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Abstract
Accurate and efficient modeling and simulation ap-
proaches are essential for design, analysis, diag-
nosis, and prognosis of complex embedded sys-
tems. This paper presents an efficient simulation
scheme for systems with mixed continuous and
discrete behaviors. We model hybrid systems us-
ing hybrid bond graphs (HBGs), a multi-domain
physics-based modeling language that incorporates
local switching functions that enable the reconfig-
uration of energy flow paths. We exploit the in-
herent causal structure in HBGs to derive hybrid
simulation models as reconfigurable block diagram
(BD) structures. Considerable computational sav-
ings are achieved during simulation by identify-
ing fixed causal assignments when the simulation
model is derived. Fixed causal assignments reduce
the number of possible computational structures
across all mode changes, and this leads to an over-
all reduction in the complexity of the BD simula-
tion models and in their reconfiguration procedures.
This approach has been implemented as a software
tool called the MOdeling and Transformation of
HBGs for Simulation (MOTHS) tool suite. Simula-
tion models of an electrical power distribution sys-
tem that includes a fast switching inverter system
are derived using the MOTHS tool suite, and ex-
perimental studies on this system demonstrate the
effectiveness of our approach.

1 Introduction
Accurate and efficient modeling and simulation approaches
are essential for design, analysis, diagnosis, and progno-
sis of complex embedded systems. To address these needs,
we have developed component-oriented modeling techniques
based on hybrid bond graphs [1], and a model-integrated de-
sign methodology for efficient simulation that facilitates di-
agnosis and prognosis experiments [2, 3]. Building accurate
and efficient simulation models for hybrid, nonlinear systems
is not trivial, especially since the simulation must deal with
the computation of nonlinear behavior and system reconfigu-
rations that produce discrete behavior changes. For systems
where reconfigurations occur at high frequencies, such as

modern electrical power distribution systems with electronic
switching and control [4], it is especially important to main-
tain accuracy in the generated behaviors without sacrificing
simulation efficiency.

The bond graph (BG) modeling language allows for multi-
domain, topological, lumped-parameter modeling of physi-
cal process, such as electrical power systems, by capturing
their energy exchange mechanisms [5]. The nodes of a bond
graph include primitive energy storage (C and I), energy dis-
sipation (R), energy transformation (TF and GY ), and en-
ergy source elements (Se and Sf ). The n-port I (or C)-
fields allow for extended energy storage models, where each
I (or C)-field is defined by an n × n matrix. The connect-
ing edges, called bonds, define energy pathways between el-
ements. Each bond has two associated variables: effort, e,
and flow, f , and their product represents the rate of energy
transfer. In the electrical domain, effort denotes voltage and
flow denotes current. Each BG element relates the effort and
flow variables on the bonds connected to it. For example,
since the voltage drop across a resistor is the product of its
resistance and the current flowing through it, the constituent
equation relating the effort and flow at a resistor is e = Rf ,
where R is the resistance. BG components are connected to
one another using two idealized connection elements, the 0-
and 1-junctions. For a 0-junction, the efforts of all incident
bonds are equal, and the sum of flows is zero, while for a
1-junction, the flows of all incident bonds are equal, and the
sum of efforts is zero. Therefore, in the electrical domain, the
0- and 1-junctions represent parallel and series connections,
respectively.

In describing the input-output behavior of a component,
the independent variable at each bond must be determined.
Causality expresses the computational dependencies between
the effort and flow variables in the BG components. For ex-
ample, the causality at a resistor, R, determines whether the
direction of computation is e = Rf , or f = e/R. Similarly,
at a 1-junction, causality denotes which bond’s flow defines
the flow values of all other incident bonds. Visually, causality
is represented by a causal stroke at the end of the bond where
the effort is imposed. Consequently, a flow is imposed on the
other end of the bond. For example, in Fig. 1, bond 2 imposes
flow on the 1-junction, when on.

The continuous BG representation has been extended to
model hybrid systems by several researchers [6–9]. Our



Figure 1: Semantics of a switching 1-junction.

approach, hybrid bond graphs (HBGs), introduces discrete
mode changes through idealized switching junctions that can
turn on or off, thereby reconfiguring the energy flow paths
in the model [10]. In the electrical domain, for example, a
switching junction represents an electric switch that can con-
nect or disconnect different circuit components. A two state
(on and off ) finite state machine implements the junction con-
trol specification (CSPEC). Transitions between states may
be functions of system variables and/or system inputs. When
a switching junction is on, it behaves like a conventional
junction. When off, all bonds incident on a 1-junction (or
0-junction) are deactivated by enforcing 0 flows (or efforts)
on all bonds incident on that junction (see Fig. 1). The sys-
tem mode at any given time is determined by composing the
modes of the individual switching junctions. The system con-
figuration in each mode implies the causal structure among
the system variables.

