF can be found in (Welsh,
2006), which forms the basis for the description below.
The general idea behind the EKF is that by linearizing
the nonlinear state and measurement equations about the
current state estimate, the prediction and update equa-
tions from the linear Kalman Filter can be applied to a
nonlinear system. The EKF assumes that the system is
updated by the discrete-time non-linear stochastic differ-
ence equation f , with measurements generated by h:

xk =f(xk−1, uk−1, wk−1)
zk =h(xk−1, vk−1)

Since the process and measurement noise are not known,
x and z are approximated:

xk =f (x̂k−1, uk−1, 0)
zk =h (xk, 0)

An estimation step is broken into two parts: predict and
update. In the predict step, the system model is used to
propagate the state estimate forward:

x̂−
k =f(x̂k−1, uk−1, 0)

P−
k =AkPk−1A

T
k + WkQk−1W

T
k

In the update step, the measurement is combined with the
state estimate to get a new state and covariance estimate:

Kk =f (x̂k−1, uk−1, 0)

x̂k =x−
k + Kk

(
zk − h

(
x̂−

k , 0
))

Pk =(I − KkHk)P−
k

The EKF linearizes f and h about x to generate the A, W,
H, and V matrices.

A[i,j] =
df[i]

dx[j]
(x̂k−1, uk−1, 0)

W[i,j] =
df[i]

dw[j]
(xk−1, uk−1, 0)

H[i,j] =
dh[i]

dx[j]
(xk, 0)

V[i,j] =
dh[i]

dv[j]
(xk, 0)

There are two main drawbacks to the first-order lin-
earization approach used by the EKF. First, it is well
known that, because linearization is only accurate to the
first-order, the EKF does not perform well when track-
ing highly nonlinear systems. Second, generating sym-
bolic solutions for A, W, H, and V can be significantly
more difficult than generating the system state equations
(Julier, 1997). These Jacobian matrices can be computed
numerically, but on nonlinear systems this can lead to
numerically unstable behavior.

2.2 The Unscented Kalman Filter
The Unscented Kalman Filter (Julier, 1997) is an alter-
nate approach for nonlinear tracking. The UKF, an ex-
tension to the Kalman filter, uses a deterministic sam-
pling approach instead of an explicit linearization. Like
the EKF, the UKF assumes a discrete time nonlinear state
transition function:

xk+1 =F (xk, uk]) + vk

yk =H (xk) + nk

Like the EKF, the UKF operates with alternating time
and measurement update steps (Merwe & Wan, 2001),
outlined below: Initialize:

x̂0 =E [x0]

P0 =E
[
(P0 − x̂0) (x0 − x̂0)

T
]

For k ∈ {1, · · · ,∞}

X∗
k|k−1 =

[
x̂k−1x̂k−1 + γ

√
Pk−1x̂k−1 − γ

√
Pk−1

]
Time update:
X∗

k|k−1 =F (Xk−1, uk−1)

x̂−
k =

2L∑
i=0

W
(m)
i X∗

i,k|k−1

P−
k =

2L∑
i=0

W
(c)
i

[
X∗

i,k|k−1 − x̂−
k

] [
X∗

i,k|k−1 − x̂−
k

]T
+ Rv

Xk|k−1 =
[
x̂−

k x̂−
k + γ

√
P−

k x̂−
k − γ

√
P−

k

]
Yk|k−1 =H

[
Xk|k−1

]
ŷ−

k =
2L∑
i=0

W
(m)
i Yi,k|k−1

2

Annual Conference of the Prognostics and Health Management Society, 2010

Measurement update:

P
eykexk

=
2L∑
i=0

W
(c)
i

[
Yi,k|k−1 − ŷ−

k

] [
Yi,k|k−1 − ŷ−

k

]T
+ Rn

Pxkyk
=

2L∑
i=0

W
(c)
i

[
Xi,k|k−1 − x̂−

k

] [
Yi,k|k−1 − ŷ−

k

]T
Kk =Pxkyk

P−1
eyk eyk

x̂k =x̂−
k + Kk

(
yk − ŷ−

k

)
Pk =P−

k − KkPykyk
KT

k

{Wi} is the set of weights:

W
(m)
0 =

λ

(L + λ)

W
(c)
0 =

λ

(L + λ)
+ (1 − α2 + B)

W
(m)
i =W

(c)
i =

1
(2 (L + λ))

, i = 1, · · · , 2L

λ =α2 (L + κ) − L

γ =
√

(L + λ)

λ, α, and β are scaling parameters. Rv is the process
noise covariance. Rn is the measurement noise covari-
ance.

By not linearizing the state equations about the state
estimate, the UKF addresses two of the main weaknesses
of the EKF. First, when using the UKF, f and h do
not need to be differentiated, making automated equa-
tion generation significantly more feasible. Second, the
UKFs deterministic sampling captures both the mean
and covariance of a Gaussian Random Variable, which
when propagated through the nonlinear system captures
the estimate mean and covariance to the 3rd order for any
nonlinearity, as opposed to the first order approximation
from the EKF. Many papers have compared the perfor-
mance of the UKF and EKF, and many have found that
in both theoretical results (Lefebvre, 2004) and practi-
cal applications (Romanenko & Castro, 2003) the UKF
matches or outperforms the EKF for nonlinear systems.

