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Abstract

Fault diagnosis is essential for guaranteeing safe
and reliable operation of complex engineering sys-
tems. Our work focuses on diagnosis of paramet-
ric faults in the components of dynamic systems,
whose temporal profile can be categorized as incip-
ient (slow) or abrupt (fast). The diagnosis of abrupt
and incipient faults using qualitative approaches is
challenging, since in many situations, these faults
produce similar qualitative effects. Quantitative es-
timation methods may provide more discriminatory
power, but these approaches can be computation-
ally infeasible for large systems with nonlinearities
and complex dynamics. In this paper, we combine a
qualitative fault isolation scheme with an Dynamic
Bayes net-based particle filtering approach for the
comprehensive diagnosis of incipient and abrupt
faults in continuous systems. We also present ex-
perimental results to demonstrate the effectiveness
of our approach when applied to a two-tank system.

1 Introduction
Detection, isolation, and identification of faults in system
components is essential for guaranteeing safe, reliable, and
efficient operation of complex engineering systems. Some
of these faults are attributed to degradations, and modeled as
incipient faults, i.e., slow drifts in system parameter values
over time. Other faults manifest as quick changes in compo-
nent parameter values and are modeled as abrupt faults, i.e.,
changes in parameter values that are fast in comparison to the
system dynamics, and approximated as a step change.

In the past, we have successfully diagnosed abrupt faults
using qualitative schemes [Mosterman and Biswas, 1999].
However, qualitative diagnosis schemes for both incipient and
abrupt faults may suffer from the ambiguity problem, i.e.,
the inability to discriminate among fault hypotheses. Quan-
titative approaches produce more precise diagnoses, but, for
large systems with complex dynamics, these quantitative ap-
proaches can be computationally expensive. In this paper, we
extend our earlier work [Roychoudhury et al., 2006] to the
comprehensive diagnosis of both incipient and abrupt faults
in continuous dynamic systems through the integration of our

qualitative diagnosis scheme [Mosterman and Biswas, 1999]
with an Dynamic Bayes net-based particle filtering approach.

Dynamic Bayes Nets (DBNs) exploit the conditional inde-
pendence among variables to provide a compact and factored
representation of a dynamic system and allow arbitrary uncer-
tainty models of the dynamic process and measurement [Mur-
phy, 2002]. Hence, DBN-based tracking approaches need not
conform to the restrictive assumption of normal distributions
for noise and modeling errors. DBN schemes have been de-
veloped for several fault diagnosis problems [Lerner et al.,
2000; Murphy, 2002]. This, however, makes the calculation
of posterior probabilities computationally expensive, as, in
many cases, no analytic closed form solutions for these prob-
abilities exist. Particle filters (PFs) are a state-of-the-art infer-
ence mechanism using DBNs [Koller and Lerner, 2001] that
help overcome the inability to derive analytic solutions for
posterior probabilities. Moreover, for large systems, fairly
significant gains in computational efficiency can be achieved
by leveraging the sparseness and compactness of the DBN
structures over traditional state-space based methods. Espe-
cially, in DBN models of faulty systems, the introduction of
fault parameters typically results in very few additional links.

In our approach, we use PFs applied to the DBN model
of the nominal system to generate estimates of nominal sys-
tem behavior that are robust to measurement noise and mod-
eling error. A statistically significant non-zero residual value
implies a fault, and the qualitative fault isolation (Qual-FI)
scheme generates and prunes fault hypotheses as measure-
ment deviations are observed. Then, the quantitative fault
isolation and identification (Quant-FII) scheme is invoked to
further refine the fault hypotheses. A faulty DBN is gener-
ated for each remaining fault candidate by including the fault
parameter as a stochastic variable in the DBN, and a sepa-
rate PF scheme is run on each faulty DBN to track the faulty
system behavior. As the Qual-FI scheme continues to refine
its fault hypotheses, the PFs tracking the measurements using
the inconsistent fault models are terminated. Also, if the mea-
surements estimated by the PF applied to a particular fault
model significantly deviates from the observed faulty mea-
surements, that fault candidate is deemed inconsistent and re-
moved from the set of possible faults. Eventually, the PFs
using the true fault model converges to the observed faulty
measurements, and estimates the value of the fault parameter.
This efficient pruning of inconsistent fault hypotheses based



(a) Incipient fault profile. (b) Abrupt fault profile.

