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Abstract: This paper presents a Dynamic Bayesian Network (DBN)-based distributed diagnosis
scheme, where each distributed diagnoser generates globally correct diagnosis results without
a centralized coordinator by communicating a minimal number of measurements so that each
diagnoser satisfies local observability properties, and the overall diagnoser is globally observable.
We present a procedure for designing the distributed diagnosers by factoring a system DBN into
the maximal number of smaller DBN Factors (DBN-Fs) that are conditionally independent of
other DBN-Fs, given the communicated measurements. Since each conditionally independent
DBN-F is observable, Bayesian inference schemes can be applied to each factor independently
for distributed tracking of system behavior for isolation and identification of faults without loss
of accuracy. We prove that each local diagnoser guarantees globally correct diagnosis results,
and present some experimental results for an electrical circuit to demonstrate the efficacy of our
diagnosis scheme.

1. INTRODUCTION

To ensure safe and efficient operation of real-world en-
gineering systems, online model-based diagnosis schemes
must be robust to uncertainties, such as sensor noise
and modeling inaccuracies. Dynamic Bayesian Networks
(DBNs) provide a systematic method for modeling the
behavior of dynamic systems in uncertain environments
(Murphy [2002]). A DBN is a directed acyclic graph struc-
ture that represents a probabilistic discrete-time model of
a dynamic system. Nodes in the graph represent random
variables, and links denote causal dependencies between
nodes within a time step, and across time steps. DBNs
exploit the conditional independence between system vari-
ables to provide a compact representation for reasoning
about dynamic systems behavior. Bayesian inference al-
gorithms have been widely used for diagnosis of dynamic
systems represented as DBNs (e.g., see Lerner et al. [2000]
and Roychoudhury et al. [2008]). Unfortunately these cen-
tralized schemes are expensive in memory and compu-
tational requirements, scale poorly to changes in system
configuration, and have single points of failure. Distributed
diagnosis schemes can address these drawbacks of cen-
tralized schemes, as shown in Pencole and Cordier [2005],
Debouk et al. [2000] and Roychoudhury et al. [2009a].

This paper presents a DBN-based distributed diagnosis ap-
proach, where each distributed diagnoser generates glob-
ally correct diagnosis results by communicating a minimal
number of measurements with each other, and not requir-
ing a centralized coordinator. The notion of structural
observability applied to bond graph (BG) models (Seur
and Dauphin-Tanguy [1991]) is exploited to derive DBN
factors (DBN-Fs) that are independently observable, and
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together retain observability for the entire system. We
have developed systematic methods for deriving the DBN-
Fs from a BG model of the system (Roychoudhury et al.
[2009b]), and in this paper, we prove that these factors can
be used as local diagnosers that generate globally correct
results without loss of accuracy.

We implement a particle filter (PF)-based (see Koller
and Lerner [2001]) inference approach on each DBN-F for
fault detection, isolation and identification, and employ
a qualitative fault isolation scheme to improve diagnosis
efficiency. We prove that distributed diagnosers do not
need a coordinator for generating globally correct diag-
nosis results, since the effects of a fault in one DBN-
F propagates to other factors only through the commu-
nicated measurements, which are now considered inputs
to the different diagnosers. Therefore, the PFs that are
implemented for the other remote DBN-Fs track the faulty
data without detecting a fault, and the isolation schemes
in the remote diagnosers do not get activated.

This paper is organized as follows. Section 2 presents
background on modeling for diagnosis, and our diagnosis
approach. Section 3 presents our diagnoser design ap-
proach based on factoring the DBNs into conditionally
independent and observable DBN-Fs, as well as, our dis-
tributed diagnosis architecture. Section 3 also discusses the
important properties of our distributed diagnosis scheme.
Section 4 presents the results of diagnosis experiments on
an electrical circuit. Section 5 presents related work, and
Section 6 concludes the paper.

2. BACKGROUND

2.1 Modeling for Diagnosis

In our work, we systematically derive the diagnosis models
for fault isolation in the form of temporal causal graphs



(a) Schematic.

(b) Bond graph.

Fig. 1. Electrical circuit models.

(TCGs) (see Mosterman and Biswas [1999]), and DBNs for
fault detection and identification (see Roychoudhury et al.
[2008]). All of these models are derived from the system’s
bond graph (BG) model (see Karnopp et al. [2000]).