2.3 Extending the tracking problem to hybrid
systems

Hybrid system behavior introduces new challenges to
system tracking, because hybrid behaviors have to in-
clude mode changes. To track the state of a hybrid sys-
tem, an observer must now do three things: (1) check for
and detect mode changes, (2) update the system model
when mode changes occur, and (3) perform continuous
estimation in each mode of operation.

Hybrid mode estimation is a well researched area, and
a number of techniques have been developed for simul-
taneous state and mode estimation. Many techniques
maintain a bank of state estimate trajectories, and use
hidden Markov models (HMMs) to estimate the most
likely current mode. Mode changes triggered by the
continuous system state update the HMM beliefs, and
each of the state trajectories is updated by the modes the

HMM finds most probable (Hofbaur & Williams, 2002).
For this paper, we do not attempt to estimate the system
mode; in all of the models in this paper, mode changes
are interpreted as clearly observed system inputs. The
techniques described here, though, could be used in con-
junction with mode estimation techniques.

After the new mode is determined, it is important to
quickly update the system model so that the filters state
estimate does not diverge from the correct estimate while
the equations are being updated. The linearization per-
formed by the EKF is even more of a computational bur-
den in a hybrid system because every mode change re-
quires the re-generation of the symbolic Jacobian matri-
ces used to linearize the state equations. To use the EKF
on a hybrid system, the matrices A, H , W , and V , as
well as f and h, need to be recomputed at each mode
change. The UKF requires updated f and h functions,
but has no matrices to update. This makes the UKF sig-
nificantly more desirable as a state estimator for hybrid
and nonlinear systems. Last, within each system mode,
the filter must still estimate the continuous state of the
nonlinear system, given noisy measurements and an im-
perfect system model.

Figure 1 illustrates this process. The techniques pre-
sented in this paper speed up the model update step by ef-
ficiently regenerating the state equations incrementally,
rather than regenerating the entire set of state equations
on a mode change.

Figure 1: State estimation process in a hybrid system

3. HYBRID BOND GRAPH MODELING OF
HYBRID SYSTEMS

Bond Graphs are a topological domain-independent
energy-based paradigm for modeling physical systems
and processes (Karnopp, Margolis & Rosenberg, 2006).
One of the strengths of this modeling paradigm is that
it has a strong correspondence with free-body diagrams
in mechanics, circuit diagrams in electricity, and simi-
lar representations in other physical domains. A Bond
Graph is built of primitive elements which include stor-
age elements (capacitors, C and inductors, I), elements
which dissipate energy (resistors, R), and those which
transform energy from one form to another (transform-
ers, TF , and gyrators, GY .) Sources of effort (Se) and
sources of flow (Sf) define interactions of the system
with its environment. These primitive components are
connected to each other via junctions (0 and 1 junctions),
which represent parallel and series connections between
components. Bonds represent energy connections, and
have associated effort and flow variables with effort ×

3

Annual Conference of the Prognostics and Health Management Society, 2010

flow defining the rate of energy flow (Roychoudhury,
Daigle, Biswas & Koutsoukos, 2010).

Hybrid Bond Graphs (HBGs) extend Bond Graphs by
introducing discontinuous behavior via switching junc-
tions, which turn on or off as a function of system state
and/or control input. (Mosterman, 2002) presents a more
in-depth discussion of the HBG modeling paradigm and
the semantics of the switching junctions. HBGs are a
powerful paradigm for representing large hybrid systems
because they can compactly represent a hybrid system;
the equations for each state do not need to be enumer-
ated prior to execution, but instead can be generated as
needed. This is an advantage over modeling paradigms
like Hybrid Automata, which generally require an enu-
meration of all system modes prior to execution (Alur,
Courcoubetis & Ho, 1993).

Modulated components allow the modeler to intro-
duce nonlinearities into a Hybrid Bond Graph model.
When a component is modulated, its parameter is a func-
tion of other effort or flow variables. Modulated func-
tions introduce potentially un-resolvable algebraic loops
into the state equations, so during simulation, only the
previous time steps value of the modulated functions in-
put variables are used. This is the same approach to mod-
ulated functions taken by HyBrSim (Mosterman, 2002)
and block diagrams (Daigle, Roychoudhury, Biswas,
Koutsoukos & Daigle, 2007).

3.1 Behavior Generation for Hybrid Bond Graphs
As a hybrid system, the behavior of a HBG is defined
by continuously differentiable behavior within a mode,
and discrete mode changes when the system state equa-
tions change. To simulate a HBG, state equations must
be generated for each mode, and then numerically solved
via methods such as Euler or Runge-Kutta for the dura-
tion of the mode. When the state of a switching junction
changes, triggered either by external input or from inter-
nal switching, new state equations must be generated.

Continuous Behavior Generation
Generating the continuous behavior of a system is
straightforward when the state equations are a set of
ODEs. When the causality of a HBG is fixed, generat-
ing ODEs modeling a HBG is a straightforward process.
The equations for each bond graph component can guide
effort and flow variable substitutions, until the derivative
of each state variable is a function of the system state,
parameters, and inputs.