Figure 1: Fault profiles.

on the qualitative and quantitative analysis of measurements
helps in fast diagnosis of the true fault.

The paper is organized as follows. Section 2 presents math-
ematical models of incipient and abrupt faults. Section 3 de-
scribes our diagnosis architecture. The different models used
in our approach are described in Section 4. Section 5 dis-
cusses our fault detection approach, while Section 6 explains
the fault isolation and identification scheme for incipient and
abrupt faults in detail. Section 7 presents experimental re-
sults, and conclusions are presented in Section 8.

2 Incipient and Abrupt Faults
The mathematical models for incipient and abrupt faults used
in our approach are defined below. In general, incipient and
abrupt faults can be additive and multiplicative. However,
in this paper, we focus on parametric multiplicative faults,
which are hard to analyze because they directly affect the sys-
tem dynamics.

2.1 Incipient Faults
An incipient fault is a slow change in a system parameter.
Hence, we model this fault as a linear, additive, drift term,
d(t), added to the nominal component parameter value func-
tion, p(t). Since incipient faults are slow changes, we approx-
imate d(t) as a linear function with a constant slope. Fig. 1(a)
shows an incipient fault profile.

Definition 1 (Incipient fault) An incipient fault profile is
characterized by a gradual, slow drift in the corresponding
component parameter value. The temporal profile of a pa-
rameter with an incipient fault, pi(t), is given by:

pi(t) =
{

p(t) t ≤ t f
p(t)+d(t) = p(t)+σ i

p× (t− t f ) t > t f ,
(1)

where p(t) represents the nominal parameter value, d(t) is a
drift function, and t f is the time point of fault occurrence.

2.2 Abrupt Faults
An abrupt fault is modeled as an addition of a bias term, b(t),
to the nominal parameter value, p(t). Typically, abrupt faults
are very fast changes, and so, the bias term is modeled as an
additive step function (see Fig. 1(b)). We assume the magni-
tude of this bias term to be constant.

Definition 2 (Abrupt fault) An abrupt fault profile is charac-
terized by a fast change in the component parameter value.

The temporal profile of a parameter with an abrupt fault,
pa(t), is given by:

pa(t) =
{

p(t) t < t f
p(t)+b(t) = p(t)+σa

p t ≥ t f ,
(2)

where p(t) denotes the nominal parameter value, b(t) is a
bias term, and t f is the time point of fault occurrence.

3 Diagnosis Architecture
Our combined model-based approach for diagnosing abrupt
and incipient faults, like traditional model-based diagno-
sis schemes [Gertler, 1998], has three primary components:
(i) fault detection, (ii) fault isolation, and (iii) fault identifica-
tion, as summarized below. The architecture of our diagnosis
methodology is shown in Fig. 2.

Fault Detection: The dynamic nominal behavior of the
system is tracked by a PF-based observer scheme [Koller and
Lerner, 2001] based on a DBN model of the nominal system,
i.e., the state variables and measurements made on the system
are modeled as stochastic variables but the system parameters
are considered to be deterministic and defined by their nom-
inal functions. Like other observer schemes, the PF gener-
ates estimates of the state variables, x̂(t), and measurements,
ŷ(t). The fault detector monitors each measurement residual,
r(t) = y(t)− ŷ(t), at each time step, where y(t) is a measured
variable at time t, and ŷ(t) is the value of the measurement
estimated by the PF. Ideally, r(t) 6= 0 should imply a fault
and trigger the fault isolation scheme, but to accommodate
measurement noise and modeling errors we employ a statisti-
cal testing scheme that balances detection sensitivity against
false alarms, and a fault is detected if a non-zero residual is
statistically significant.

