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Abstract— Dynamic Bayesian Networks (DBNs) provide a
systematic framework for robust online monitoring of dynamic
systems. This paper presents an approach for increasing the
efficiency of online estimation by partitioning a system DBN
into a set of smaller factors, such that estimation algorithms
can be applied to each factor independently. Our factoring
scheme is based on the analysis of structural observability of the
dynamic system. We establish the theoretical background for
structural observability and derive an algorithm for generating
the factors using structural observability analysis. We present
experimental results to demonstrate the effectiveness of our
factoring approach for accurate estimation of system behavior.

I. INTRODUCTION

Robust online monitoring of safety-critical systems is
essential for their safe and efficient operation. Dynamic
Bayesian Networks (DBNs) [1] provide a systematic method
for modeling the dynamics of complex systems in the pres-
ence of noise and sensor inaccuracies. A DBN is a directed
acyclic graph that compactly models a dynamic system. The
nodes of a DBN represent random variables, and directed
links capture the causal relations between these variables
at a time point, and across consecutive time steps. DBN-
based state-estimation methods apply to nonlinear systems
and arbitrary probability distributions, and hence, generalize
Kalman filtering approaches [1]. However, robust estimation
algorithms using DBNs are exponential in the number of
state variables, and for nonlinear systems and non-Gaussian
noise models, analytic, closed form, exact estimation meth-
ods may not exist. Approximate estimation algorithms (e.g.,
Boyen-Koller (BK) algorithm [2], particle filtering (PF) [3])
are therefore used for state estimation. However, these ap-
proaches require large computational resources as well.

This paper proposes a solution to improving the efficiency
of DBN state estimation by factoring the system model
into multiple non-overlapping factors, by expressing some
of the state variables as algebraic functions of measurements
converted to system inputs. As a result, the across-time
links directed towards these state variables are replaced by
intra-time links from the measurements. This makes some
of the state variables in the generated factors conditionally
independent from the state variables in other factors, given
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the measurements. Hence, the state estimation in one factor
becomes independent of the other factors, and the state
estimation for the individual factors can be carried out sep-
arately, thus increasing the overall computational efficiency.

Estimation of state variables from the system measure-
ments works only if the system is observable. The tradi-
tional schemes for analyzing observability apply to linear
systems and depend on the numerical values of the system
parameters. This work employs the bond graph modeling
paradigm to establish structural observability [4], [5]. Struc-
tural observability does not depend on the numerical values
of the system parameters, and applies to nonlinear systems
where the nonlinearities are in the system components, and
not in the system structure. In this paper, we apply structural
observability analysis to establish a factoring scheme for
DBNs that allow for correct estimation of system state even
when each factor is executed independent of the others.

II. PREVIOUS WORK

Distributed decentralized extended Kalman filters
(DDEKF) [6] represent an approach for subdividing the
estimation problem into smaller subproblems. However, in
DDEKFs, each local component requires both measurements
and state variable estimate from other components to
correctly estimate its states. As a result, inaccuracies in one
component can affect the estimation in other components.
In our estimation approach, the random variables in a factor
are conditionally independent of those in all other factors,
given a subset of the measurements. Hence, failures in
individual factors do not affect the estimates of the other
factors as long as the required measurements are available.

The BK algorithm, presented in [2], creates the individual
factors by eliminating causal links between weakly interact-
ing subsystems. The belief state derived from the individual
factors is an approximation of the true belief state, but the
error in approximation is bounded. However, the bounds
may not be sufficiently precise for online monitoring of
mission-critical systems. Heuristic techniques for automat-
ically decomposing a DBN into factors are presented in [7].
This approach results in lower estimation errors, but the
computed factored belief state is still an approximation. The
Factored Particle filtering (FPF) scheme [8] further reduces
estimation errors by applying the PF scheme to the BK
factored inference approach. Our estimation approach uses
the PF scheme for inference using DBNs and preserves the
overall system dynamics in the factored form. Hence, we
produce accurate state estimates efficiently.



(a) Schematic. (b) Bond graph.

(c) Temporal causal graph.

Fig. 1. Spring-mass-damper system models.