The equation generation process is guided by the
causal configuration of a HBG. The rules for causality
assignment are given in detail in (Roychoudhury, 2010).
The algorithms discussed here generate equations only
for systems where every component can be assigned in-
tegral causality. When the causality assignment rules do
not assign a causal stroke to every bond, the remaining
bonds can be given any valid causality assignment, and
the model is said to have a zero-order causal path. When
this happens, equation generation is more complicated
(Dijk & Breedveld, 1991), and the resulting equations
are said to contain an algebraic loop.

Work has already been done to improve the efficiency
of HBGs when modeling large hybrid systems. Block di-
agrams represent the equations for each junction as con-
nections between junctions which can be easily recon-
figured. The Hybrid SCAP algorithm describes how to

efficiently reconfigure a block diagram on hybrid mode
changes (Daigle, 2007). The algorithms presented below
extend the Block Diagram representation by performing
symbolic manipulation to derive the state equations.

Building State Equations From HBGs
The equation representation strategy presented here rep-
resents the equations of a Bond Graph as a directed
acyclic graph, which we call a Hybrid Equation. In the
graph, a child node ofa variable represents an expression
it is equivalent to when particular structural constraints
are satisfied. The children of an operator node are its
operands. As the system transitions between modes, the
structural constraints of the HBG change, and variables
acquire new child nodes when new modes are visited.
The previous child nodes are cached to allow easy re-
trieval if a previously generated mode is revisited.

When the mode of a HBG changes, in most cases the
majority of the state equations will not change. If the
equations are cached properly, only the parts of the equa-
tions which have changed will need to be regenerated.
While generating the equations for a HBG, we note the
constraints imposed by the current system mode during
the equation generation process, when the causality and
mode guide the variable substitutions. To see which con-
straints it is important to record, consider what changes
to the HBG occur during a hybrid mode change: 1) the
determining bond of junctions change, and 2), non de-
termining bonds turn on or off. (1) will only affect the
equation generation in two cases; when following the
flow into a 1-junction or the effort into a 0-junction.
Therefore, each of these variable substitutions is aug-
mented with a constraint of the form < Bx determines
Jy >, indicating that the substitution is only valid while
bond x is the determining bond of junction y. (2) will
change only the effort at a 1-junction or the flow at a
0-junction. Therefore, each of these substitutions is aug-
mented with the constraint < x1 · · ·xn active for Jz > ,
where x1 · · ·xn are booleans which indicate the state of
each of the bonds attached to junction z.

From these observations, we get algorithm 1 which
builds the initial state equations for the HBG. Algebraic
loop resolution is discussed in more detail later.

Algorithm 1 Build initial equations
1: Run hybrid SCAP to assign causality to the current

bond graph configuration
2: Run generate equations
3: Run resolve loops

When generating equations which are valid in
multiple system modes, the effort and flow variables
must be augmented with the direction from which the
substitution occurs. Consider f2 in Model 2; when
junction o is on, the component equations contain:
f2 = e2

R ; however, when o is off, bond 2 determines z,
and the component equations contain e2 = f2R. If there
is only a single f2 node in the graph, the graph will be
cyclic, as the equalities f2 = e2

R and e2 = f2R are both
valid in both modes. This can be prevented by noting
from which direction a variable substitution is made,
and maintaining distinct nodes for a variable found by
following a bond (labeled in) and going against the
bond (labeled out.) So in Model 2, the equations for

4

Annual Conference of the Prognostics and Health Management Society, 2010

Algorithm 2 Generate equations
Require: stack unexplored containing equations to

generate
1: while unexplored not empty do
2: pop node from unexplored
3: if node is a non-state variable and does not have a

valid substitution then
4: let sub be the direct substitution for node
5: add subsitution sub to node with its constraints
6: set sub as node’s current substitution
7: if sub is a variable then
8: push sub onto unexplored
9: else if sub is an operator then

10: push the children of sub onto unexplored
11: end if
12: end if
13: end while

bond 2 are instead f2out = e2in

R , and e2out = f2inR.

Example 1: Derivation of state equations for a
simple model (model 3):

The equations for each component and the derived
state equations are shown below.

e1 =C : q

e3 =C1 : q

f5 =Sf

f2 =
e2

R
f1 =f4 = f2

e5 =e4 = e3

e2 =e4 − e1

f3 =f5 − f4

C : q′ =
1
C

f1 =
1

CR
(C1 : q − C : q)

C1 : q′ =
1

C1
f3 =

1
C1

(
Sf − 1

R
(C1 : q − C : q)

)
The hybrid equation structure captures the variable sub-
stitutions that are necessary to derive state equations
for C : q′ and C1 : q′, using the component equations
above. Figure 4 shows the full Hybrid Equation for fig-
ure 2. The first variable substitution C : q′ = 1

C f1 is
represented by an arc from C : State′ to f1

C in figure 4.
f1 is not a state variable, so we can continue by using
the equality f1 = f2, adding another arc. We contine
this process until the full state equations are generated.