In our work, we adopt the block diagram (BD) formalism
as the computation model for the HBGs because the input-
output formulation of each block in a BD can be determined
using the causality information captured by HBGs. BDs are
also advantageous because: (i) the BD formalism is a widely
used computational scheme, and (ii) BD models preserve the
component structure of the model, which facilitates introduc-
tion of faults into components for simulation-based diagnosis
and prognosis studies.

When a junction switches on/off, it gains/loses its deter-
mining bond (see Fig. 1), thereby resulting in a change in
the causality assignment, and hence the computational struc-
ture, at that junction. Moreover, the causality of adjacent
elements may also need to be reassigned as a result of this
change. Since mode changes result in causality reassignment
in HBGs, we represent hybrid systems using reconfigurable
BD models [2, 11]. These reconfigurable BD models include
switching elements that enable the online reconfiguration of
the BD components to account for different causality assign-
ments in different system modes. Every time a mode change
occurs, causalities are incrementally reassigned from the pre-
vious mode, and the effort and flow links are rerouted by the
switching elements to ensure that the computational model
matches the new causality assignment [2]. This approach, as
is, produces acceptable results when mode changes are in-
frequent. However, for fast switching systems with frequent
mode changes, e.g., electrical power conversion and distribu-
tion systems, invoking the procedure for reassigning causal-
ity at every mode change may produce unnecessary compu-
tational overhead, which leads to significant increases in the
simulation execution times. Also, the BD models may in-
clude extraneous switching elements and signal connections,

Figure 2: Block diagram of a boost-buck AC inverter.

Figure 3: Circuit model of a boost-buck AC inverter.

which account for causality assignments that never occur dur-
ing the simulation.

Hence, to improve the simulation efficiency, we iden-
tify bonds whose causal assignments are fixed across mode
changes in the HBG model, and use this information to re-
strict possible reconfigurations that can occur in the simula-
tion model. As a result, the generated BD models are space-
efficient because the number of switches needed for each BD
component, as well as the number of possible signal connec-
tions are reduced. We also confine the propagation of the
effects of mode changes to only the required parts of the sim-
ulation model, which are typically small in number, thereby
reducing the computational effort required to execute mode
changes during simulation. We demonstrate the effectiveness
of our approach by applying it to a power conversion and dis-
tribution testbed developed for diagnosis and prognosis stud-
ies at NASA Ames Research Center [3].

2 Motivating Example: AC Inverter
The Advanced Diagnostics and Prognostics Testbed
(ADAPT) models aircraft and spacecraft power distribution
systems [3]. It includes batteries for power storage, inverters
for DC to AC power conversion, a power distribution network
made up of a number of circuit breakers and relays, and a
variety of DC and AC loads. In this paper, we focus on the
AC subsystem, and develop the fast-switching inverter model
to motivate our approach.

The inverter, a two-stage boost-buck DC-AC converter [4],
consists of a cascade connection between a boost DC-DC
converter with a full-bridge buck DC-AC converter to achieve
a transformerless DC-AC step-up conversion (see Fig. 2).
The boost converter boosts the input DC voltage to a higher
value (190 V, in our case), and the buck converter stage gen-
erates the sinusoidal AC voltage. The fast switching in the
boost and buck converters are governed by two sliding mode
controllers, one for each stage of the inverter.



Figure 4: Inverter HBG component model.

Table 1: Inverter Model Parameter Values

Inductances (H) L1 = 0.0022, L2 = 0.075
Capacitances (F) C1 = 0.0069, C2 = 6× 10−6

Resitances (Ω) Ron = 489.49
Sliding mode α = 0.8 , β = 4.3649

controller 1 parameters δ = 111.375, K = 829.3347
Sliding mode a1 = 15.915,

controller 2 parameters a2 = 0.0048
Reference Voltages (V) v1Ref = 190,

v2Ref = 120
√

2 sin(120π)

The equivalent circuit model of the boost-buck DC-AC in-
verter is shown in Fig. 3, where S1 is a conventional power
switch, and S2 corresponds to a full bridge switch. The con-
trol signals for S1 and S2 are u1 and u2, respectively. The
differential equations for the system can be found in [4], and
the model parameters are listed in Table 1. The internal re-
sistance Ron accounts for the current that the inverter draws
from the battery when it is disconnected from its loads.