Fault Isolation: Once a fault is detected, the fault isolation
module is activated. Fault isolation is performed by running
a Qual-FI scheme that uses the symbolic values of measure-
ment deviations along with a Quant-FII approach that is based
on a DBN-based PF scheme. The Qual-FI scheme for abrupt
and incipient faults is described in Section 6.1. Once the num-
ber of fault hypotheses is less than a pre-defined threshold, k,
or the Qual-FI scheme has run for s steps, where s is also a
design parameter, we invoke the Quant-FII scheme.

The Quant-FII scheme starts with a separate DBN model
for each fault candidate listed in the qualitative fault hypoth-
esis set. The extended DBN includes the fault parameter as
a stochastic variable in the DBN, and the corresponding PF
tracks the faulty system measurements from the time of fault
detection. If the system is diagnosable, the measurements es-
timated by the PF using the true fault model will converge



Figure 2: The diagnosis architecture.

to the observed measurements with minimum error. If, on
the other hand, the measurements estimated by a PF using
a particular fault deviates from the observed measurements,
or the Qual-FI scheme finds this fault candidate inconsistent,
we terminate the tracking of the observations using this fault
model and drop this fault candidate from our list of consistent
hypotheses. We discuss this approach in greater detail in the
subsequent sections.

Fault Identification: Fault identification involves the de-
termination of the magnitude or extent of a fault. Our DBN-
based Quant-FII scheme combines fault isolation and identi-
fication into the same PF-based tracking process.

4 Modeling
The bond graph (BG) [Karnopp et al., 2000] model of the
system forms the core of our modeling framework. From
BGs, we can systematically derive efficient models for di-
agnosis, the temporal causal graphs (TCGs) [Mosterman and
Biswas, 1999] for qualitative fault isolation, and the DBNs,
for detection and quantitative fault isolation and identifica-
tion.

4.1 Bond Graphs
The bond graph modeling paradigm allows domain-
independent, energy-based, topological modeling of physical
processes. The nodes of a bond graph are energy storage (ca-
pacitors, C, and inertias, I); energy dissipation (resistors, R);
energy transformation (gyrators, GY , and transformers, T F);
and, energy source ( sources of effort, Se, and sources of flow,
S f ) elements. Nonlinear systems are modeled by parameter
values that are functions of other system variables. Bonds,
drawn as half arrows, represent the energy exchange path-
ways between the bond graph elements. Two variables, ef-
fort, e, and flow, f , are associated with each bond, and their
product, e · f defines the rate of energy transfer through the
bond. Connections in the system are modeled by two ide-
alized elements: 0- and 1-junctions. The junctions couple
two or more elements based on the principles of conserva-
tion of energy and continuity of power. Therefore, at a 0-
junction (or, a 1-junction), the efforts (or, flows) of all inci-
dent bonds are equal, and the sum of flows (or, efforts) is zero.
Fig. 3(b) shows the BG of a simple two-tank system (shown
in Fig. 3(a)). In the hydraulics domain, a flow represents the
rate of flow of fluid, and effort represents the fluid pressure.

4.2 Temporal Causal Graph
The temporal causal graph (TCG) structure captures
the causal and temporal relations between system vari-
ables [Mosterman and Biswas, 1999]. In our work, we de-
rive the TCG systematically from the BG model. Fig. 3(c)
shows the TCG for the two-tank system. The TCG represents
a signal flow graph where the effort and the flow variables
in the system model are nodes, and the direction and type of
interaction between variables are captured as edges. Edges
are derived from component constituent relations or junction
constraints. For example, an edge describing the effort-to-
flow relation of a resistance, R, is labeled 1/R, since f = e/R.
For a capacitor in integral causality, the flow-to-effort rela-
tion is labeled dt/C, where the dt specifier implies a temporal
edge, i.e., a change in the flow, f , affects the derivative of the
effort, e. Junctions also impose direct (+1), inverse (−1), and
equality (=) relations between variables.