Algebraic Loop Resolution
When the causality of a Bond Graph is not completely
fixed by storage or source elements, there exists a zero-
order causal path between two or more resistive elements
(Dijk, 1991), and the state equations of the Bond Graph
implicitly represent a set of Differential Algebraic Equa-
tions (DAEs) instead of a set of ODEs. There are three
general approaches to dealing with algebraic loops in
Bond Graphs: structural augmentation, numerical meth-
ods, and symbolic resolution. Structural augmentation

Figure 2: Bond 2 will determine z in only one mode

Figure 3: A simple bond graph

Figure 4: Hybrid equation for figure 3

5

Annual Conference of the Prognostics and Health Management Society, 2010

removes zero-order causal paths by inserting small state
elements which fix the causality of the system (Gawthrop
& Smith, 1992). Unfortunately, augmented models in-
clude additional state variables, and the resulting system
of equations may be stiff, causing numerical issues dur-
ing simulation. We would like to avoid adding unneces-
sary state variables, as this software is intended to assist
in state and parameter estimation. Numerical methods
leave the equations in DAE form, and use a numerical
DAE solver to solve for the future state of the system.
However, numerically solving a DAE system can be very
computationally expensive (Borutzky & Cellier, 1996).

Several groups have used symbolic manipulation on
the systems DAEs to derive a system of ODEs. 20-sim,
a Bond Graph modeling and simulation tool, first at-
tempts algebraic manipulation before resorting to numer-
ical methods (20-sim, 2009). In (Borutzky, 1996), tech-
niques are developed to intelligently choose variables to
use to tear the system when converting it to an ODE.
While ODE solutions to DAE systems are not possible
in the general nonlinear case, the use of timestep-delayed
modulated functions to model nonlinearities means that
our DAE system will contain only terms linear with re-
spect to the variables being solved for. This indicates that
it is possible to convert our original DAEs into a system
of ODEs, albeit with a potentially large amount of sym-
bolic manipulation.

If the equations representing a Bond Graph contain an
algebraic loop, it will be clearly identifiable as a back-
edge in the Hybrid Equation (figure 6). Loops are re-
solved by finding a variable contained in an algebraic
loop and algebraically compiling a solution for the vari-
able. By noting the constraints which define the struc-
ture of the algebraic loop, once a loop is resolved in one
mode, the solution will remain valid for other modes, and
will not need to be re-solved in many future modes. The
algorithm for resolving algebraic loops is shown below.

Algorithm 3 Resolve loops
1: while a variable v can be found in an algebraic loop

do
2: let originalSub = v’s current substitution
3: call copy and compile on v to generate sub
4: replace v’s original substitution with sub
5: solve the loop for v
6: find a new variable v in an algebraic loop
7: end while

In solve equation, x and y could potentially still
contain references to v, if there is an intermediate
variable still in an algebraic loop; otherwise function
copy and compile would not terminate. The variable
used to break the algebraic loop is found via a DFS of
the graph which returns the first variable found in a cycle.
This variable will not necessarily be the optimal choice
to solve; choosing the minimal number of variables to
solve is in general NP-complete (Borutzky, 1996). In
the simple case with one zero-order causal path, the al-
gorithm will always terminate in a single iteration.

Example 2: Derivation of state equations for a model
with an algebraic loop (figure 5)

The component equations for figure 5 are shown.

Algorithm 4 Copy and compile equation
Require: node v

1: if v is a state variable, v is a parameter, or v has
already been seen then

2: return v
3: else if a substitution s for v has already been gener-

ated then
4: return the s
5: else if v is a non-state variable then
6: note the constraints on v’s substitution
7: return CopyAndCompile on v’s current substitu-

tion
8: else if v is is an addition (multiplication) operator

then
9: let newOp = a new addition (multiplication) op-

erator
10: recursively copy each of v’s children and make

them children of newOp
11: return newOp
12: end if

Algorithm 5 Solve equation
Require: node v

1: simplify the substitution for v into the form vx + y
2: resolve the loop by setting v = y

1−x

Figure 5: Simple model with an algebraic loop

e2 =Rf2

e1 =C : q

f5 =Sf

f3 =
1

R1
e3

e5 =e3 = e4

f1 =f2 = f4

f4 =f5 − f3

e4 =e1 + e2

C : q′ =
1
C

f1 =
1
C

(
− 1

R1C : q + Sf

1 + R
R1

)
Figure 7 illustrates this procedure as represented by a

Hybrid Equation. The initial equations for figure 5 con-
tain an algebraic loop: f4 = f5 − f3 = Sf − 1

R1C :
q − R

R1f4. This problem manifests itself in the Hybrid
Equation as a cycle, as seen in figure 6. By algebraically
compiling a solution, f4 can be solved for explicitly:

f4 =
Sf − 1

R1C : q

1 + R
R1

6

Annual Conference of the Prognostics and Health Management Society, 2010

Figure 7 shows the hybrid equation after resolving the
algebraic loop and generating explicit state equations.
f4out was the variable used to break the cycle. The new
symbolic substitution for f4out is equivalent to the one
computed above. The constraints on this substitution
correspond to the constraints that defined the structure
of the algebraic loop in Figure . The loop will not need
to be re-solved for any subsequent mode in which these
constraints hold.

One situation this system is not able to handle is the
presence of causal loops (Dijk, 1991), where no explicit
set of ODEs can be generated. We would need to im-
plement numerical methods to simulate such a system.
In the systems our research focuses on, we have not en-
countered a system with a causal loop which could not be
reduced into an equivalent system lacking causal loops.