The HBG model of the inverter, derived from its circuit
model, is shown in Fig. 4. Switch S1 is represented by the
synchronous switching junctions j1 and j2, i.e., they share
the same CSPEC function. Switch S2, is represented by the
switching junctions j3 − j6, with j3 and j5 having the same
CSPEC as junctions j4 and j6, respectively. The switching
conditions for junctions j3 and j4 are logical negations of
those for junctions j5 and j6.

The sliding mode controllers are also modeled using
HBGs. They generate signals that switch the inverter junc-
tions at kilohertz rates. One approach to simulating the HBGs
would be to invoke the causal reassignment procedure at ev-
ery mode change to compute the updated model configura-
tions before the continuous simulation is resumed [2]. How-
ever, careful inspection of the inverter HBG model shows that
the causality assignments at the switching junctions remain
the same when the junctions are on. When the junctions are
off, the causal changes do not propagate to adjacent junc-
tions (see the next section for details). Therefore, the calls
to the causal reassignment procedure at every mode change
are not necessary, and should be avoided since they consid-
erably slow down the execution of the simulation. If we can
identify the causality assignments that do not change when
reconfigurations occur, the number of calls to the causal re-

assignment procedure can be reduced, and the model recon-
figuration task can be simplified. The knowledge of causality
assignments that do not change when reconfigurations occur
can also be used to make the simulation models more efficient
by not modeling system configurations that will never occur
during system operation.

3 Efficient Simulation of Hybrid Bond Graph
Models

Efficient simulation models for hybrid systems should meet
two primary requirements: (i) avoid pre-enumeration of all
system modes, especially for systems with a large number of
modes, and (ii) minimize the amount of computations per-
formed to handle mode changes. Reassignment of causality
produces changes in the computational model. But, we can
minimize the number of changes during reconfiguration by
(i) recognizing causal assignments that are fixed across all
modes, and (ii) not allowing configurations that we can pre-
determine will never occur. As a result, we reduce the search
space for the causal propagations possible as a result of the
mode switch and also simplify the simulation models.

3.1 Converting Bond Graphs to Block Diagrams
Fig. 5 shows the possible causal assignments for all BG el-
ements [5]. The Sf , Se, C and I elements each have a
unique causal assignment on their incident bonds which re-
main the same in all modes of system operation. In our work,
we assume that the energy storage elements (C and I) are
in integral causality, i.e., the computational models for these
elements are in integral form, e.g., e = 1

C

∫
fdt. The cor-

responding differential form, i.e., f = C de
dt , may introduce

computational problems during simulation, and also requires
knowing a future value to compute the derivative at the cur-
rent time point [5]. The n-port I- and C-fields also have
unique causal assignment across all system modes, and are
not shown in Fig. 5 as they are simple functional and struc-
tural extensions to the 1-port I and C elements, respectively.
The R, TF , and GY elements allow two possible causal as-
signments each, and each assignment produces a different BD
model.

We capture the notion of causality assignment at a junction
through the commonly used notion of the determining bond.

Definition 1 (Determining Bond) The determining bond of
a 0- (1-) junction is the bond that establishes the effort (flow)
value of all other bonds incident on the junction.

Mapping a junction to its BD model is facilitated by its
determining bond. Fig. 6 shows the BD expansion for non-
switching junction (ignoring the off configuration). At a 1-
junction, all other bonds’ flow values are equal to the deter-
mining bond’s flow value, and the effort value of the deter-
mining bond is the algebraic sum of the effort values of the
other bonds connected to this 1-junction, taking into account
the direction of these bonds. A nonswitching junction withm
incident bonds can have m possible BD configurations.

A standard algorithm for assigning causality to a BG is
the Sequential Causal Assignment Procedure (SCAP) [5].
The basic idea of SCAP is to start at elements having a



Figure 5: Computational structures for bond graph elements.

Figure 6: Block diagram expansion of a switching 1-junction (db denotes determining bond).

unique causality, such as energy sources and energy stor-
age elements, to constrain the possible options for deter-
mining bonds for the junctions these elements are connected
to, which in turn may constrain the options for determining
bonds for adjacent junctions. If there exists a unique option
for a determining bond for a junction, the junction is assigned
that determining bond, and the constraints imposed by this as-
signment are propagated along the BG to further restrict the
possible options for determining bonds at other junctions. Af-
ter the causal changes have been propagated from all energy
sources and energy storage elements, if a junction still has
multiple options for its determining bond, one of its bonds
with unassigned causality is arbitrarily assigned as its deter-
mining bond, and the constraints imposed by this assignment
are propagated along the BG. SCAP terminates when every
junction is assigned a determining bond.