BGs are topological models that capture energy exchange
pathways in physical processes. The generic elements in
BGs are energy storage (C and I), dissipation (R), trans-
formation (GY and TF ), source (Se and Sf), and detec-
tion (De and Df) elements. The connecting edges, called
bonds, represent energy pathways between the elements.
Each bond, numbered i, has an associated effort, ei, and
flow, fi, variable, such that ei × fi defines the power
transferred through the bond. 0- and 1-junctions repre-
sent parallel and series connections, respectively. Fig. 1(b)
shows the BG of a twelfth-order electrical circuit shown
in Fig. 1(a). In the electrical domain, the effort variables
denote voltage difference across, and flow variables denote
current through, BG elements. For example, f2 = i1
denotes the current through the inductor L1, and e7 = v2
denotes the voltage difference across resistor R1. e1 = vbatt

denotes the voltage imposed by the voltage supply. De : v2
is a voltage sensor.

A TCG is essentially a signal flow graph that captures the
causal and temporal relations between its nodes, which
represent system variables, through directed edges and
their labels. The direction of a TCG edge and its label
are based on causality, which establishes the cause and
effect relationships between the ei and fi variables of
a bond i based on constraints imposed by the incident
BG elements. The sequential causal assignment procedure
(SCAP) systematically assigns the causality in a BG
(see Karnopp et al. [2000]). Energy storage elements can
either impose integral (preferred) or derivative causality.
For example, for a C element in integral causality, ei =

(1/C)
∫
fidt, and hence the TCG shows fi

dt/C−→ ei, with dt
denoting a temporal relationship between fi and ei. For a
C element in derivative causality, the corresponding TCG

edge is ei
C/dt−→ fi, since fi = Cdei/dt.

A DBN can be defined as D = (X,U,Y), where X,
U, and Y are sets of stochastic random variables that

(a) Full DBN. (b) 2-factored DBN.

Fig. 2. DBNs for the electrical circuit.

(a) Incipient fault profile. (b) Abrupt fault profile.

Fig. 3. Fault profiles.

denote (hidden) state variables, system input variables,
and measured variables in the dynamic system, respec-
tively (see Murphy [2002]). Graphically, a DBN is a two-
slice Bayesian network, representing a snapshot of system
behavior in two consecutive time slices, t and t+ 1. Each
DBN time-slice represents the Markov process observation
model, P (Yt|Xt,Ut), while the across-time links repre-
sent the Markov state-transition model, P (Xt+1|Xt,Ut).
The system DBN is constructed from its TCG in integral
causality using the method given in Lerner et al. [2000].
Fig. 2(a) shows the DBN for our example circuit, where
thick-lined circles denote state variables, thin-lined circles
denote observed variables, and squares denote input vari-
ables.

2.2 Modeling Faults

Our diagnosis scheme is geared toward isolating and iden-
tifying incipient and abrupt faults in discrete-time contin-
uous dynamic systems. An incipient fault is a slow change
in a system parameter, p (with nominal parameter value
function, p(t)), and modeled as a linear function with
a constant slope, σi

p, added to the nominal component
parameter value function, p(t), i.e., p±i(t) = p(t)±σi

p×(t−tf ),

t > tf ,where tf is the time of fault occurrence, and p±i(t) is
the temporal profile of parameter p with an incipient fault.
An abrupt fault is modeled as an addition of a constant
persistent bias term, σa

p , to the nominal parameter value,
p(t), i.e., p±a(t) = p(t)±σa

p , t > tf ,where tf is the time of fault



occurrence, and p±a(t) is the temporal profile of parameter
p with an abrupt fault. Fig. 3 shows an incipient and an
abrupt fault profile.

2.3 Our Diagnosis Approach

Our combined qualitative-quantitative model-based diag-
nosis approach was introduced in Roychoudhury et al.
[2008], and has three primary components: (i) fault de-
tection, (ii) qualitative fault isolation (Qual-FI), and (iii)
fault hypothesis refinement and identification (FHRI). In
the following, we present the diagnosis approach briefly,
and refer the reader to Roychoudhury et al. [2008] for
details. As shown in Fig. 4, each individual distributed
diagnoser performs diagnosis using this approach.

