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Abstract

Safe, reliable, and efficient operation of complex
dynamical systems requires the ability to detect,
isolate, and identify degradation in system compo-
nents. Degradations are typically modeled as in-
cipient faults, which are slow drifts in system para-
meters over time. This paper presents an efficient
approach for the detection, isolation, and identifi-
cation of incipient faults under uncertainty using a
Dynamic Bayesian Network (DBN) approach. Ini-
tially a DBN is used as an observer to track nominal
system behavior. Once a fault is detected, incipi-
ent fault hypotheses are generated using a variation
of our qualitative TRANSCENDapproach for abrupt
fault isolation. A modified DBN that includes the
active fault hypotheses is then used to isolate the
true fault and estimate the rate of change in its pa-
rameter value.

1 Introduction
Safe, reliable, and efficient operation of complex systems
requires the ability to detect, isolate, and identify degrada-
tion in system components. Degradations are often mod-
eled as incipient faults, which are slow drifts in system pa-
rameter values over time. In our previous work, we have
developed fault diagnosis schemes for abrupt faults, which
are modeled as instantaneous changes in system parame-
ter values at a point in time. The qualitative fault isola-
tion (QFI) scheme is based on the analysis of transients in
the dynamic system behavior[Mosterman and Biswas, 1999;
Narasimhan and Biswas, 2006; Roychoudhuryet al., 2005;
Daigle et al., 2006]. This approach has to be modified to
accommodate the temporal profile for incipient faults (see
Fig. 1).

This paper presents an efficient approach for the diagno-
sis of incipient faults by combining a variation of the TRAN-
SCEND qualitative fault isolation approach[Mosterman and
Biswas, 1999] with a quantitative fault isolation and identi-
fication scheme that employs a Dynamic Bayesian Network
(DBN) model of the system dynamics. In general, DBN-
based diagnosis approaches for complex systems suffer from
computational intractability because of the large number of
nodes (i.e., system variables and possible fault hypotheses)
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Figure 1: Incipient Fault Profile

that have to be included in the DBN model. In our approach,
efficiency is achieved by performing the fault isolation and
identification in two steps: (i) run an efficient qualitativefault
isolation scheme to reduce the number of candidate hypothe-
ses to a small number, and (ii) run a refined DBN model to
uniquely isolate the single fault candidate and estimate the
rate of change in its parameter value. The focus of this pa-
per is on fault isolation and identification of incipient faults
in continuous dynamic systems. We assume that only single,
incipient faults occur in the system. This assumption is re-
quired for the qualitative analysis only1. The quantitative FII
framework can handle multiple fault hypotheses.

The paper is organized as follows. Section 2 presents a
mathematical definition of incipient faults and formulatesour
approach for solving the incipient fault diagnosis problem.
Section 3 presents the incipient fault diagnosis architecture,
and gives a brief overview of the fault detection, isolation, and
identification subsystems. The different models employed for
diagnosis are presented in Section 4. Section 5 explains in
more detail the algorithms for incipient fault diagnosis. Sec-
tion 6 presents results of applying this approach to a two tank
system and conclusions are presented in Section 7.

2 Incipient Fault Diagnosis
A complete incipient fault diagnosis scheme must be tailored
for detection, isolation, and identification (FDII) of incipient
faults. Like earlier work, our diagnosis approach focuses on
parametric component faults. In this framework, the mathe-
matical representation of an incipient fault adds a drift term
to the nominal component parameter value.

Definition 1 (Incipient fault) An incipient fault profile in a
dynamic system is characterized by a gradual drift in the cor-

1Daigle, Koutsoukos, and Biswas (DX 2006) have developed an
extension of the TRANSCENDscheme for multiple fault diagnosis
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Figure 2: The diagnosis architecture

responding component parameter value from the time point
of failure occurrence. The temporal profile for an incipient
fault in parameter p, pIF (t) is given by:

pIF (t) =

{

p(t) t ≤ to
p(t)+d(t) t > to

(1)

where p(t) represents the nominal value of a parameter p
over time, and d(t) is the drift in the parameter value that gets
added to the parameter value after occurrence of the fault,
i.e., after t ≥ to.