Once a BG is assigned causality, a well-defined proce-
dure can be applied for converting the BG structure to a BD
model [5]. Based on the assigned causality, each BG element
is replaced by the computational structure (see Figs. 5). In
the BD model, each bond is replaced by two signals, i.e., the
effort and flow variables for the bond. Once all necessary
blocks of the BD are instantiated, they are connected appro-
priately to complete the BD model.

3.2 Converting Hybrid Bond Graphs to Block
Diagrams

The BD generation procedure described above needs to be
extended for HBGs so that they can handle causality changes
that occur due to mode changes. Instead of rebuilding the en-
tire BD model every time mode changes occur, we include
switching elements in the individual BD components to re-
configure the computational model during simulation. For ex-
ample, a switching junction withm incident bonds can switch

betweenm+1 possible computational configurations,m cor-
responding to each incident bond being a determining bond,
and one corresponding to the junction being off, in which
each outgoing signal is set to zero. With this method, the
physical connections between blocks are fixed, but the in-
terpretation of the signal on the connection (effort or flow)
changes depending on the causal assignment to the bonds (see
Fig. 6).

In some cases, however, the causal assignment for a bond
is invariant across all possible modes of system behavior, i.e.,
the causal assignment is fixed. For example, a C-element will
always impose effort on a 1-junction through the connecting
bond. In this case, the BD for the 1-junction does not need to
include any switching mechanism to accommodate the possi-
bility of this bond being its determining bond. If all bonds of
a junction have fixed causal assignments, then its determin-
ing bond is invariant for all modes of the system. In this case,
the BD for the junction does not need to include any switch-
ing mechanisms because it can assume a fixed structure. In
previous work, we have termed a nonswitching junction with
this property to have fixed causality [2]. Switching junctions,
by definition, change causality when they turn off, but this
change may not affect adjacent junctions. Therefore, we ex-
tend our previous definition of fixed causality to also include
switching junctions.

Definition 2 (Fixed Causality) A junction that does not
switch is in fixed causality if, for all modes of system oper-
ation, its determining bond does not change. A switching
junction is in fixed causality if, for all modes in which the
junction is on, its determining bond does not change, and for
all modes where it is off, the inactivation of its incident bonds
does not affect the determining bond of any of its adjacent
junctions.



Fixed causality of bonds and junctions can be identified ef-
ficiently using a SCAP-like algorithm before we construct the
BD model from the HBG. In this algorithm, the causality as-
signment is first performed at junctions connected to sources
and energy storage elements, because the bonds connecting
them to these junctions have fixed causality. A 0- (or 1-) junc-
tion is in fixed causality if it is connected to a Se (or Sf ) or a
C (or I) element. Otherwise, a junction is in fixed causality if
(i) its determining bond connects to a fixed causality junction
(either directly, or through a TF or a GY element), or (ii) all
incident bonds other than its determining bond are connected
to fixed causality junctions. Once a junction is determined to
be in fixed causality, we propagate this information to its ad-
jacent junctions to check if they too are in fixed causality, or
any of their bonds are in fixed causality.

Some additional analysis is required to determine whether
a switching junction is in fixed causality. A switching junc-
tion is in fixed causality if: (i) whenever the junction is on, its
determining bond is the same, and (ii) when the junction turns
off the determining bond for its adjacent junctions should not
change, i.e., none of its incident bonds can be a determining
bond for its adjacent junctions. If two switching junctions
are adjacent and share the same CSPEC, the knowledge that
they switch together can help determine if causal changes will
propagate when they switch. When we visit a junction for
the first time, all its adjacent junctions may not have been
checked for fixed causality yet. Hence, the causality may
need to be propagated from all adjacent junctions before it
can be determined that the junction is in fixed causality.

If a junction has incident bonds with fixed causality, or
if the junction itself is in fixed causality, the computational
model of the junction block can be reduced by eliminating
switching elements and signal connections which account for
causality assignments that will never occur during simulation.
Consider the 3-port switching 1-junction in Fig. 6. If the
junction is not in fixed causality, its implementation can, in
general, switch between four possible configurations as mode
changes occur. However, if the junction is in fixed causal-
ity, the BD representation for this junction has only one valid
on configuration, in addition to the off configuration. If the
junction is not in fixed causality, for example, if its bond 1 is
connected to a Se, its BD representation need not include a
configuration with bond 1 as its determining bond. Switched
junctions in fixed causality help minimize causality reassign-
ment computations when mode changes occur. Therefore,
when a 1-junction in fixed causality changes mode, we know
exactly what the causality assignment at this junction is with-
out having to call any external causality reassignment proce-
dure, and can build this into the BD.