Evaluation
Once algebraic loops have been removed from the equa-
tions, the value of any node can be computed recursively,
as shown in algorithm 6.

Algorithm 6 Evaluate
Require: node v

1: if the value of v has already been cached then
2: return the cached value
3: else if v is a state variable or parameter then
4: value = the value of evaluate on v’s substitution
5: else if v is a non-state variable then
6: value = the value of evaluate on v’s substitution
7: else if v is an addition (multiplication) operator then
8: value = the sum(product) of all children
9: cache value for node v

10: end if
11: return value

Mode Changes
When the mode of a HBG changes, some constraints
will be invalidated, and the parts of the state equations
which depend on them will need to be regenerated. We
can tell which constraints have changed: 1) constraints
which rely on the determining bond of a junction, which
can be found while tracing causality changes through the
system during the Hybrid SCAP procedure, and 2) con-
straints for junctions which neighbor a bond which has
changed state. The algorithm for equation generation has
already been defined, so the equation update algorithm is
simple.

Algorithm 7 Update equation on mode change
1: update all junction state to reflect structural changes
2: perform Hybrid SCAP
3: for all variables v with an invalid substitution do
4: if v has a different substitution s which satisfies

the active constraints then
5: set s as the current substitution of v
6: else
7: generate the updated equation for v
8: end if
9: end for

10: resolve algebraic loops

Figure 6: Hybrid equation for figure 5 with algebraic
loop

Figure 7: Hybrid equation for figure 5 after algebraic
loop resolution

7

Annual Conference of the Prognostics and Health Management Society, 2010

Only if a variable has a substitution which a mode
change has made invalid, will the substitution need to
be recomputed. If the system ever re-enters a previously
visited mode, every necessary variable will have at least
one valid substitution. As more modes are reached, it
becomes increasingly likely that a new substitution will
not need to be generated with a mode change.

Example 3: In model 3, junction o is a switching junc-
tion. When it turns off, the state equations change:

C : q′ =0

C1 : q′ =
1

C1
Sf

Figure 8 shows the hybrid equation for figure 3 after
the mode change. The bonds active for junction z have
changed, so f3 has a new substitution in the new mode.
C is disconnected from the bond graph when bond 1
turns off, so the new ODE C : State = 0 does not need
to be explicitly stored.

Figure 8: The equations for figure 3 after the 1-junction
switches off

3.2 Performance Improvements
A Hybrid Equation is sufficient for numerical simula-
tion, but this equation structure facilitates two strategies
which improve runtime performance: caching and com-
pilation.

Caching
In evaluate, the computed value of each node is cached
for later reuse. Because nodes in a Hybrid Equation
can have multiple parents, and in most HBG models,
a large number of intermediate variables are shared be-
tween equations, this often saves a considerable amount
of processing time. The ODEs generated could be solved
by an external ODE solver, but it is difficult to ensure

that a third-party ODE solver is able to take advantage of
this redundancy. Other model-based approaches such as
Block Diagrams also implicitly cache intermediate val-
ues.

Compilation
To improve simulation performance when the system is
in a frequently occurring mode, it is possible to compile a
state specific state equation, which is a compressed ver-
sion of the Hybrid Equation valid only that single mode.
The generation of the structure may or may not be worth-
while, depending on how long the system is expected to
remain in that mode. State Equations can be stored or
discarded and regenerated as necessary. To handle mem-
ory constraints, it is possible to set up a LRU cache of
State Equations, regenerating state equations which are
cache misses. A state equation is generated by calling
copy and compile on each derivative and observed vari-
able. This procedure preserves the intermediate caching
in evaluate. Figure 9 shows state equations for two
models.

Figure 9: Compressed equations for figures 3 and 5

3.3 Summary of HBG representation and equation
generation

HBGs provide a compact representation of a hybrid sys-
tem which does not require a full enumeration of all the
reachable states in a hybrid model. By taking note of
structural constraints in the bond graph while generating
state equations, we can efficiently update the state equa-
tions when the system mode changes. Having an explicit
system of equations allows us to resolve algebraic loops
via symbolic manipulation. The loop will not need to
be resolved again in later modes as long as the structural
constraints which define it are not violated. To improve
performance at runtime, we can compile the state equa-
tions and cache intermediate results when evaluating the
value of a variable.

4. IMPLEMENTATION
The Generic Modeling Environment is a meta-modeling
environment which facilitates the construction of do-
main specific modeling languages (Agrawal, Karsai &
Ledeczi, 2003). The HBG modeling paradigm has been
implemented as a meta-model in GME. This allows for
a graphical, component-oriented approach for building
system models using a drag and drop interface. Because
component interfaces are well-defined, it is easy to build

8

Annual Conference of the Prognostics and Health Management Society, 2010

large system models that are syntactically and semanti-
cally correct by composition. Interpreters can then be
applied to these models to convert them into the differ-
ent forms needed for building the observers for tracking
system behavior.

Figure 10: An example of a HBG built using GME. Sw
is a decision function which specifies the state of junc-
tion z. TF is a modulated transformer, whose value is a
function of the effort at z1. A sensor measures the effort
across z1.