III. STATE ESTIMATION USING DBNS

A. Dynamic Bayesian Networks

A DBN is represented as D = (X,U,Y), where X,
U, and Y are sets of stochastic random variables that
denote (unknown) state variables, system input variables, and
measured variables of the dynamic system, respectively [1].
Graphically, a DBN is a two-slice Bayesian network, rep-
resenting a snapshot of system behavior in two consecutive
time slices, t and t+ 1. Each DBN time-slice represents the
Markov process observation model, P (Yt|Xt,Ut) derived
from causal links Xt → Yt and Ut → Yt, where X ∈ X,
Y ∈ Y, U ∈ U, and subscript t represents time. Similarly,
across-time causal links Xt → Xt+1, Xt → X ′t+1, and
Ut → Xt+1, where X ′ ∈ X, represent the Markov state-
transition model, P (Xt+1|Xt,Ut). Fig. 2(a) shows the DBN
for a spring-mass-damper (SMD) system (shown in Fig. 1(a),
and described below), where thick-lined circles denote state
variables, thin-lined circles denote observed variables, and
squares denote input variables.

B. Deriving DBNs of Physical Systems

We systematically derive the DBN for a physical system
from the system’s temporal causal graph (TCG) [9], which, in
turn, is derived from the system BG [10]. The BG modeling
paradigm provides a framework for domain-independent,
energy-based, topological modeling of physical processes.
The nodes of a BG include energy storage (capacitors, C,
and inertias, I), dissipation (resistors, R), transformation
(gyrators, GY , and transformers, TF ), source (effort sources,
Se, and flow sources, Sf ), and sensor (effort detectors, De,
and flow detectors, Df ) elements. Nonlinear systems are
modeled by parameter values that are functions of other sys-
tem variables. Bonds, drawn as half arrows, with associated
effort, e, and flow, f , variables, represent the power interac-
tion pathways between the bond graph elements, such that
the product, e · f , defines the power transferred through the
bond. 0- and 1-junctions represent idealized connections for
lossless energy transfer between two or more BG elements.

Fig. 1(b) shows the BG of a tenth-order SMD system
(shown in Fig. 1(a)). In the mechanical domain, I elements
represent masses, C elements represent springs, R elements

represent dampers, flows represent velocities (e.g., f2 denotes
the velocity of mass m1, and f6 denotes the relative velocity
between masses m2 and m1), and efforts represent forces,
(e.g, e3 denotes the force on spring k1). We assume that the
velocities f∗2 , f6, f∗9 , f12, f∗15, f18, f∗21, f24, f∗27, and the
force, e5, are the available sensors (measurements) in this
SMD model1. The force, e28 = F , impressed upon mass
m5 is a system input. In this system, the BG parameters are
assumed to be constant.

The TCG, an enhanced signal flow diagram, captures
the causal and temporal relations between system variables
through directed edges and their labels [10]. Causality
establishes the cause and effect relationships between the
e and f variables of the bonds determined by constraints
imposed by the incident BG elements. Some BG elements,
such as the energy storage elements, can either impose
integral (preferred) or derivative causality. The sequential
causal assignment procedure (SCAP) systematically assigns
the causality in a BG [11]. The nodes in a TCG correspond to
the e or f variables of the system BG model. Fig. 1(c) shows
the TCG for the SMD system2. The direction of a TCG edge
and its label are based on causality. For example, for a C
element in integral causality, e = (1/C)

∫
fdt, and hence the

TCG edge directed from the flow to the effort has a label
dt/C, with dt denoting a temporal relationship between f
and e. For a C element in derivative causality, the TCG edge
is directed from the effort to the flow, since f = Cde/dt,
and has a label C/dt. In a BG, the state variables are the
displacement, q (where q̇ = f ), and momentum, p (where ṗ =
e), of C and I elements in integral causality, respectively.

The system DBN is constructed from its TCG using the
method outlined in [9]. After we identify the TCG nodes,
N, which include all state variables, measured variables, and
system inputs; for each N ∈ N, we instantiate nodes Nt and
Nt+1 in the consecutive time slices of the DBN. Then, for
every pair of variables, N,N ′ ∈ N that are algebraically
related, causal links Nt → N ′t and Nt+1 → N ′t+1 are
constructed in each DBN time slice. For every pair of

1If a state variable N is directly measured, we denote the corresponding
sensor reading as N∗, e.g., f∗2 is the measured value of f2.