3.3 Efficiently Reassigning Causality in Hybrid
Bond Graphs

The naı̈ve approach to causality reassignment in HBGs is to
run SCAP on the new HBG configuration every time a mode
change occurs, but this approach is likely to be inefficient for
the following reasons: (i) usually, only a small part of the
HBG needs to be reassigned causality, and (ii) sometimes,
changes in causality do not propagate and the effect of a
mode change only produces local changes in the computa-

tional model structure.
Our causality reassignment method, called the Hybrid Se-

quential Causal Assignment Procedure (Hybrid SCAP) re-
assigns causality incrementally, starting from the junctions
directly affected by the switching, and then propagating the
changes only to those junctions whose causal assignments are
affected by changes in the adjacent junctions using the causal
assignment of the previous mode [2, 11]. At junctions where
a unique choice for a new determining bond is not known, an
arbitrary choice may be made. But, this choice may lead to
an inconsistent assignment if the propagation reaches a fixed
causality junction. An inconsistent assignment can also be
made if the propagation reaches a junction whose determin-
ing bond has been unequivocally assigned for that particular
system mode. Such junctions are considered to be in forced
causality.

Definition 3 (Forced Causality) A junction is in forced
causality if it can be assigned only one possible determining
bond in a given system mode.

We use the knowledge of junctions in fixed and forced
causality to reduce the search space for the Hybrid SCAP
algorithm by not propagating causal changes across fixed and
forced causality junctions. As a result, expensive backtrack-
ing is avoided. The worst case computational complexity of
our Hybrid SCAP approach is polynomial in the size of
the HBG, as it is similar to the SCAP algorithm. The average
case complexity of our approach, however, is better than that
of SCAP, since in many cases, only small parts of the HBG
change causality.

Consider the inverter HBG model (Fig. 4), where all non-
switching junctions are in fixed causality. The incident en-
ergy storage elements specify a unique determining bond for
these junctions. All switching junctions are also fixed. Con-
sider switching junctions j1 and j2. Since they always change
modes simultaneously (because they share the same CSPEC),
when on, j1 always imposes flow on its adjacent junction j2
which is also on. When they are off, the causality assignment
of other active junctions are not affected. The case is simi-
lar for pairs j3 and j4, and j5 and j6. Since all junctions are
in fixed causality, the mode switchings in the inverter do not
require reassignment of causality, because the changes never
propagate. Therefore, Hybrid SCAP is not invoked, and
minimal changes have to be made to the computational model
when mode changes occur, thus considerably speeding up the
inverter simulation, as we illustrate later.

3.4 Simulating the Block Diagrams
Our modeling and simulation approach defines the reconfig-
urable BDs and their reconfiguration procedures, and there-
fore is independent of the underlying fixed or variable-step
solver being used by the simulation environment in which the
simulation model is executed. Once the reconfigurable BD
model is generated in the simulation environment, simula-
tion starts with the BD structure corresponding to the current
mode, and the simulation continues till a mode change occurs.
If the mode change is attributed to the switching of junctions
that are not in fixed causality, the simulation is paused, the
Hybrid SCAP algorithm is invoked to reassign causality,



and the BD is reconfigured accordingly before the simulation
resumes. On the other hand, if a mode change is attributed to
a switching junction with fixed causality, the BD is reconfig-
ured based on the junction mode, without invoking Hybrid
SCAP.

4 Software Implementation
We have implemented our methodology using a model-
integrated computing approach [12] as the MOdeling and
Transformation of HBGs for Simulation (MOTHS) tool
suite [13]. It consists of a modeling language for building
graphical component-based HBG models [1], and a set of
model translators, or interpreters, that convert these HBGs
into block diagram-based simulation models for selected sim-
ulation tools. Initially, we have developed an interpreter that
creates MATLAB Simulink models, details of which can be
found in [2].

Simulation testbeds have a variety of applications. One of
the primary objectives of our simulation approach is to facil-
itate prognosis and diagnosis experiments. Hence, we have
developed schemes to inject faults in the simulation model.
We model faults as off-nominal changes in system parame-
ters (e.g., a resistance change representing a blockage in a
pipe), called parametric faults, and off-nominal changes in
system mode (e.g., a stuck valve), called discrete faults.