The incremental equation generation algorithms de-
scribed in section 3. were implemented as a stand-alone
C++ application, using textual representations of bond
graphs produced by GME. We use the extensible open
source Bayes++ library of filter classes (Stevens, 2006)
to implement both the EKF and UKF. The state and ob-
servation equations for the models evaluated in section 5.
were derived automatically. On models where we tested
the performance of the EKF, the symbolic solutions for
the matrices A, H , W , and V for each model were de-
rived by hand.

5. RESULTS
To evaluate the performance of the integrated modeling
system presented here, we have run 3 sets of experi-
ments. We first plot the size of our state equation repre-
sentation as hybrid modes are exhaustively visited, and
test the processing time saved through caching. Second,
we compare the performance of the EKF and UKF on
two nonlinear systems. Last, we show that we can track
the behavior of large hybrid systems by automatically
generating equations and using the UKF to estimate the
system state.

5.1 Equation Representation Performance
By only selectively re-generating parts of the Hybrid
Equation, we achieve substantial space savings over a
re-generation of the equations during each mode change;
which is demonstrated for two models. Figure 12 is a 4
state system with an algebraic loop. Figure 13 is a sim-
plified section of NASAs ADAPT test bench which con-
tains one battery and two loads (1) one NEMO, and (2)
one resistive. Figure 18 shows a flat representation. The
battery is augmented with internal switching junctions.

Figure 14 shows the size of the hybrid equation for
each model as a function of the number of modes visited.
The structure size is the sum of all terms (variables, op-
erators, and parameters) and substitutions in the hybrid

Figure 11: A nonlinear two-state pump model

Figure 12: A HBG with 4 state variables

Figure 13: Simplified ADAPT battery

equation. Figure 14 shows that usually during a mode
change, the majority of the equation components can be
re-used, keeping the equation footprint light.

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30

E
qu

at
io

n
Si

ze

Modes

Pump Modes

Size

 260

 280

 300

 320

 340

 360

 380

 400

 0 10 20 30 40 50 60

E
qu

at
io

n
Si

ze

Modes

Simplified ADAPT Modes

Size

Figure 14: The size of the hybrid equations as the modes
in figures 12 and 13 are enumerated

The caching performed during function evaluation
saves a significant amount of processing time. Simu-
lation used a fixed step forward Euler method for nu-

9

Annual Conference of the Prognostics and Health Management Society, 2010

merical integration. Results are shown in table 1 for 3
models.

5.2 EKF and UKF Comparisons
To compare the performance of the EKF and UKF on the
systems we are studying, we tracked the performance of
each on several systems. The update equations for each
were automatically derived from the shown models, ex-
cept for the symbolic derivatives used by the EKF, which
were generated by hand. All systems were simulated
with additive process and measurement noise, and the
filters were given an incorrect initial state estimate.

2-State Pump
Figure 11 shows a nonlinear 2-state pump model. The
modulating function regulating GY adds nonlinearity to
the system.

The UKF and EKF estimates the state of this model
are compared in figure 15 . Both filters were initialized
with incorrect m1 and m2 state estimates. As expected
for a nonlinear model, the UFK converges on the correct
state estimates faster than the EKF.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.2 0.4 0.6 0.8 1 1.2

St
at

e

Time

Pump m1 State

State
UKF
EKF

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 0.2 0.4 0.6 0.8 1 1.2

St
at

e

Time

Pump m2 State

State
UKF
EKF

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 0.2 0.4 0.6 0.8 1 1.2

E
rr

or

Time

Pump m1 Estimate Error

UKF
EKF

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1 1.2

E
rr

or

Time

Pump m2 Estimate Error

UKF
EKF

Figure 15: Pump state m1 and m2 estimates and errors

ADAPT Battery
Figure 13 shows a full schematic of the simplified non-
linear ADAPT battery model. The filters were run on the
systems with 5 levels of Gaussian distributed measure-
ment noise (.04, .0012, .004, .00012, and .0004.) The
initial filter estimates of the state of the Load 2 charge
(L2C) and the battery charge (CIs1) were incorrect.

The performance of the UKF and EKF in estimating
each of these states at each measurement noise level is
shown in Figure . The state estimates of the filter at each
of the 5 levels of noise on each of these states are shown
below.

CIs1s state behaves close to linearly over this time
span, so we expect the UKF and EKF to perform very
similarly, which is supported by the results seen in figure
15. The state of L2C does not behave linearly, so we ex-
pect the UKF to outperform the EKF, which is supported
by the results shown in 17.

In all of the models evaluated, the UKF matches or
outperforms the EKF, and we expect this to hold on other
models derived from HBGs.

5.3 Scaling
Using the integrated system for modeling, equation gen-
eration, and state tracking described above, it is easy to
model and track large hybrid systems. The system was
run on a more complete version of the ADAPT DC test-
bench, shown in figure 19, again on with 5 different ob-
servation noise levels (.01, .003, .001, .0003, and .0001).
The filter had an incorrect initial estimate of the charge
on battery 1. At time 30, two loads on the system discon-
nect, and at time 60 reconnect. Figure 20 show the UKF
state estimate at each of the 5 observation noise levels.