2For clarity, the measured variables are not shown in the TCG.



(a) Full DBN. (b) 4-factored DBN. (c) 2-factored DBN.

Fig. 2. Factorings of the Spring-mass-damper DBN.

variables, N,N ′ ∈ N having an integrating relation (i.e.,
a delay), the across-time Nt → N ′t+1 link is added to the
DBN. Fig. 2(a) shows the DBN for the SMD system.

C. Using Particle Filtering for State Estimation

The general iterative solution of the DBN state estima-
tion problem is P (Xt+1|Y0:t+1) = αP (Yt+1|Xt+1,Ut)×∑

Xt
P (Xt+1|Xt,Ut)P (Xt|Y0:t), where Y0:t denotes

measurement readings from time 0 to t, and α is the
normalizing factor [1]. In this work, we choose PF as
our iterative algorithm for DBN state estimation [3]. PF
is a sequential Monte Carlo method that approximates the
belief state of a system using a weighted set of samples,
or particles [12]. The value of each particle describes a
possible system state, and its weight denotes the likelihood
of the observed measurements given this particle’s value.
As more observations are obtained, each particle is moved
stochastically to a new state, and the weight of each particle
is readjusted to reflect the likelihood of that observation given
the particle’s new state.

D. Structural Observability

To ensure accurate tracking of system behavior for di-
agnosis, the system must be observable, i.e., all its state
variables can be correctly determined given the available
measurements [13]. We describe a more general property of
structural observability, and show how this property holds for
nonlinear systems. Consider the basic state-space formulation
of a nth-order LTI system: Ẋ = AX + BU, and Y =
CX + DU, where X, U, and Y represent the state, input
and measurement variables of the system, respectively, and
A, B, C, and D are matrices with appropriate dimensions.

Definition 1. [13] (Observability). A system is observable
if its initial state variables, Xt0 , at time t0, can be derived

from the knowledge of inputs, Ut0:tf
, and outputs, Yt0:tf

,
in the time interval [t0, tf ], where tf is the current time.

A system is observable if its observablity matrix, O =[
Ct, (CA)t, . . . , (CAn−1)t

]t
is of full rank, i.e., rank(O) =

n. Therefore, system observability is a function of the
numeric values of the system parameters. An alternative
approach defines observability as a function of the system
structure [4], [5]. This notion of structural observability
holds for a class of structurally equivalent systems. If a
system is structurally observable, but its O matrix is not of
full rank, i.e., rank(O) < n, the full rank can be restored by
perturbing the values of elements of its A and C matrices [4].
The structural observability properties of a system can be
determined by analyzing its BG [4]. The notion of structural
rank (struct-rank) is central to this analysis.

Definition 2. [4] (Structural Rank). Structural rank of a
matrix is defined as the maximal rank of this matrix as
a function of its free parameters, taking into account the
relations between parameters.

For example, struct-rank
([
−R/L1 R/L2

R/L1 −R/L2

])
= 1,

since the second row of the matrix is linearly dependent on
the first row.

Given the BG model of a system with matrices A, B, C,
and D, the system is structurally observable iff [4]:

1) every dynamical element of the BG in integral causal-
ity is causally connected to a measurement sensor, and

2) struct-rank([At Ct]t) = n, where n is the number of
state variables in the system.

Intuitively, condition 1 is satisfied if for each independent
decoupled subsystem, at least one dynamical element in
integral causality is causally connected to a measurement.

Condition 2 is satisfied if the causality of every I and
C element initially in integral causality can be inverted to
produce a valid derivative causality assignment for the BG
model. In some situations, De and Df elements may have to
be changed into their dual form to assign consistent deriva-
tive causality to the BG. This procedure for manipulating
the BG to directly determine the structural rank of matrix
[At Ct]t has been presented as the following result in [4]:

struct-rank
([
A
C

])
= rank

 S11

S21

S31

 = n− td, (1)

where S11, S21, and S31 are components of the junction
structure matrix (introduced below); and td is the number
of dynamical elements remaining in integral causality after
(i) derivative causality assignment is performed, and (ii) the
maximal number of output detectors are dualized to eliminate
as many storage elements in integral causality as possible.
Hence, if every I and C element initially in integral causality
can be assigned derivative causality, we get td = 0, and
condition 2 above is satisfied. Structural analysis of a BG
model can help determine the structural rank of [At Ct]t since
the structure of the BG plays a crucial role in determining
the state-space equations of a system, as we show below.