Fault Detection For fault detection, a PF-based observer
is implemented on the nominal DBN-F for each diagnoser
to track nominal system behavior. In a “nominal” DBN-F,
only the state and measurement variables are considered as
random variables, and the system parameters are consid-
ered to be deterministic. A PF is a sequential Monte Carlo
sampling method for Bayesian filtering that approximates
the belief state of a system using a weighted set of samples,
or particles (see Koller and Lerner [2001]). Each sample,
or particle, consists of a value for each state variable, and
describes a possible system state. As more observations
are obtained, each particle is moved stochastically to a
new state, and the weight of each particle is readjusted
to reflect the likelihood of that observation given the par-
ticle’s new state. A fault is detected when the difference
between the observed (faulty) and estimated (nominal)
values of any measurement is determined to be statistically
significant using a statistical Z-test (see Manders et al.
[2000]), having accommodated for measurement noise and
modeling error.

Qualitative Fault Isolation Once a fault is detected,
the symbol generator of Qual-FI is activated, which uses
a sliding window scheme to express the magnitude and
slope of every measurement as qualitative ‘+’, ‘−’, or
‘0’ symbols, denoting that the observed measurement has
increased from nominal, decreased from nominal, or is at
nominal, respectively (see Manders et al. [2000]). In the
meanwhile, the hypotheses generation module propagates
the first observed measurement-deviation backwards along
the TCG, and identifies the set of all possible parameter
changes that explain the observed deviation. As explained
in Roychoudhury et al. [2008], we generate both abrupt
and incipient fault hypotheses.

The fault hypotheses are refined by comparing the fault
signatures of the fault hypotheses, i.e., the qualitative
representation of the magnitude and higher order changes
in a measurement caused by a fault and expressed as
qualitative ’+’, ’−’, and ’0’ symbols (Mosterman and
Biswas [1999]), to the observed measurement deviations,
and dropping fault hypotheses inconsistent with the ob-
served deviations from consideration. Fault signatures are
generated from the system TCG. Example fault signature
of a fault, say p+a for a measurement m1 can be (+−),
denoting a discontinuous increase followed by a gradual
decrease in m1 if fault p+a occurs, or (0−), denoting a
gradual decrease in m2 when p+a occurs.

The Qual-FI scheme is run till either the fault hypotheses
set is refined to a pre-defined size, k, a design parameter, or
a pre-specified s simulation timesteps have elapsed, after
which the FHRI scheme is invoked to isolate and identify
the true fault.

Fault Hypothesis Refinement and Identification The
FHRI performs both fault hypothesis refinement and iden-
tification if multiple fault hypotheses remain when FHRI
is initiated. If however, the Qual-FI has refined the set
of hypotheses to a singleton, FHRI performs the task of
fault identification only. For each fault hypothesis that
remains at the time FHRI is initiated, a faulty system
model is generated by extending the nominal DBN-F to
include the fault parameter as a stochastic variable in
the DBN-F, as explained in Roychoudhury et al. [2008].
A PF approach is then implemented using each DBN-F
fault model, taking as input the measurements from the
time of fault detection, td, to track the faulty behavior.
As more observations are obtained, ideally the PF using
the correct fault model will converge to the observed
measurements, while the observations estimated using the
incorrect fault models should gradually deviate from the
observed measurements. A fault hypothesis is removed
from consideration if: (i) the Qual-FI drops that fault
candidate, or (ii) the measurements estimated by that
fault model significantly deviates from the observed faulty
measurements.

A Z-test is used to determine if the deviation of a mea-
surement estimated by the PF from the corresponding
actual observation is statistically significant. Since even
the correct fault model will need some time before the
particles start converging to the observed measurement
values, we need to delay the invocation of the Z-tests for
sd time steps, as otherwise, the Z-tests will indicate a
deviation from observed measurements at the very onset
for all fault models. We typically assume that the particles
for the true fault model will converge to the observed
measurements within sd time steps of its invocation. Since
the fault magnitude is included as a stochastic variable in
every fault model, the magnitude of the true fault (i.e.,
the bias, σa

p , or, the slope, σi
p) is considered to be that

estimated by the PF for the true fault model.