6. RELATED WORK AND CONCLUSION
The Advanced Diagnostics and Prognostics Testbed test-
bench used in section 5. was built to evaluate and com-
pare diagnostic and fault detection techniques, and was
the basis for the 2009 diagnostic competition. The Pro-
Diagnose diagnosis system performed diagnosis very
succesfully by compiling a bayesian system model to an
arithmetic circuit, which operated very efficiently (Ricks
& Mengshoel, 2009). (Grastien & John, 2009) also
competed, but relied on a complete model of the test
bench, including faulty behavior. The specifications of
the ADAPT testbench were built into each of these sys-
tems. RODON is a commercial diagnostics reasoner
which showed good results on the ADAPT testbench
(BunusIsakssonFrey & Munker, 2009). RODON uses
Rodelica, a modification to the general-purpose Model-
ica modeling language.

A number of Bond Graph modeling systems have been
built. VirtualDynamics has developed a Bond Graph
toolkit for Mathematica (Venuti, 2001); Matlab has a
Bond Graph block library as well (Geitner, 2008). 20-
sim is a software system dedicated to Bond Graph mod-
eling and simulation (Broenink & Kleijn, 1999). How-
ever, there are very few systems designed to efficiently
model Hybrid Bond Graphs (Daigle, 2007).

HyBrSim is an experimental Java modeling and simu-
lation environment developed for modeling Hybrid Bond
Graphs (Mosterman, 2002). HyBrSim can simulate a
system by propagating state values forward through the

10

Annual Conference of the Prognostics and Health Management Society, 2010

Table 1: Performance gains from caching

- Structure size Without caching (ms) With caching (ms) Gain
ADAPT Battery (figure 18) 299 23141 5859 74.7%

Pump (figure 11) 99 56078 7391 86.8%
4-state model (figure 12) 101 3812 1594 58.2%

 2.4115e+06
 2.41155e+06

 2.4116e+06
 2.41165e+06

 2.4117e+06
 2.41175e+06

 2.4118e+06
 2.41185e+06

 0 10 20 30 40 50 60

E
rr

or

Time

UKF Cls1 State Estimate

State
.04

.012

.004
.0012
.0004

 2.4115e+06
 2.41155e+06

 2.4116e+06
 2.41165e+06

 2.4117e+06
 2.41175e+06

 2.4118e+06
 2.41185e+06

 0 10 20 30 40 50 60

E
rr

or

Time

EKF Cls1 State estimate

State
.04

.012

.004
.0012
.0004

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

E
rr

or

Time

UKF Cls1 Estimate Error

.04
.012
.004

.0012

.0004

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60
E

rr
or

Time

EKF Cls1 Estimate Error

.04
.012
.004

.0012

.0004

Figure 16: CIs1 state estimates and errors

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

E
rr

or

Time

UKF L2C State Estimate

State
.04

.012

.004
.0012
.0004

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

E
rr

or

Time

EKF L2C State Estimate

State
.04

.012

.004
.0012
.0004

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60

E
rr

or

Time

UKF L2C Estimate Error

.04
.012
.004

.0012

.0004

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60

E
rr

or

Time

EKF L2C Estimate Error

.04
.012
.004

.0012

.0004

Figure 17: L2C state estimates and errors

all Bond Graph junctions, without explicit equation gen-
eration. HyBrSim can also export state equations as a set
of DAEs solvable by a Differential Algebraic Equation
(DAE) solver. Last, it can export equations for a mode
as C++ code; however, modes exported to C++ must be
pre-enumerated, limiting its use to small systems.

This work is an extension of the Block Diagram ap-
proach to simulation of Hybrid Bond Graphs (Daigle,
2007), whose system is simulated via Simulink. How-
ever, Block Diagrams do not attempt to resolve algebraic
loops, and do not generate an explicit system of equa-
tions. The Block Diagram approach also does not ex-
plicitly cache the equations for commonly reached states

as done here.
The system described here system stores HBG state

and measurement equations in a fashion that minimizes
the reconfiguration necessary on mode changes. We
have shown that the size of the hybrid equation struc-
ture scales very well with the number of hybrid modes
generated. By generating explicit equations, we are able
to resolve many algebraic loops, and are able to simplify
the equations to improve runtime performance.

We then showed that on the systems in which we are
interested, the Unscented Kalman Filter matches or out-
performs the Extended Kalman Filter. This is ideal for
our purposes, as the UKF can be easily integrated into

11

Annual Conference of the Prognostics and Health Management Society, 2010

our system; the UKF does not require the manual sym-
bolic Jacobian generation required by the EKF. Combin-
ing these components, we have developed an automated
system for modeling a Hybrid Bond Graph, generating
its state equations, resolving many algebraic loops, ef-
ficiently regenerating equations on mode changes, and
using these equations to estimate the state of the system
given noisy states and observations.

 2.41e+06

 2.4105e+06

 2.411e+06

 2.4115e+06

 2.412e+06

 2.4125e+06

 2.413e+06

 2.4135e+06

 0 10 20 30 40 50 60 70 80 90 100

E
rr

or

Time

ADAPT Battery 1 Charge

State
.01

.00316
.001

.000316
.0001

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 10 20 30 40 50 60 70 80 90 100

E
rr

or

Time

Battery 1 C1 State Estimate

State
.01

.00316
.001

.000316
.0001

Figure 20: ADAPT battery and load charge estimates

REFERENCES
20-sim. ’Algebraic loops,’ http://www.20sim

.com/webhelp/editor/compiling/
algebraicloops.htm; accessed April 19,
2010.