The junction structure (see Fig. 3) represents the structure
of a BG and contains information about the BG elements,



Fig. 3. Junction Structure.

and how they are interconnected (this is independent of the
numerical values of the parameters). The junction structure
can be represented using a junction structure matrix, S [5]: Ẋi

Din

Y

 =

 S11 S12 S13 S14

S21 0 S23 S24

S31 0 S33 S34


 Zi

Ẋd

Dout

U

 (2)

where the state vector Xi is composed of energy variables
(p and q variables) of I and C elements in integral causality
(denoted by subscript i), Xd is the vector of energy variables
of I and C elements in derivative causality, Y is the vector
of system outputs, and U is the vector of system inputs. Din

and Dout represent the effort or flow variables imposed upon,
and imposed by the R elements, respectively, as shown in
Fig. 3. Zi and Zd denote the vector of flow (respectively,
effort) variables of I (respectively, C) elements in integral
and derivative causality, respectively.

Basic laws associated with each component produce
Dout = LDin, and Zi = FiXi, where L is a diagonal
matrix composed of R and 1

R coefficients, and Fi is com-
posed of 1

I and 1
C coefficients. We assume that the original

system models do not have I and C elements in derivative
causality, as these elements can be usually collapsed into
one “equivalent” inductor or capacitor in integral causality.
Hence, in this work, we assume that Xd and Zd do not
exist. Therefore, state-space equations of a system can be
derived from its corresponding junction structure matrix as
follows [4]: Ẋi = AXi + BU and Y = CXi +DU, with

A = [S11 + S13L(I − S23L)−1S21]Fi

B = [S14 + S13L(I − S23L)−1S24]

C = [S31 + S33L(I − S23L)−1S21]Fi

D = [S34 + S33L(I − S23L)−1S24].

To prove Eqn. (1), let us assume Xi = [Xt
i1
Xt

i2
]t, with

Xi1 ∈ Rn−m, Xi2 ∈ Rm, and rank([S11 S12]) = m. Given
the junction structure matrix shown in Eqn. (2), inverting
the causality of as many I and C elements from integral
to derivative causality, while retaining consistent causality
assignments in the BG model without having to dualize the
output detectors yields a new junction structure: Ẋi1

Zi2

Din

Y

 =

 0 M1 0 M2

M3 M4 M5 M6

0 M7 M8 M9

M10 M11 M12 M13


 Zi1

Ẋi2

Dout

U

 ,(3)

where Xi1 represents state variables that correspond to I and
C elements remaining in integral causality after derivative
causality assignment is performed, and Xi2 represents state
variables that correspond to those I and C elements that are
assigned derivative causality.

Dualizing of detectors implies decomposing Y =
[Y t

1 Y t
2 ]t, Y ∈ Rp, and Y1 ∈ Rp∗, where Y1 represents the

sensors that are dualized, and Y2 represents those sensors that
are not dualized. After dualizing the sensors, a new junction
structure is built as follows [4]: Ẋi

Z
D∗

in

Y2

 =

 0 N1 0 0
N2 N3 N4 N5

0 N6 N7 N8

0 N10 0 N11


 Zi

Ẋ
D∗

out

U∗

 , (4)

where, U∗ = [U t Y t
1 ]t. In Eqn. (4), Ẋi depends only

on the Ẋ variables now in derivative causality. Eqn. (4)
can also be obtained using the invertible matrix con-
tained in [St

11 St
21 St

31]
t. Hence, rank([St

11 St
21 St

31]
t) =

n − td. Finally, we can prove struct-rank([At Ct]t) =
rank([St

11 St
21 St

31]
t) using the same considerations as in

Appendix 1 of [4], but with matrix [At Ct]t.
The proposed method for analyzing structural observabil-

ity for linear systems can be extended for nonlinear systems
when the nonlinearities can be expressed by making the I , C,
and R values as functions of other variables, since the notion
of junction structure remains unchanged from that of linear
systems. However, this equivalence does not hold when the
nonlinearities are linked to the system structure [4].