Our approach facilitates fault injection in Simulink through
a graphical user interface that is constructed automatically
during the interpretation process. The user can select the
time of fault occurrence (we consider only persistent faults),
the fault profile, and the fault magnitude (where applicable).
Parametric faults are associated directly with HBG element
parameter values (i.e., Se, C, R, etc.), and the available fault
profiles include abrupt, incipient, and stuck-at faults. An
abrupt fault is a fast change in a system parameter whose
time constant is much smaller than that of the system dynam-
ics, and is modeled as a constant bias term that gets added to
the nominal parameter value at the time of fault occurrence.
An incipient fault is a slow change in system parameters, and
modeled as an linear drift term (with constant slope) that is
added to the actual parameter value. A stuck-at fault sets the
parameter value to a constant value at fault occurrence. Dis-
crete faults cause the system mode to change, so they affect
the switching junctions. Our simulation approach allows the
injection of stuck-on, stuck-off faults, introduced by adding
fault terms to the CSPEC transition guards. As a special case,
sensor faults can typically be modeled as either parametric or
discrete. In our approach, we treat them as parametric faults,
allowing abrupt (bias), incipient (drift), and stuck-at faults
(which can also model discrete faults such as sensor failure).
Additionally, we allow the introduction of white Gaussian
sensor noise, where the mean and variance can be specified.
A change in variance can also be introduced as a sensor fault.

5 Case Study
We demonstrate our modeling and simulation framework us-
ing the ADAPT system at NASA Ames Research Center [3].
In this paper, we focus on a subsystem of ADAPT shown in
Fig. 7, i.e., a battery driving an inverter that is connected to

Figure 7: ADAPT subsystem for case study.

Figure 8: AC fan hybrid bond graph.

two loads through two relays. One of these loads is a light
bulb, while the other load is a large fan.

We build the system model using a component-based mod-
eling approach [1, 3]. We use the HBG model of the inverter
shown in Fig. 4 for our experiments. The HBG model of the
lead-acid battery is based on an electrical equivalent circuit
model, which captures the nonlinear battery behavior [11].
We omit a detailed description of the battery model due to
space constraints. The resistive light bulb load consists of a
single power port, a 1-junction, and a R element. The R ele-
ment parameter value is a constant 234.6966 Ω.

The AC fan is modeled as a single phase, fixed capacitor
induction motor [14]. We represent the system using the stan-
dard d − q model, described in [15]. We do not present the
fan model equations due to space constraints. The model pa-
rameters are presented in Table 2. The HBG model of the fan,
shown in Fig. 8, is adapted from that described in [16]. Note
that the AC fan has two I-fields with parameters,

I1 =
[
Lss Lms

Lms L′
rr

]
, and I2 =

[
LSS Lms

Lms L′
RR

]
.

Table 2: AC Fan Model Parameter Values

Inductances (in H) Lss = 0.275, LSS = 0.274,
L′rr = 0.272, L′RR = 0.271,
Lms = 0.1772, LmS = 0.2467

Inertia (in kg m2) J = 6.5× 10−4

Resistances (in Ω) Rs = 163.02 , RS = 168.14,
R′r = 145.12, R′R = 145.12,

RstartRun = 26,
Friction (in kg m2/s) B = 4.734× 10−4

Capacitances (in µF) CstartRun = 21.1
Other Parameters NS/Ns = 1.18, p = 2



Table 3: Real Time Taken for 1 s of Simulation Time

Method Real Time
SCAP called at every mode change 6054.3 s

Hybrid SCAP called at every mode change 6025.2 s
No causality reassignment procedure called 58.3 s

5.1 Experimental Results

For the experimental results, we automatically derived a
Matlabr Simulinkr model of the subsystem shown in Fig. 7,
from the HBG model of the system using the MOTHS tool
suite. All experiments were performed on a 2.4 GHz Intelr
Pentium CoreTM2 Duo CPU desktop, with 2 GB RAM. The
model was simulated using a fixed-step simulation with a
sample period of 7.5 µs.