The specific problem we are trying to solve in FHRI
is a combined parameter and state estimation problem,
where we consider the otherwise “constant” fault variable
as part of an extended state vector. As a result, our
FHRI approach is prone to the usual “particle attrition”
and “weight degeneracy” problems, as discussed in Liu
and West [2000]. In this paper, we adopt the location
shrinkage-based solution presented in Liu and West [2000]
wherein a “shrinking” or decaying variance is added to
the fault variable to ensure that enough samples of the
fault variable are generated near its actual true mean, and
particle attrition is avoided.

3. DISTRIBUTED DIAGNOSIS ARCHITECTURE

The basis of our distributed diagnosis approach is con-
struction of the local diagnosers from observable DBN-Fs
that are conditionally independent. A system is observable
if the hidden states of the system can be unambiguously
determined based on the observed measurements. The



Fig. 4. The distributed diagnosis architecture.

observability of DBN-Fs permit our factored inference
scheme to generate accurate inference results. The rest of
this section discusses the observability property and the
design of conditionally independent observable DBN-Fs,
presents our distributed diagnosis approach, and provides
a proof of how the design of the distributed diagnosers
ensures that the local diagnosers generate globally correct
diagnosis without a centralized coordinator.

3.1 Designing the Distributed Diagnosers

The objective of our distributed diagnosis scheme is to gen-
erate globally correct diagnosis results without a central-
ized coordinator, and by communicating a minimal num-
ber of measurements between diagnosers. We achieve this
objective by factoring the system DBN, D = (X,U,Y),
into maximal number of conditionally independent DBN
Factors (DBN-Fs), Di = (Xi,Ui,Yi), i ∈ [1,m], such that
each DBN-F is observable.
Definition 1. (DBN Factor). A DBN Factor (DBN-F),
Di = (Xi,Ui,Yi), i ∈ [1,m], of DBN D = (X,U,Y) is a
smaller DBN such that (i)

⋃
Xi ⊂ X, (ii)

⋃
Yi ⊂ Y, (iii)⋃

Ui = U
⋃

(Y − ∪Yi), and (iv) each Di is conditionally
independent from all other DBN-Fs given the inputs, Ui.

A DBN-F, Dj , is termed conditionally independent of
other DBN-Fs, Dk (k 6= j), given its inputs, Uj , if every
random variable in Dj is conditionally independent of all
other variables in Dk given Uj .

Observability of each DBN-F is crucial for our monitoring
and diagnosis application to ensure efficient and accurate
tracking of nominal system behavior when a PF algorithm
is applied to each DBN-F separately. We term a DBN-F
Dj to be observable if the underlying subsystem it rep-
resents is structurally observable (see Seur and Dauphin-
Tanguy [1991]). Unlike previous factoring schemes, such
as Boyen and Koller [1998] and Ng and Peshkin [2002],
our factoring scheme preserves the system dynamics, and
does not approximate the belief state. Hence, as shown in
Roychoudhury et al. [2009b], our factored inference scheme
improves efficiency of estimation without sacrificing accu-
racy of estimation much.

Our factoring procedure is briefly described below. Details
of this factoring approach, and related formal derivations
and proofs can be found in Roychoudhury et al. [2009b]
and Roychoudhury et al. [2009c], respectively. Our proce-
dure for factoring a DBN involves replacing one or more
of its state variables by algebraic functions of at most r

measured variables, Yr, where r is a user-specified pa-
rameter. Once we express a state variable in terms of Yr,
i.e., X = g−1(Yr), considering Yr to be inputs, we delete
every Xt → Xt+1, Ut → Xt+1, Xt → Yt link, and replace
X with g−1(Yr). Then, we restore an intra-time slice link
g−1(Yr)→ Yt for every Xt → Yt, such that Yt /∈ Yr. The
across-time links into Xt are not restored, since g−1(Yr)
can be computed independently at each time step. The
replacing of sufficient number of state variables in terms of
measurements, and the subsequent removal of across-time
links involving these state variables produces conditionally
independent DBN-Fs.

Fig. 2(b) shows the DBN of the electrical circuit factored
into two DBN-Fs. We assume r = 1 in the following. It
is evident from Fig. 1(a) that the current through the
inductor L5 is equal to v3/R3. Hence, we can replace f35
in Fig. 2(a) with v3/R3, as shown in Fig. 2(b). Since,
v3/R3 can be measured at every time step, all causal
links into this node is removed. As a result, given v3/R3,
every variable in one factor is conditionally independent of
the variables in the other factor. Thus, two conditionally
independent factors are generated.