IV. FACTORING DBNS FOR EFFICIENT ESTIMATION

A. Problem Statement

Given a DBN D = (X,U,Y), our goal is to factor D
into the maximal number of conditionally independent DBN
Factors (DBN-Fs), Di = (Xi,Ui,Yi), i ∈ [1,m], such that
each DBN-F is observable. Observability and conditional
independence of each DBN-F is a necessary condition for
ensuring efficient and accurate state estimates when the
estimation algorithm is applied to each DBN-F separately.

Definition 3 (DBN Factor). A DBN Factor (DBN-F), Di =
(Xi,Ui,Yi), i ∈ [1,m], of DBN D = (X,U,Y) is a
smaller DBN such that (i)

⋃
Xi ⊂ X, (ii)

⋃
Yi ⊂ Y, (iii)⋃

Ui = U
⋃

(Y − ∪Yi), and (iv) each Di is conditionally
independent from all other DBN-Fs given the inputs, Ui.

Definition 4 (Conditionally Independent DBN-F). Any
DBN-F, Dj = (Xj ,Uj ,Yj), of a global DBN, D =
(X,U,Y), is conditionally independent from all its other
DBN-Fs Dk = (Xk,Uk,Yk), s.t. k 6= j, k ∈ [1,m] given Uj

if (i) P (Xjt+1 |Xt−n:t ,Ut−n:t) = P (Xjt+1 |Xjt−n:t ,Ujt−n:t),
and (ii) P (Yjt |Xt ,Ut) = P (Yjt |Xjt ,Ujt).

Definition 5 (Observable DBN-F). A DBN-F, Dj =

(Xj ,Uj ,Yj) is observable if the underlying subsystem it
represents is structurally observable.

Example: Fig. 2(b) shows four DBN-Fs, D1 = ({f2, e3, e7},
{f∗9 }, {f∗2 , f6, e5}), D2 = ({e13}, {f∗9 , f∗15}, {f12}),
D3 = ({e19}, {f∗15, f∗21}, {f18}), and D4 = ({e25, f27},
{f∗21, F}, {f24, f∗27}). As shown in Defn. 3, ∪i∈[1,4]Xi ⊂ X,
∪i∈[1,4]Yi ⊂ Y, ∪i∈[1,4]Ui = U ∪ (Y − ∪Yi). Also, each
DBN-F shown in Fig. 2(b) is conditionally independent of
all other DBN-Fs. For example, in the global DBN shown in
Fig. 2(a), the value of variable e13 at time step t+1 depends



on variables f9, e13, and f15 at time step t, and variables f2
and e7, among others, at time step t−1, and so on. However,
DBN-F, D2, shown in Fig. 2(b), is conditionally independent
of all other DBN-Fs given its inputs f∗9 and f∗15 because the
values of its state variable, e13, and measurement variable,
f12, at time t, do not depend on any variable external to D2.

B. Overview of Factoring Approach

Our procedure for factoring a DBN involves replacing one
or more of its state variables by algebraic functions of at
most r measured variables, Yr, where r is a user-specified
parameter. Once we express a state variable in terms of
Yr, i.e., X = g−1(Yr), considering Yr to be inputs, we
delete every Xt → Xt+1, Ut → Xt+1, Xt → Yt link, and
replace X with g−1(Yr). Then, we restore an intra-time
slice link g−1(Yr) → Yt for every Xt → Yt, such that
Yt /∈ Yr. The across-time links into Xt are not restored,
since g−1(Yr) can be computed independently at each time
step. The replacing of sufficient number of state variables
in terms of measurements, and the subsequent removal of
across-time links involving these state variables produces
conditionally independent DBN-Fs.