Fig. 9 shows the results of the simulation. We plot the volt-
ages and currents at the output of the battery and the inverter,
as well as the rotational speed of the AC fan. The simulation
model was run for 20 seconds of simulation time. In the first
configuration, the light bulb is connected to the inverter from
2− 5 seconds, followed by a second configuration where the
AC fan is turned on between 7− 15 seconds. An abrupt fault
is injected in the light bulb resistance at 3 seconds to demon-
strate the usefulness of the simulation approach for diagnosis
applications. As we can see, the sliding mode controllers are
robust to load changes, and generates true 120 V rms voltage
for both the loads. However, the light bulb fault affects the
inverter current, and, therefore, the battery current and volt-
age. The AC fan current shows a phase difference of 0.1346
rad. As can be seen in Fig. 9 when the AC fan is switched on,
its speed of rotation increases until it reaches a steady state of
about 78.5 rad/s. On turning off, the speed falls to zero.

Table 3 presents the result of an experiment to illustrate the
efficiency gained by simplifying a reconfigurable BD model
by identifying bonds with fixed causal assignments and junc-
tions in fixed causality, and avoiding the need for causal re-
assignment for these modes. For this experiment, we assume
that the AC fan is the only load and is on for the duration
of the experiment. Each column in Table 3 reports the real
time taken to simulate 1 second of simulation time for dif-
ferent HBG simulation runs. In all runs, all junctions of the
HBG model are in fixed causality. In the first run, we call
SCAP every time an inverter mode change occurs. Next, we
repeat the previous run, using Hybrid SCAP. Finally, in the
third run, we simulate the HBG without requiring any exter-
nal calls to Hybrid SCAP, since all switching junctions are
fixed. As can be seen from Table 3, our enhanced simula-
tion approach, implemented in the third run, is 103.85 times
faster than the first run, and 103.35 times faster than the sec-
ond run. Our simulation approach also resulted in consider-
able improvements in the efficiency of simulation of a number
of other configurations, especially for large systems like the
VIRTUAL ADAPT simulation testbed [3]. Further increase
in simulation efficiency can be obtained by running our sim-
ulation models in the Rapid Accelerator mode of Simulink.

6 Conclusions
In this paper, we have presented an approach for modeling
and simulation of complex systems with switching behavior
using hybrid bond graphs. The crux of this modeling and sim-
ulation framework, implemented as the MOTHS tool suite,
is the identification of fixed causality of bonds, which not
only avoids unnecessary invocations of the external Hybrid
SCAP algorithm, thereby gaining increase in simulation ef-
ficiency, but also improves the efficiency of the Hybrid
SCAP algorithm, as well as enables the simplification of the
simulation models by removing parts that correspond to con-
figurations that never occur during the simulation. In the fu-
ture, we will extend our modeling approach and computa-
tional model generation schemes to systematically evaluate
how our approach performs when applied to other real-world
large hybrid systems. We also wish to develop interpreters
to generate simulation models in other simulation software,
such as Ptolemy [17].

Acknowledgements
This work was supported in part by the National Science
Foundation under Grants CNS-0615214 and CNS-0347440;
and NASA NRA NNX07AD12A.

References
[1] E.-J. Manders, G. Biswas, N. Mahadevan, and G. Kar-

sai, “Component-oriented modeling of hybrid dynamic
systems using the Generic Modeling Environment,” in
Proc of the 4th Workshop on Model-Based Development
of Computer Based Systems. Potsdam, Germany: IEEE
CS Press, Mar. 2006.

[2] I. Roychoudhury, M. Daigle, G. Biswas, X. Koutsoukos,
and P. J. Mosterman, “A method for efficient simulation
of hybrid bond graphs,” in Proceedings of the Interna-
tional Conference of Bond Graph Modeling, San Diego,
California, 2007, pp. 177 – 184.

[3] S. Poll, A. Patterson-Hine, J. Camisa, D. Nishikawa,
L. Spirkovska, D. Garcia, D. Hall, C. Neukom,
A. Sweet, S. Yentus, C. Lee, J. Ossenfort, I. Roy-
choudhury, M. Daigle, G. Biswas, X. Koutsoukos,
and R. Lutz, “Evaluation, selection, and application
of model-based diagnosis tools and approaches,” in
AIAA Infotech@Aerospace 2007 Conference and Ex-
hibit, May 2007.

[4] D. Biel, F. Guinjoan, E. Fossas, and J. Chavarria,
“Sliding-mode control design of a boost-buck switching
converter for ac signal generation,” IEEE Transaction
on Circuits and Systems - I, vol. 51, no. 8, pp. 1539–
1551, 2004.

[5] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg,
Systems Dynamics: Modeling and Simulation of Mecha-
tronic Systems, 3rd ed. New York: John Wiley & Sons,
Inc., 2000.