4.3 Dynamic Bayesian Networks
A DBN is a two-slice Bayes net that not only captures the re-
lations between system variables in any time slice t, but also
captures the across-time relations between variables in time
slice t +1 and the previous time slice t [Murphy, 2002]. The
system variables, (X,Z,U,Y), which represent the state vari-
ables, other hidden variables, input variables, and measured
variables for the dynamic system, respectively, are all con-
sidered to be sampled from stochastic distributions. The dy-
namic state-space model is a discrete-time stochastic process
that satisfies the first order Markov assumption. For the two-
slice Bayes net, if an observed node is a function of a state
variable, or an input variable, an intra-slice link is drawn from
the state or input variable to that observed node. An inter-
slice link, xt → x′t+1, is drawn between two state variables, xt
and x′t+1, if the value of x′ at time t +1 depends on the value
of x at time t. Nodes x and x′ of the DBN may represent the
same state variable, but at different time points. Similarly, an
inter-slice link may also be drawn between an input variable
at time t, and a state variable at time t +1.

The DBN model for a system can be constructed from its
TCG, as outlined in [Lerner et al., 2000]. First we identify
the nodes, N, in the TCG that represent the state variables,
system measurements, and inputs. Then for each of these
nodes, n ∈ N, we create nodes nt and nt+1 to denote the state
of that variable at consecutive time points in the DBN. If the



(a) Schematic. (b) Bond graph. (c) Temporal causal graph.

Figure 3: Two-tank system models.

relation between any two TCG nodes, n,n′ ∈ N, is algebraic,
links are constructed in the DBN from nt to n′t , and nt+1 to
n′t+1. On the other hand, if the relations between the two
nodes has a delay, then a link is added in the DBN from nt
to n′t+1. The DBN models for the nominal and faulty systems
are explained in detail below.

Nominal System Model
The DBN for the nominal system includes nodes correspond-
ing to state variables, observed variables, and inputs. The
system component parameters are assumed to be constant, or
deterministic functions defined by the nominal system model.
For example, as shown in Fig. 4(a), the DBN derived from the
TCG of the two-tank system has the following stochastic vari-
ables at time t: Xt = {e2t ,e7t}, the pressures at the bottom of
tanks 1 and 2, respectively, and Yt = { f3t , f8t , f5t}, the out-
flows from tanks 1 and 2, and the flow between tanks 1 and
2, respectively. The input flow into tank 1, Ut = { f1t}, and
the component parameter values, C1, C2, R1, R12, and R2 are
deterministic variables. Zt = ∅, i.e., the two tank dynamic
model requires no additional variables.

Fault Models of the system
For each fault candidate, a separate model is derived for track-
ing system behavior after fault occurrence. The fault model
is generated by augmenting the nominal system model with
an extra state variable, representing the fault parameter. For
an abrupt fault hypothesis, the fault parameter corresponds to
the bias term. For an incipient fault hypothesis, the fault pa-
rameter is the drift term as well as the faulty parameter itself.
This additional parameter accumulates the current value of
the parameter corresponding to the incipient fault hypothesis.

The model of a two-tank system with an incipient R+i
1 fault

includes the extra stochastic variable σ i
R1

. We assume that
the slope is constant, i.e., slope σ i

R1
(t + 1) = σ i

R1
(t). The

fault parameter R1(t) is included as an additional stochastic
variable that evolves according to the equations R1(t + 1) =
R1(t) + σ i

R1
(t), and replaces all occurrences of R1 in the

nominal model. The DBN model for this fault is shown in
Fig. 4(b).

The model of a two-tank system with an abrupt R+a
1 fault

includes the extra state variable σa
R1

. We assume that the mag-
nitude of this bias is constant, i.e., σa

R1
(t +1) = σa

R1
(t), where

t ≥ t f . We generate the faulty system model by replacing all
occurrences of R1 in the nominal model with (R1 + σa

R1
(t)).

Fig. 4(c) shows the DBN model for this fault.