The goal of our factoring scheme is to generate the maxi-
mal number of DBN-Fs that are each observable. A DBN can
be factored into maximal number of observable DBN-Fs by
(i) generating maximal number of (possibly unobservable)
conditionally independent factors by replacing every state
variable which can be determined as an algebraic function
of at most r measurements, and (ii) merging unobservable
DBN-Fs from this maximal factoring into other factors till
all of the generated factors are observable.
Example: For the DBN shown in Fig. 2(b), assuming r = 1,
measurements, f∗2 , f∗9 , f∗15, f∗21, and, f∗27, each depend on the
single state variable, f2, f9, f15, f21, and, f27, respectively.
In this system, f15 is directly measured, so f∗15 = g(f15)
trivially exists, and so does the function h = g−1. (More
generally, a set of measured variables may be needed to
establish the value of a state variable, and h will be a function
derived from f and g.) Hence, as shown in Fig. 2(b), if we
replace f15 with the measurement, f∗15, we no longer need
variables f9, e13, f15, e19, and f21 to compute f15. Thus the
across-time links to f15 can be removed. So, given the mea-
surement f∗15, the DBN-Fs D2 = ({e13}, {f∗9 , f∗15}, {f12})
and D3 = ({e19}, {f∗15, f∗21}, {f18}) are conditionally inde-
pendent. Repeating the above procedure and replacing f9
and f21 yields the maximally factored SMD DBN, shown
in Fig. 2(b), which contains 4 DBN-Fs. The two middle
DBN-Fs in Fig. 2(b) are not observable, since the single
state variable in either of the two DBN-Fs does not affect
the observed variable. However, the factoring generated by
merging each unobservable DBN-F to its observable neigh-
bor (see Fig. 2(c)) results in a factoring where all DBN-Fs
are observable.

C. The Factoring Algorithm

Our algorithm for generating maximal number of observ-
able DBN-Fs from a given DBN is as follows: (i) partition

Algorithm 1 Generating factors of a DBN.
Input: System DBN, D
Generate maximal Factoring1 = {D1, D2, . . . , Dn}
SetOfFactorings = {Factoring1}
while true do

SetOfObsF = ∅; SetOfUnobsF = ∅;
for each Factoringi ∈ SetOfFactorings do

if every DBN-F in Factoringi is observable then
SetOfObsF = SetOfObsF ∪ Factoringi

else
SetOfUnobsF = SetOfUnobsF ∪ Factoringi

if SetOfObsF 6= ∅ then
BestFactoring = Factoringj ∈ SetOfObsF having the
most number of balanced DBN-Fs
exit

else
NextBestFactoring = Factoringj ∈ SetOfUnobsF hav-
ing the most number of unobservable DBN-Fs

SetOfFactorings = all possible pairwise mergings of the DBN-Fs
of NextBestFactoring

Fig. 4. Four-Factored SMD bond graph with imposed derivative causality.

the DBN into maximal DBN-Fs, (ii) map each generated
DBN-F to a BG fragment (BG-F) and analyze the structure of
this BG-F to determine if the DBN-F is observable, and (iii)
merge every unobservable DBN-F with other DBN-Fs so as
the resultant DBN-Fs may be observable, till all DBN-Fs are
observable. These steps (shown in Algorithm 1) are presented
in detail below. We assume that the system to be factored is
observable, as otherwise, no factoring with only observable
factors exist. Also, we assume that we have sufficient sensors
to allow factoring.

1) Step 1 - Generating Maximal Factoring: Given the
user-specified parameter, r, we analyze the system DBN to
identify all state variables that are algebraic functions of
single measurements, or pairs of measurements, or triples,
and so on, up to r measurements. Then we express these state
variables in terms of a subset of measurements, remove the
state variables, and all across-time links directed into them.
The maximally factored DBN for the SMD system is shown
in Fig. 2(b). However, a state variable is not expressed in
terms of measurements if the removal of this state variable
does not generate any new factors. For example, in Fig. 2(b),
f2 is not replaced with measurement f∗2 since this does not
generate any new factors.

2) Step 2 - Testing Observability of DBN-Fs: Given a
DBN-F Di, we can test whether or not it is observable by
first mapping Di to a BG-F, and analyzing this BG-F, Bi

for structural observability. Before mapping a Di to a Bi,
we identify the state variables in the global DBN that were
removed to generate Di, and the measurement variables these



Fig. 5. Three-Factored SMD bond graph with imposed derivative causality.

Fig. 6. Two-Factored SMD bond graph with imposed derivative causality.

state variables were replaced with. Given this information,
the first step of mapping a Di to a Bi is to replace the I or
C element (in the global BG) corresponding to every state
variable that was removed from the global DBN to generate
Di by a MSf or MSe element, respectively, whose value
is computed in terms of at most r measurements. Then, we
define Bi to be that fragment of the system BG that lies
between these newly introduced MSf or MSe elements,
as the BG is factored into independent subsystems by these
source elements.