[6] J. Buisson, H. Cormerais, and P.-Y. Richard, “Analy-
sis of the bond graph model of hybrid physical systems
with ideal switches,” Proc Instn Mech Engrs Vol 216



2.9 2.92 2.94 2.96 2.98 3 3.02 3.04 3.06

2.5

3

3.5

4

Time (s)

C
ur

re
nt

 (
A

)
Battery Current (with Light Bulb on)

2.9 2.92 2.94 2.96 2.98 3 3.02 3.04 3.06

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

C
ur

re
nt

 (
A

)

Inverter Current (with Light Bulb on)

10.88 10.9 10.92 10.94 10.96 10.98 11 11.02 11.04 11.06

−1

−0.5

0

0.5

1

Time (s)

C
ur

re
nt

 (
A

)

Inverter Current (with AC Fan on)

2.9 2.92 2.94 2.96 2.98 3 3.02 3.04 3.06

24.203

24.204

24.205

24.206

24.207

24.208

Time (s)

V
ol

ta
ge

 (
V

)

Battery Voltage (with Light Bulb on)

2.9 2.92 2.94 2.96 2.98 3 3.02 3.04 3.06

−150

−100

−50

0

50

100

150

Time (s)

V
ol

ta
ge

 (
V

)

Inverter Voltage (with Light Bulb on)

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Time (s)

A
ng

ul
ar

 v
el

oc
ity

 (
ra

d/
s)

Fan Angular Velocity

Figure 9: Simulation results.

Part I: J Systems and Control Engineering, pp. 47–63,
2002.

[7] M. Magos, C. Valentin, and B. Maschke, “Physical
switching systems: From a network graph to a hybrid
port hamiltonian formulation,” in Proc IFAC conf Anal-
ysis and Design of Hybrid Systems, Saint Malo, France,
June 2003.

[8] J. van Dijk, “On the role of bond graph causality in mod-
eling mechatronics systems,” Ph.D. dissertation, Uni-
versity of Twente, Enschede, The Netherlands, 1994.

[9] W. Borutzky, “Discontinuities in a bond graph frame-
work,” Journal of the Franklin Institute, vol. 332, no. 2,
pp. 141–154, 1995.

[10] P. J. Mosterman and G. Biswas, “A theory of discontinu-
ities in physical system models,” Journal of the Franklin
Institute, vol. 335B, no. 3, pp. 401–439, 1998.

[11] M. Daigle, I. Roychoudhury, G. Biswas, and X. Kout-
soukos, “Efficient simulation of component-based hy-
brid models represented as hybrid bond graphs,” in
HSCC 2007, ser. LNCS, A. Bemporad, A. Bicchi, and
G. Butazzo, Eds. Springer-Verlag, 2007, vol. 4416, pp.
680–683.

[12] J. Sztipanovits and G. Karsai, “Model-integrated com-
puting,” Computer, vol. 30, no. 4, pp. 110–111, Apr
1997.

[13] MOTHS, “http://macs.isis.vanderbilt.edu/software.”

[14] G. J. Thaler and M. L. Wilcox, Electric Machines: Dy-
namics and Steady State. John Wiley & Sons, Inc.,
1966.

[15] P. C. Krause, Analysis of Electric Machinery. John
Wiley & Sons, Inc., 1986.

[16] D. Karnopp, “Understanding induction motor state
equations using bond graphs,” in Proceedings of the In-
ternational Conference on Bond Graph Modeling and
Simulation, vol. 35, no. 2, 2003, pp. 269 – 273.

[17] J. Buck, S. Ha, E. A. Lee, and D. G. Messer-
schmitt, “Ptolemy: a framework for simulating and
prototyping heterogeneous systems,” Readings in hard-
ware/software co-design, pp. 527–543, 2002.

Corresponding Author:
Gautam Biswas, Indranil Roychoudhury, Xenofon Kout-
soukos, Institute for Software Integrated Systems, Dept. of
EECS, Vanderbilt University, Box 1829, Station B, Nashville,
TN 37235, USA. {gautam.biswas, indranil.roychoudhury,
xenofon.koutsoukos}@vanderbilt.edu

Matthew Daigle, University of California, Santa Cruz,
NASA Ames Research Center, Moffett Field, CA 94040,
USA. matthew.j.daigle@nasa.gov

This contribution is a revised and extended version of our
paper: “An Efficient Simulation of Hybrid Systems: An Ap-
plication to Electrical Power Distribution Systems,” in Pro-
ceedings of the 22nd European Conference on Modeling and
Simulation, pp. 471-477, June 2008.