5 Tracking and Fault Detection
The basic idea of fault detection is to track nominal system
behavior using PFs, and use a statistical hypothesis testing
scheme to detect statistically significant non-zero residuals.

5.1 Tracking
Particle filtering is a popular scheme for estimating the true
state of a system using DBNs [Koller and Lerner, 2001]. A
PF is a sequential Monte Carlo sampling method for Bayesian
filtering that approximates the belief state of a system using
a weighted set of samples, or particles [Arulampalam et al.,
2002; Koutsoukos et al., 2003]. Each sample, or particle, con-
sists of a value for each state variable, and describes a possi-
ble state the system might be in. As more observations are
obtained, each particle is moved stochastically to a new state,
and the weight of each particle is readjusted to reflect the like-
lihood of that observation given the particle’s new state. The
PF algorithm for DBNs is shown in Algorithm 1 [Koller and
Lerner, 2001].

Algorithm 1 Particle Filtering on DBNs

Input: Number of particles, N; a DBN D = (X,Z,U,Y)
for each particle i, i = 1 to N do

sample X(i)
0 from the prior Prob(X0)

set Y (i)
0 to observed values at time step t = 0

for for each time step t do
for each particle i, i = 1 to N do

Get [X(i)
t ,w(i)] = SampleParticle(Yt , X(i)

t−1, D)
Resample N new particles based on the weights w(i)

Generate estimated Xt and Yt values from the N particles

function SampleParticle(Yt+1, Xt , D)
set w = 1
for each node X in DBN D do

let u be the current assignment to Parents(X)
if X is not measured then

sample X from Prob(X |Parents(X) == u)
else if X is a measured node then

set X to its observed value from Yt+1
set w = w.Prob(X |Parents(X) == u)

return [X, w]



(a) Nominal DBN. (b) DBN model of incipient fault R+i
1 . (c) DBN model of abrupt fault R+a

1 .

Figure 4: DBN models of a two-tank system.

We choose to run the PF scheme on the DBN models for
tracking both nominal and faulty system behavior for several
important reasons. Particle filtering applied to DBNs exploit
the sparseness and compactness of DBNs (based on condi-
tional independence of the variables) to provide computation-
ally efficient solutions, especially because each observed ran-
dom variable in a DBN typically depends on some, and not all
state variables. The compactness of DBNs is especially no-
ticeable in our DBN fault models, where each fault parameter
typically affects the relation between a small number of state
variables and measurements. Moreover, PFs are a good ap-
proximation of DBN propagation methods, when exact distri-
butions cannot be computed analytically, especially for com-
plex, nonlinear systems. Also, PFs can be implemented as
anytime algorithms, and a trade-off between accuracy and
time efficiency can be achieved by varying the number of par-
ticles [Dearden and Clancy, 2001]. Finally, the single-fault
assumption allows for the decomposition of a complex multi-
hypothesis isolation and identification problem into a set of
simpler, single hypothesis PF-based tracking problems.

5.2 Fault Detection
The fault detector monitors each measurement residual and
indicates the presence of a fault when a statistically signif-
icant non-zero fault is detected. In our work, the observer-
estimated measurements are compared against the actual sys-
tem measurements using a Z-test for difference in means for
robust fault detection [Biswas et al., 2003]. The Z-test uses
a sliding window scheme to compute the residual mean and
signal variance. The choice of parameters for this scheme
and the confidence level chosen for the Z-test determines the
properties of the fault detection filter. These parameters also
determine the tradeoff between false alarms and fast detection
of faults.

6 Fault Isolation and Identification
Once a fault is detected, the Qual-FI scheme is triggered to
generate the initial fault hypotheses and refine these hypothe-
ses as additional measurement deviations are observed. The
Qual-FI is run till either the fault hypotheses set is refined to a
pre-defined size, k, a design parameter, which is typically set

to 10% of the total number of fault hypotheses generated af-
ter a fault is detected, or a pre-specified s simulation timesteps
have elapsed, after which the Quant-FII scheme is invoked to
isolate and identify the true fault. We need to choose k and s
carefully because if k is too large and s is too small, the large
number of remaining fault candidates would make the Quant-
FII inefficient. On the other hand, if k is very small, and s is
large, the isolation and identification task will be delayed. In
the following, we describe the two isolation schemes in more
detail.