Proposition 1. A BG may be factored into independent BG
factors B1, B2, . . . , Bn by replacing an I or C element with
a MSf or MSe element, respectively.

Proof: A capacitor C1’s constituent equation is eC1 =
1

C1

∫
fC1 dt. In the state-space formulation, fC1 can be

expressed in terms of other state variables. Hence, any
measurement or state variable that depends on eC1 would,
in turn, be dependent on fC1 , and possibly every other state
variable. Now, if fC1 can be measured, and we replace
C1 with modulated MSeC1 = g−1(fC1), the dependence
between eC1 and all other state variables is broken, and the
BG is factored into independent BG-Fs. The proof similarly
follows for an I element replaced with a modulated MSf . �
Example: The maximally factored SMD DBN has four
DBN-Fs (Fig. 2(b)), which correspond to the BG-Fs shown
in Fig. 4. The two outer BG-Fs are structurally observable,
as all their energy storage elements can be assigned preferred
derivative causality (albeit by dualizing an effort sensor into
a flow sensor, indicated by the shaded background, in the first
BG-F), and every state variable affects at least one sensor.
The two BG-Fs in the middle, however, are not observable,
since, in each of these two BG-Fs, the single state variable
does not causally affect the flow sensor. Hence, the maximal
DBN factoring shown in Fig. 2(b) cannot be used for accurate
state estimation, and some of the factors need to be merged
to generate observable DBN-Fs.

3) Step 3 - Merging Unobservable Factors: Unobservable
DBN-Fs can be merged with other DBN-Fs to generate an
observable DBN-F. m DBN-Fs, D1, D2, . . . , Dm, can be
merged by restoring those state variables and across-time
links in the system DBN that were replaced to generate
D1, D2, . . . Dm. The measurements that were used to com-
pute these state variables are also reintroduced.

Merging an unobservable DBN-F, D1, with another DBN-
F, D2, results in DBN-F, D1,2, which maps to the BG-F,
B1,2. The merging of D1 and D2 results in the replacement
of at least one source element in B1 and B2 with a I or C
element, and reintroduction of at least one sensor element
in the resultant B1,2. Since, the reintroduced measurement
sensors are directly connected to the reinstated I or C
elements in B1,2, condition 1 of structural observability
is satisfied for these reintroduced energy storage elements.
Moreover, the new sensor can be causally linked to other I or
C elements that are not linked to any sensor element, further
aiding the satisfaction of condition 1 for B1,2. Also, the
greater are the number of sensors in B1,2, the greater is the
flexibility for dualizing these sensors to satisfy condition 2.

Algorithm 1 shows how the merging procedure is in-
voked if a DBN-F in the maximally factored DBN is not
observable. In each iteration of this algorithm, we create
new factorings through all possible pairwise mergings of
unobservable DBN-Fs, to create at least one new factoring
with all its DBN-Fs observable. When multiple factorings are
generated, we use a heuristic to choose that factoring which
has the most number of balanced DBN-Fs with respect to
state variables. If the merging step does not generate any
factorings with all its DBN-Fs observable, we select the
maximal factoring with the largest number of factors and
highest number of unobservable DBN-Fs, and generate the
next set of factorings by pairwise merging of unobservable
DBN-Fs. This procedure is repeated till we obtain at least
one factoring where all the DBN-Fs are observable. Since
the system was initially observable, continued merging will
eventually result in a factoring in which all DBN-Fs are
observable, at worst producing the original DBN model.
Therefore, our factoring algorithm terminates.
Example: The unobservable DBN-Fs, shown in Fig. 2(b),
can be merged in two possible ways to form two different
factorings. The factoring shown in Fig. 5 corresponds to a
DBN-F generated by merging the two central DBN-Fs, and
is not unobservable (since capacitor k4 does not provide a
consistent causal assignment when it is assigned derivative
causality). However, the two BG-Fs shown in Fig. 6, and
corresponding to the DBN-Fs shown in Fig. 2(c), are ob-
servable, and hence, we select this as our desired factoring.