There are two situations in which a state variable is not
removed from a global DBN: (i) if the removal of this
state variable does not generate any new factors, e.g., the
state variables f2 and f33 are not replaced by functions
of i1 and i6, respectively, as that would not generate any
more factors in Fig. 2(b), and (ii) if the state variable is
associated with an energy storage element that is assumed
to be a possible fault candidate, e.g., the state variable
f10 is not replaced because we assume inductor L3 can
have faults, and hence need to be retained in faulty DBN
models.

We generate the maximum number of observable DBN-Fs
from a given system DBN using a two-step procedure: (i)
generate maximal number of factors possible by replacing
every state variable which can be determined as a algebraic
function of at most r measurements, and (ii) merge unob-
servable DBN-Fs from this maximal factoring into other
factors till all of the generated factors are observable. Since
DBNs can systematically derived from BGs, the structural
analysis of the BG fragment (BG-F) representing a DBN-
F can determine if the system is structurally observable, as
described in Seur and Dauphin-Tanguy [1991]. A system is
structurally observable if in its BG, (i) there exists at least
one causal path for each I and C element in the preferred
integral causality to a sensor element De or Df , and (ii)



Fig. 5. Two-Factored circuit bond graph with imposed
derivative causality.

inverting the causality of every I and C element initially in
integral (preferred) causality still produces a valid causal
assignment for the entire BG 1 .

Given a DBN-F Di, we can test whether or not it is
observable by first mapping Di to a BG-F, and analyzing
this BG-F, Bi for structural observability. Before mapping
a Di to a Bi, we identify the state variables in the
global DBN that were removed to generate Di, and the
measurement variables these state variables were replaced
with. Given this information, the first step of mapping
a Di to a Bi is to replace the I or C element (in the
global BG) corresponding to each state variable that was
removed from the global DBN to generate Di by a Sf
or Se element, respectively, whose value is computed in
terms of at most r measurements. Then, we define Bi to
be that fragment of the system BG that lies between these
newly introduced Sf or Se elements, as the BG is factored
into independent subsystems by these source elements. We
can see that the DBN-Fs shown in Fig. 2(b) map to the
BG-Fs shown in Fig. 5. Both the BG-Fs are structurally
observable as they fulfill both the conditions necessary for
structural observability mentioned above. Note that the
current sensor i1 had to be dualized to assign derivative
causality to the BG-F on the left in Fig. 5.

We propose merging of two or more unobservable DBN-
Fs to generate an observable DBN-F. k DBN-Fs, D1, D2,
. . . Dk, can be merged by restoring those state variables in
the system DBN that were replaced to generate D1, D2, . . .
Dk, redrawing the across-time causal links involving these
state variables, and reintroducing the measurements that
were used to compute these state variables. For details,
please see Roychoudhury et al. [2009c]. Since the two BG-
Fs shown in Fig. 5 are structurally observable, we require
any further merging in our particular example.

Once a system DBN is factored into m DBN-Fs, D1, D2,
. . . Dm, we construct a distributed diagnoser, Di, based
on each DBN-F Di. A diagnoser Di is responsible for
diagnosing faults Fi based on its observations Ui.

3.2 Distributed Diagnosis Scheme

The distributed diagnosis architecture is shown in Fig. 4.
Each distributed diagnoser Di receives input signals Ui,
and observed measurements Yi from the system. Note
that a diagnoser Di’s inputs, Ui, may include some of the
inputs to the global system, i.e., Ui ∩U 6= ∅, as well as
some measurements now considered inputs, i.e., Ui ∩Y 6=
∅. Two diagnosers Dj , Dk communicate a measurement
1 In some situations, this may require changing a De or Df element
into their dual form

Y ∈ Y if Y ∈ Uj ∧ Y ∈ Uk, i.e., measurement Y is an
input to both Dj and Dk.

Each diagnoser Di implements a distributed PF-based
observer on its DBN-F Di. Because the DBN-Fs are
conditionally independent, we can implement a PF on
each DBN-F as an independent process. Each of these
PFs takes as inputs, Ui, and estimates Xi based on
Yi. The particle filters only communicate measurements
(∪iUi)−U between themselves. The PF for the DBN-F Di

uses a |Xi|
|X| particles, where a is a user-specified parameter.