6.1 Qualitative Fault Isolation
Our qualitative fault isolation scheme is based on deriving
fault signatures from the TCG. A fault signature is a qualita-
tive representation of the magnitude and higher order changes
in a measurement caused by a fault [Mosterman and Biswas,
1999]. The qualitative deviations of the measurements are
expressed using ‘+’, ‘−’, or ‘0’ symbols which denote that
the observed measurement has increased from nominal, de-
creased from nominal, or is nominal, respectively. Since we
are dealing with noisy measurement environments, we as-
sume that only the magnitude and slope of a signal can be
reliably measured at any point in time [Manders et al., 2000],
and use these information to discriminate between faults. A
typical fault signature of a fault f for a measurement m1 can
be (+−), which denotes a discontinuous increase followed
by a gradual decrease in m1 if fault f occurs. A (0−) sig-
nature of the same fault for another measurement, m2, on the
other hand, implies that the occurrence of f will not generate
any discontinuity in m2, but cause m2 to decrease gradually.

The detection of a fault triggers the symbol generation
module for every measurement. A sliding window scheme,
similar to the one used for fault detection, is applied to the
measurement residuals, and the symbols for the magnitude
and slope for each measurement is determined when they de-
viate [Manders et al., 2000].

Once a fault is detected, the hypothesis generation module
of Qual-FI is invoked. This scheme propagates the changes
in the parameters that are consistent with the observed de-
viation backwards along the TCG to generate the fault hy-
potheses. We combine the work reported in [Roychoudhury
et al., 2006] with our previous work [Mosterman and Biswas,



Table 1: Selected fault signatures for the two-tank system.
Fault f3 f5 f8
R+a

1 −+ 0+ 0+
R+i

1 0− 0+ 0+
R+a

12 0+ −+ 0−
R+i

12 0+ 0− 0−
R+a

2 0+ 0− −+
R+i

2 0+ 0− 0−

1999] to generate both abrupt and incipient fault candidates
for every implicated parameter. For each abrupt fault candi-
date in the hypothesis set, a forward pass on the TCG yields
the fault signatures, i.e., the effect of this fault on all remain-
ing measurements [Mosterman and Biswas, 1999]. Since in-
cipient faults cannot produce discontinities in measurements,
the fault signatures for incipient faults are of the form (0τ),
where τ is the first non-zero symbol in the fault signature of
an abrupt fault in the same system parameter and for the same
direction of change. For example, as shown in Table 1, the
signature of fault R+i

1 for flow f3 is (0−), since that of fault
R+a

1 for flow f3 is (−+).
As additional measurements deviate from nominal, the

generated symbol deviations for these measurements are
compared to the generated fault signatures, and if any fault
signature is inconsistent with the observed symbol for that
measurement, the fault candidate is dropped.

6.2 Quantitative Fault Isolation and Identification
Once the Qual-FI scheme discussed above refines the number
of fault hypotheses to a pre-defined number, or s timesteps
have elapsed, the Quant-FII scheme is started. The Quant-
FII performs both fault isolation and identification. For each
fault candidate that remains at the time Quant-FII is initiated,
we develop a faulty DBN system model, as explained in Sec-
tion 4.3. We then run a particle filter for each of these DBN
fault models, taking as input the measurements from the time
of fault detection, td , as described in Algorithm 1. As more
observations are obtained, only the PF using the correct fault
model, ideally, should be converging to the observed mea-
surements, while the observations estimated by the PFs using
the incorrect fault models should gradually deviate from the
observed faulty measurements. A fault candidate is dropped
if: (i) the Qual-FI drops that fault candidate, or (ii) the mea-
surements estimated by that fault model significantly deviates
from the observed faulty measurements.