Agrawal, A., Karsai, G. & Ledeczi, A. (2003). An
end-to-end domain-driven software development
framework In Conference on Object Oriented Pro-
gramming Systems Languages and Applications.

Alur, R., Courcoubetis, C. H. & Ho, P. H. (1993). Hybrid
automata: An algorithmic approach to the speci-
fication and verification of hybrid systems In In
Hybrid Systems Vol 736.

Borutzky, W. & Cellier, F. (1996). Tearing in Bond
Graphs with Dependent Storage Elements In
IMACS Multiconference

Broenink, J. F. & Kleijn, C. (1999). Computer Aided
Design of Mechatronic Systems Using 20-sim 3.0
In Workshop on European Scientific and Industrial
Collaboration

Bunus, P., Isaksson, O., Frey, Beate. & Mnker, Burkhard.
(2009). RODON - A Model-Based Diagnosis Ap-
proach for the DX Diagnostic Competition In Pro-
ceedings of the 20th International Workshop on
Principles of Diagnosis

Cuijpers, P. & Reniers, M. (2005). Hybrid Process Al-
gebra In The Journal of Logic and Algebraic Pro-
gramming

Daigle, M.Roychoudhury, I.Biswas, G. & Koutsoukos,
X. (2007). Efficient Simulation of Component-
Based Hybrid Models Represented as Hybrid
Bond Graphs In Lecture Notes in Computer Sci-
ence

Dijk, J. V. & Breedveld, P. (1991). Simulation of Sys-
tem Models Containing Zero-Order Causal Paths–
II Numerical Implications of Class 1 Zero-Order
Causal Paths In Journal of the Franklin Institute

Gawthrop, P. J. & Smith, L. (1992). Causal Augmen-
tation of Bond Graphs with Algebraic Loops In
Journal of the Franklin Institute

Geitner, G. H. ’Bond graph add-on block library BG
V.2.1.’ http://www.mathworks.com/
matlabcentral/fileexchange/
11092-bond-graph-add-on-block
-library-bg-v-2-1; accessed April
19,2010.

Grastien, A. & John, P. K. (2009). Wizards of Oz, de-
scription of the 2009 DXC entry In International
Workshop on Principles of Diagnosis (DX-09)

Henzinger, T. A. (1996). The Theory of Hybrid Au-
tomata In Proceedings of the 11th Annual Sympo-
sium on Logic in Computer Science

Hofbaur, M. W. & Williams, B. C (2002). Mode Esti-
mation of Probabilistic Hybrid Systems In Hybrid
Systems: Computation and Control Vol. 2289

Julier, S. J. & Uhlmann, J. K. (1997). A new extension
of the Kalman filter to nonlinear systems

Karnopp, D. C. Margolis, D. L. & Rosenberg, R. C.
(2006). System Dynamics: Modeling and Simu-
lation of Mechatronic System

Lefebvre, T.Bruyninckx, H. & Schutter, J. D. (2004).
Kalman filters for non-linear systems: a compar-
ison of performance In International Journal of
Control

Merwe, R. V. & Wan, E. A. (2001). The Square-
Root Unscented Kalman Filter For State And
Parameter-Estimation In International Conference
on Acoustics, Speech, and Signal Processing

Mosterman, P. J. (2002). HYBRSIMa modelling and
simulation environment for hybrid bond graphs In
Proceedings of the Institution of Mechanical Engi-
neers, Part I: Journal of Systems and Control En-
gineering

Mosterman, P. J. & Biswas, G. (1998). A theory of dis-
continuities in physical system models In Journal
of the Franklin Institute

Ricks, B. W. & Mengshoel, O. J. (2009). Methods for
Probabilistic Fault Diagnosis: An Electrical Power
System Case Study In Proceedings of the Annual
Conference of the Prognostics and Health Man-
agement Society

Romanenko, A. & Castro, J. A. (2003). The unscented
filter as an alternative to the EKF for nonlinear
state estimation: a simulation case study In Com-
puters and Chemical Engineering

Roychoudhury, I., Daigle, M. J. , Biswas, G. & Kout-
soukos, X. (2010). Efficient simulation of hybrid
systems: A hybrid bond graph approach In Sim-
ulation: Transactions of the Society of Modeling
and Simulation International

Stevens, M. ’Bayes++ Open Source Bayesian Fil-
tering Classes’ http://bayesclasses
.sourceforge.net/Bayes++.html; ac-
cessed April 26,2010.

Venuti, N. (2001). Bond Graph Empowered by Mathe-
matica In Simulation series Vol 33.

Welsh, G. & Bishop, G. (2006). An Introduction to the
Kalman Filter.

12

Annual Conference of the Prognostics and Health Management Society, 2010

Figure 18: Flat schematic of the simplified ADAPT battery (figure 13)

Figure 19: A high level view of the ADAPT DC configuration

13