Given m DBN-Fs, we know that
∑

i |Xi| < |X|, where X
is the total number of state states in the complete system.
Therefore, the complexity of tracking using each DBN-F
is less that that of tracking using the global DBN. Also,
since the inference algorithms on the different factors are
executed simultaneously, the total complexity of inference
reduces to the complexity of inference of the particle filter
with the maximum number of particles.

As explained in Section 2.3, each of the distributed PFs
can be used on the nominal DBN-F Di for tracking
nominal system behavior, and detecting faults. Qual-FI
is performed using the measurements in each Di, and
FHRI involves includes extending each Di by including
fault variables as extra state variables.

In our approach, we assume single, persistent, parametric
faults. We start by estimating the nominal behavior of
state variables in each factor by running PF-based ob-
servers in parallel. The observers can be run indepen-
dently of one another due to the independence of a factor,
guaranteed by construction. This independent execution
of the observers in each diagnoser results in the following
property.
Property 1. The failure of one of the observers will not
affect the quality of state estimates at other observers.

Once a fault in Fj is detected in any one diagnoser
Dj , as explained in Section 2.3, first the Qual-FI is
initiated, followed by Quant-FII, till the true fault is
diagnosed. Given the way the DBN-Fs are constructed,
we can argue that our distributed diagnosers fulfill the
following property.
Property 2. A fault φ ∈ Fj can be detected by diagnoser
Dj only, and all other diagnosers, Dk, k 6= j, will not
detect the fault, and hence not get activated, even though
the effect of fault φ propagates to all other factors.

Proof: From Section 3.1, we know that every DBN-F Di

has a one-to-one mapping to a BG-F Bi. As a running
example, note that the two DBN-Fs (say D1 and D2)
shown in Fig. 2(b) correspond to the BG-Fs, B1 and B2

shown in Fig. 5. A diagnoser Di is activated only when a
fault is detected by it. In general, let us assume that the
observer in diagnoser Di uses the state space equations
X̂it+1 = Gi(Xit ,Uit), and Ŷit = Hi(Xit ,Uit). Let us now
assume that there is a fault in BG-F Bk. This means that
functions Gk and Hk do not correctly represent the actual
system any more. As a result, Ŷk 6≈ Yk, and a fault is
eventually detected by Dk. The effects of a fault in Bk

can propagate to another BG-F Bj , j 6= k, through the
shared inputs, (Uj ∩Uk)−U, iff Bk and Bj communicate
at least one measurement, i.e., (Uk ∩Uj)−U 6= ∅. But,



Table 1. Fault Signatures for Diagnoser D1

Fault i3 i1 i2 v1 v2
C−a

2 , C−i
2 , R+a

2 , R+i
2 0− 0− 0− 0+ 0+

L−a
2 0− 0+ 0− −+ −+

L−i
2 0− 0+ 0− 0− 0−

L−a
3 +− 0+ +− −∗ −+

L−i
2 0+ 0+ 0+ 0− 0−

L−a
3 −+ 0+ 0+ 0− 0−
L−i

4 0− 0+ 0+ 0− 0−

Table 2. Fault Signatures for Diagnoser D2

Fault i4 v6 v4 v5
C−a

3 , R+a
4 0+ 0+ +− 0+

C−i
3 , R+i

4 0+ 0+ 0+ 0+

C−a
4 0− +− 0+ +−

C−i
4 , R+a

6 , R+i
6 0− 0+ 0+ 0+

L−a
7 −+ −∗ 0− 0−
L−i

7 0− 0− 0− 0−
R+a

7 , R+i
7 0− 0+ 0+ 0−

since we adopt the single-fault assumption, and since by
construction, two BG-Fs can never share any parameter,
the state space representations Gj and Hj of all other
BG-Fs, Bj , j 6= k, will correctly represent the actual
system dynamics of each BG-F. Hence, Ŷj ≈ Yj , i.e.,
the observers in other diagnosers will correctly track the
faulty measurement, and hence no fault will be detected.
Consequently, if a fault is not detected, the diagnoser will
not be activated.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results obtained
by applying the proposed distributed diagnosis approach
to the electrical circuit shown in Fig. 1(a). Two distributed
diagnosers D1 and D2 are designed for this electrical
circuit, for the top and bottom DBN-F shown in Fig. 2(b),
respectively. Usual faults in such electrical circuits include
degradation of capacitors and inductors, and increase in
resistances. As explained earlier, the global DBN of the
circuit can be factored into two DBN-Fs, shown in Fig. 2,
and a distributed diagnoser is constructed from each
DBN-F. The two diagnosers communicate measurement v3
between each other. Tables 1 and 2 show the possible faults
that must be diagnosed by each of the two diagnosers, and
the qualitative fault signatures for each fault, given the
measurements available to each diagnoser.