A Z-test is used to determine if the deviation of a mea-
surements estimated by the PF from the corresponding actual
observation is statistically significant. Since even the correct
fault model will need some time before the particles start con-
verging to the observed faulty values, we need to delay the
invocation of the Z-tests for sd time steps, as otherwise, the
Z-tests will indicate a deviation from observed measurements
at the very onset for all fault models. We typically assume
that the particles for the true fault model will converge to the
observed measurements within sd time steps of its invocation.

Since the fault magnitude is included as a stochastic vari-
able in every fault model, the magnitude of the true fault (i.e.,

the bias, σa
p , or, the slope, σ i

p) is considered to be that esti-
mated by the PF for the true fault model.

7 Experimental Results
In this section, we present some experimental results obtained
by applying the proposed diagnosis approach to the two tank
system shown in Fig. 3(a). In such hydraulic systems, the ac-
cumulation of sediment in the pipes are common examples of
incipient faults. In addition, sudden blockages of pipes due to
the entry of foreign objects in the pipes through the tanks can
be examples of abrupt faults. These incipient faults are mod-
eled as gradual increases in pipe resistances and represented
as R+i

1 , R+i
12 , and R+i

2 . Abrupt faults are modeled as step in-
creases in the pipe resistances, and represented as R+a

1 , R+a
12 ,

and R+a
2 . The flows, f3, f5 and f8, through pipes R1, R12, and

R2, respectively, are the measured variables for our experi-
ments. In our experiments, we assume all random variables,
and the prior and conditional probabilities are Gaussian Nor-
mal. The mean and variance of each hidden variable is set
based on empirical knowledge of the model. The means and
variances of the observed variables, as well as the conditional
probabilities, are functions of the estimated system parame-
ters, and the parameters of distributions of the hidden vari-
ables. For the experiments below, we set k = 5 and s = 300 s.

System behavior is generated for a total of 400 time steps
using a Matlab Simulink simulation model. According to
standard practice, white Gaussian noise with zero mean and
power −40 dbW is added to the measurements. The mea-
surements are saved to a file, and then run through our fault
diagnosis scheme (implemented in Matlab) to generate our
experimental results.

7.1 Experiment 1
We present a run of our diagnosis scheme for a specific fault
scenario. An incipient fault in pipe R1, R+i

1 , with σ i
R1

= 10%,
is introduced at time step, t = 50 s.

For this experiment, we consider measurements f5 and f8
only. The R+i

1 causes both measurements to increase gradu-
ally from nominal. The fault detector signals an increase in f5
at time step t = 52 s, followed by an increase in f8 at time step
t = 55 s. The symbol generator indicates that these changes
are gradual, and not discontinuous. According to the fault
signatures shown in Table 1, only R+a

1 and R+i
1 are consistent

with the observed deviations.
Therefore, two separate PFs, one each for R+a

1 and R+i
1 are

initiated. The DBNs for the abrupt and incipient fault models
are shown in Fig. 4(c) and Fig. 4(b), respectively. As more
observations are obtained, the Z-tests indicate that the mea-
surement estimates of the R+a

1 PF significantly deviates from
the observed faulty measurements. As soon as a Z-test indi-
cates a deviation, the only remaining fault model consistent
with the observed measurements, i.e., R+i

1 is isolated as the
true fault. While the true injected fault slope is 10%, the
slope of the incipient fault, σ i

R1
, is estimated to be 12% by

the PF (see Fig. 5(c)). The measurements estimated by the
PFs applied to the two fault models are shown in Fig. 5(a)
and Fig. 5(b).
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Figure 5: Experiment 1 results.

7.2 Experiment 2
We now present another experiment for a specific fault sce-
nario. An abrupt fault, R+a

2 , with σa
R2

= 10% is introduced in
pipe R2 at time step, t = 50 s. The measurements used in this
experiment are flows f3 and f5.