D. Tracking using Factored DBNs

Given m observable DBN-Fs, D1, D2, . . . , Dm, we can
implement an inference algorithm on each DBN-F as an
independent process. For our work, we implemented m PFs,
one for each DBN-F. Each PF takes as inputs, Ui, and
estimates Xi based on Yi. Only measurements

⋃
i Ui are

communicated between PFs. The PF for the DBN-F Di uses



a |Xi|
|X| particles, where a is a user-specified parameter. For

m DBN-Fs,
∑

i |Xi| < |X|, where X is the total number
of states in the complete system. Therefore, the complexity
of tracking using each DBN-F is less than that of tracking
using the global DBN. Also, since the inference algorithms
on the different factors are executed simultaneously, the total
complexity of inference reduces to the complexity of the PF
with the maximum number of particles.

V. EXPERIMENTAL RESULTS

For our experiments, we assumed all probability dis-
tributions to be Gaussian, and all sensors to have white
Gaussian noise with 0 mean and power 1 dbW. We estimated
the state variables using the DBN factorings shown in
Fig. 2(c) for 10 runs. Given m DBN-Fs, Di = {Xi,Ui,Yi},
i = 1, 2, . . . ,m, such that X = X1 ∪ X2 ∪ . . .Xm,
for each run we computed the estimation error: E =
1
|X|
∑

X∈X

(
1
T

∑T
t=0 (Xt −Xmodel

t )2
)

, where T is the total
simulation time, Xt denotes the estimated value of state X
at time t, and Xmodel

t denotes the actual value of state X at
time t obtained from the simulation model. Table I reports
the mean and standard deviation of errors obtained from each
factoring over all runs.

To demonstrate that the factoring scheme preserves the
system dynamics, we hypothesized the difference in errors
for the 2-factor and unfactored DBN would not be statisti-
cally significant, and the error for the 4-factor DBN would
be significantly larger than the unfactored DBN. Further the
difference in error for the 2-factor and 4-factor DBNs would
also be statistically significant. We ran t-tests to establish
significance of the differences. The tests for significance
indicated that the errors obtained using the 2-factor DBN
did not significantly differ from that obtained using the
unfactored DBN (p < 0.05), while those obtained using the
4-factor DBN was significantly greater (p < 0.05). The test
of significance between the 2- and 4-factor DBN showed
that the error in the 4-factor DBN was significantly larger
(p < 0.05). Therefore, the 2-factor DBN preserves dynamics
of the unfactored DBN, whereas the 4-factor DBN, which
has unobservable factors, does not.

Table II shows the average time taken by the slowest PF
for each factoring to track system behavior for 1500 time
steps. The time taken by a PF depends on the number of
particles it uses. In our experiments, the number of particles
used by a PF was proportional to the number of states in

TABLE I
ESTIMATION ERRORS AVERAGED OVER 10 RUNS

No. of Factors → 1 2 4
Mean 0.1143 0.1381 0.1968

(Standard Deviation) (0.0360) (0.0470) (0.0314)

TABLE II
TIME TAKEN FOR PARTICLE FILTER TO COMPLETE ESTIMATION

No. of Factors → 1 2 3 4
Time (s) 137.03 37.74 18.79 18.97

the DBN factor the PF was associated with. Hence, PF for
unfactored DBN (with 1000 particles) took the most time,
followed by the PF on the larger DBN-F of the 2-factor DBN
(with 500 particles). The least amount of time was taken by
the PFs applied to the 4-factor DBN, since its largest DBN-F
has 3 state variables, and hence, its PF used 300 particles.

VI. DISCUSSION AND CONCLUSIONS

This paper presented an approach for factoring DBNs
based on structural observability. Each of the DBN factors
are conditionally independent from all other factors given
the measurements that are communicated between them, thus
preserving the dynamics of the global system behavior. Ex-
perimental results showed that factoring maintains inference
accuracy in DBNs while improving the efficiency of DBN
inference in the presence of sensor noise. Future work will
focus on evaluating inference accuracy in the presence of
sensor faults. In particular, we need to evaluate the effect on
inference caused by faults in sensors that decouple two or
more DBN-Fs. Our intuition is that the presence of a fault
in such a sensor will affect the estimation accuracy of the
state variables in only those factors which uses this sensor as
an input. The estimation accuracy of state variables in other
factors will remain unaffected by this sensor fault, since each
factor is conditionally independent given the measurements
used as system inputs.
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