In our experiments, we assumed all random variables to be
sampled from Gaussian Normal distributions. The mean
and variance of each hidden variable was set based on
empirical knowledge of the system and sensors. The means
and variances of the observed variables, as well as the
conditional probabilities, are functions of the estimated
system parameters, and the parameters of distributions of
the hidden variables. For the experiments below, we set
k = 2 and s = 300 s. System behavior was generated for a
total of 800 time steps using a Matlab Simulink simulation
model. Gaussian white noise with zero mean and power
−3.01 dbW was added to all measurements.
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(a) Estimation errors for i4 and v6 for fault model R+a
7 .
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(b) Estimation errors for v4 and v5 for fault model R+a
7 .
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Fig. 6. Experimental 1 results.

4.1 Experiment 1

We present a run of our diagnosis scheme for a specific fault
scenario. An abrupt fault in R7, R+a

7 , with σa
R7

= 250, is
introduced at time step, t = 20 s.

From Table 2, we can see that R+a
7 causes a gradual

decrease in i4 and v5, and gradual increase in v4 and
v6 from the point of fault occurrence. The fault detector
first detects a 0− change in i4, and hence, the Qual-FI
generates C−i

4 , R+a
6 , R+i

6 , L−i
7 , R+a

7 , and R+i
7 as possible

fault hypotheses which could explain the observed 0−
change in i4. Then, when a 0− change in v5 is observer,
the fault hypotheses are refined to L−i

7 , R+a
7 , and R+i

7 .
After this, L−i

7 is dropped from consideration when a 0+
deviation is observed in measurement v4. Table 2 shows
that R+a

7 and R+i
7 cannot be discriminated qualitatively,

and since k = 2, the Quan-FII is initiated.

Two separate PFs, one each for R+a
7 and R+i

7 are initiated.
As more observations are obtained, the Z-tests indicate
that the measurement estimates of the R+i

7 PF signifi-
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cantly deviates from the observed faulty measurements. As
soon as a Z-test indicates a deviation, the only remaining
fault model consistent with the observed measurements,
i.e., R+a

7 is isolated as the true fault. It can be seen from
Fig. 6(c) that the estimated fault magnitude converges to
the actual magnitude of the R+a

7 fault that was introduced.
The estimation errors of the PF applied to the abrupt fault
model is shown in Figs. 6(a) and 6(b). As expected, diag-
noser D1 observer tracks the system observations without
detecting any measurement deviation, and hence, activat-
ing the Qual-FI in D1.

4.2 Experiment 2

The following experiment demonstrates that our dis-
tributed diagnosis scheme does not sacrifice accuracy for
improvement of efficiency. To demonstrate this, we gen-
erated two fault models for fault R+a

7 , one using the
global DBN, and the other using a DBN-F, and ran a
PF to identify the true fault magnitude using the two
fault models, with increasing number of particles. Fig. 7
shows the percentage error in identifying the true fault
magnitude for the PF using the full DBN and the factored
DBN, and Fig. 8 shows the time each PF took to converge
to within 20% of the true fault magnitude. The results
show that for the same number of particles, our distributed
FHRI scheme is more accurate, as well as, efficient than the
centralized approach. Also the increase in time taken as the
number of particles are increased occurs at a slower rate
for the factored DBNs. This is expected because the global
DBN has about double the number of state variables than
the DBN-F. However, in Section 3, we described how in our
distributed diagnosis scheme, the total number of particles
available are proportionally distributed amongst the PFs
implemented on different DBN-Fs based on the number of
hidden variables in each DBN-F. Given this scheme, we
can see that a PF on a DBN-F using 200 particles gives
more accurate estimates then a PF on the global DBN with
400 particles, and so on, in less time. Hence, we validate
that our distributed diagnosis scheme does not sacrifice
accuracy for improved efficiency.