The R+a
2 fault causes a gradual decrease in its flow f5 from

nominal. The fault detector signals this deviation at time step
t = 52 s. The symbol generators output the symbols ‘−’ for
the slope of residual of f5, and ‘0’ for the residual magnitude.
This is followed by a 0+ deviation in flow f3. As shown in
Table 1, all faults but R+i

12 , R+a
2 , and R+i

2 are inconsistent with
this observed decrease in magnitude of f3 and f8, and hence,
the fault hypothesis set is {R+i

12 ,R
+a
2 ,R+i

2 }.
The Quant-FII scheme’s task is to both isolate and iden-

tify the magnitude of the true fault. We generate the DBN
model for each of the three faults using the method described
in Section 4.3, and run three PFs on these models, taking as
inputs, only measurements at time points t > 52 s, the time
of detection of the fault. Eventually, the Z-tests indicate that
the observations estimated by the PFs applied to R+i

12 and R+i
2

have significantly deviated from the observed faulty measure-
ments, correctly isolating fault R+a

2 as the true fault. The es-
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Figure 6: Experiment 2 results.

timated measurements from fault models R+i
12 , R+a

2 , and R+i
2

are shown in Fig. 6(a), Fig. 6(b), and Fig. 6(c), respectively
As we can see from Fig. 6(d), the PF identifies the fault

magnitude to be about a 11% step increase in R2, while the
true fault magnitude is 10%.

8 Discussion and Conclusions
PFs have been used extensively for system health monitoring
and diagnosis of hybrid systems [Dearden and Clancy, 2001;
Lerner et al., 2000]. The general approach involves the sys-
tem to include discrete nominal and fault modes, with the evo-
lution of the system in each discrete mode being defined using



differential equations. The process of diagnosis then involves
tracking the observed measurements using a PF that runs on
the comprehensive system model till the particles eventually
converge to a discrete fault mode. PFs have also been used
to diagnose parametric incipient and abrupt faults [Koller and
Lerner, 2001]. The usual approach for using PFs for diagno-
sis, however, cannot alleviate the problem of sample impover-
ishment, wherein particles in faulty state (with typically very
low probability, and hence low weights) are dropped during
the re-sampling process. Even though several solutions to this
problem have been proposed [Verma et al., 2004], the diagno-
sis scheme still has to rank the different fault hypothesis based
on their likelihoods, and report the most likely fault mode that
justifies the observations the best. Our single fault assump-
tion allows us to avoid the sample impoverishment problem
by having a separate fault model for each fault hypothesis.
Also, we do not rank the different fault hypotheses, and drop
candidates based on their inability to track the observed faulty
measurements.

In [Narasimhan et al., 2004], the authors propose an ap-
proach for combining look-ahead Rao-Blackwellised PFs
(RBPFs) with the consistency-based Livingstone 3 (L3) ap-
proach for diagnosing faults in hybrid systems. In this ap-
proach, the nominal RBPF-based observer tracks the system
evolution till a fault is detected, after which L3 generates a set
of fault candidates that are then tracked by the fault observer
(another RBPF). All the fault hypotheses are included in the
same model, and tracked by the fault observer. In contrast,
our approach executes the qualitative and quantitative fault
isolation schemes in parallel, and uses separate fault models
for each fault candidate.

In the future, we seek to investigate and solve a number of
open issues and problems. First, we need to study the observ-
ability of the faulty models and their impact on diagnosis. For
example, in the two tank system shown in Fig. 3(a), it is not
possible to uniquely discriminate between R+i

12 and R+i
2 faults

using measurements f3, f5, and f8. The problem of identi-
fying the correct set of measurements such that the system is
diagnosable as well observable, therefore, is an interesting re-
search issue. Next, we wish to apply our diagnosis approach
to a large real-world system, to analyze the scalability and
efficiency of our methodology. Third, we need to develop
systematic procedures for obtaining the values of design pa-
rameters k, s, and sd . Finally, we would like to improve the ef-
ficiency of our diagnosis approach by deriving reduced DBN
models and running the PFs on these reduced-order models
instead of on the entire system DBN model.
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