5. RELATED WORK

Decentralized diagnosis schemes can be broadly classified
to conform to one of the three protocols presented in De-
bouk et al. [2000], where each local diagnoser is built from
the global system model and uses only a subset of ob-
servable events. Coordination is necessary in the first and

200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

Number of Particles

C
on

ve
rg

en
ce

 T
im

e 
(s

)

 

 
Full DBN
Factored DBN

Fig. 8. Time taken to converge to 20% of true σa
R7

.

second protocols to generate the correct diagnosis result,
but the third protocol generates correct results without
a coordinator. All three protocols, under certain assump-
tions, produce the same results as a centralized diagnoser.
Our approach is similar to the third protocol, but, unlike
the approach presented by Pencole and Cordier [2005],
each individual local diagnoser needs to communicate only
the minimal number of measurements, and not diagnosis
results, from other diagnosers to generate globally correct
diagnosis results.

PFs have been used extensively for system health monitor-
ing and diagnosis of hybrid systems (Dearden and Clancy
[2001], Lerner et al. [2000]). The general approach involves
the system to include discrete nominal and fault modes,
with the evolution of the system in each discrete mode be-
ing defined using differential equations. The process of di-
agnosis then involves tracking the observed measurements
using a PF that runs on the comprehensive system model
till the particles eventually converge to a discrete fault
mode. PFs have also been used to diagnose parametric
incipient and abrupt faults in Koller and Lerner [2001].
The usual approach for using PFs for diagnosis, however,
cannot alleviate the problem of sample impoverishment,
wherein particles in faulty state (with typically very low
probability, and hence low weights) are dropped during
the re-sampling process. Even though several solutions to
this problem have been proposed, such as in Verma et al.
[2004], the diagnosis scheme still has to rank the different
fault hypothesis based on their likelihoods, and report the
most likely fault mode that justifies the observations the
best. In our work, we adopt the “shrinkage” approach
presented in Liu and West [2000] to address this issue.

In Narasimhan et al. [2004], the authors propose an
approach for combining look-ahead Rao-Blackwellised PFs
(RBPFs) with the consistency-based Livingstone 3 (L3)
approach for diagnosing faults in hybrid systems. In this
approach, the nominal RBPF-based observer tracks the
system evolution till a fault is detected, after which L3
generates a set of fault candidates that are then tracked
by the fault observer (another RBPF). All the fault
hypotheses are included in the same model, and tracked
by the fault observer. In contrast, our approach executes
the qualitative and quantitative fault isolation schemes
in parallel, and uses separate fault models for each fault
candidate.

Because the factors are conditionally independent, un-
like distributed decentralized extended Kalman filters



(DDEKF) (see Mutambara [1998]), the failure of one dis-
tributed observer will not affect the estimations of other
observers. Structural observability of each generated DBN-
F guarantees that the distributed observers correctly esti-
mate system behavior during nominal operation. However,
structural observability does not guarantee that the sys-
tem is observable with the fault magnitude introduced as
an extra state variable.

6. DISCUSSION AND CONCLUSIONS

In this paper, we established how the distributed diag-
nosers truly generate globally correct results without any
centralized coordinator, and through communicating the
minimal number of measurements alone, and not individ-
ual diagnoses, unlike other previous work, such as Pencole
and Cordier [2005]. The requirement for communicating
partial diagnoses can be avoided because unlike other
approaches, we have the knowledge of the global system
model that is analyzed carefully for designing the diag-
nosers. However, there are several application domains,
where the global models of large systems do not change,
but they can greatly benefit from our distributed diagnosis
scheme. Further, the DBN-Fs generated using our factor-
ing scheme improves the efficiency of diagnosis without
sacrificing accuracy of diagnosis.

In the future, we seek to investigate the important research
problem of studying the observability of the faulty models
once the extra fault variables are introduced. The problem
of identifying the correct set of measurements such that
the system is observable both during nominal and faulty
operation, therefore, is an important research task. Next,
we wish to apply our diagnosis approach to a large real-
world system, to analyze the scalability and efficiency of
our methodology. Finally, we would like to improve the
efficiency of our diagnosis approach further by ensuring
that the DBN-Fs are so chosen such that minimal number
of fault hypotheses remain at the end of the Qual-FI.
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