Fig. 1 shows an incipient fault profile, witht0 as the time
of occurrence of the fault. Since the rate of change of the
parameter value is slow compared to the system dynamics,
we can approximate the drift term,d(t) = ps(t − t0), t ≥ t0,
whereps is a constant that defines a linear rate of change, and
t0 is the time point at which the incipient fault first occurs.

2.1 Detection of Incipient Faults
Fault detection is the first step in any diagnosis process. The
observer for tracking nominal behavior is based on a DBN
model. This observer-generated expected behavior of the sys-
tem is compared against the actual measurements using a Z-
test for difference in means for robust fault detection[Biswas
et al., 2003].

Ideally, deviations in measurements caused by faults and
degradations should be detected at or very soon after the point
of fault occurrence. In reality, to accommodate measurement
noise, inaccuracies in the model, and sensitivity of the detec-
tion scheme one has to trade-off false alarm generation versus
detection delays. Statistical hypothesis testing schemeshelp
reduce the false alarm rate, but introduce a delay between
the time of occurrence and detection of faults, i.e.,td > to.
This detection delay,td− to, may pose convergence problems
and reduce the parameter estimation accuracy. In our pre-
vious work on qualitative diagnosis[Manders and Biswas,
2003], we have shown that this delay does not affect diag-
nosis accuracy. In this approach, we assume this delay to
be short enough not to affect qualitative diagnosis and the
DBN-based estimation schemes. To ensure convergence of
the DBN scheme, we start the estimation process from the
time point at which the fault was detected.

2.2 Qualitative Fault Isolation
As the first step after fault detection, we employ a qualita-
tive inference procedure using symbolic deviations and qual-
itative fault signatures for generating and refining possible

fault hypotheses. This extends our previous work on tran-
sient analysis of abrupt faults[Mosterman and Biswas, 1999].
Unlike abrupt faults, which are modeled as a± change in pa-
rameter value at the point of fault occurrence, incipient faults,
characterized by slow drifts in parameter values (see Defini-
tion 1), are modeled qualitatively as(0,±) change profiles,
i.e., there is no change in the faulty parameter value at the
point of fault occurrence but the parameter value slowly in-
creases (decreases) over time. This fault profile matches any
drift function d(t) that is monotonic. Given such fault pro-
files, the TRANSCENDscheme for qualitative hypothesis gen-
eration and refinement can be applied for qualitative fault iso-
lation. This methodology is outlined in Section 5.3.

2.3 Quantitative Fault Isolation and Identification
(FII) using DBNs

Quantitative FII is the final step in the fault diagnosis pro-
cedure. The TRANSCEND scheme discussed in Section 2.2,
may not return an unique fault candidate, but it typically re-
duces the number of fault hypotheses to a tractable number.
This makes it feasible to run a quantitative FII procedure us-
ing a DBN, outlined in Section 5.4, to refine the candidate set
and estimate the drift parameter for the true fault candidate.

3 Architecture for Incipient Fault Diagnosis
The architecture of our model-based diagnosis methodology,
presented in Fig. 2, follows a traditional diagnosis schemefor
continuous systems. The system, as outlined in Section 2, in-
cludes four primary modules: (i) the observer, (ii) fault detec-
tor, (iii) the qualitative fault isolation unit, and (iv) the DBN-
based FII unit. We build the dynamic plant model in thebond
graph (BG) modeling language[Karnoppet al., 2000] using
a methodology where the components of interest in the sys-
tem can be identified by one or more bond graph parameters,
such as source elements, capacitors, inertias, resistance, and
transformers. We derive the temporal causal graph (TCG)
from the BG plant model using techniques that have been de-
scribed earlier[Mosterman and Biswas, 1999]. The TCG,
which is an extension of signal flow graphs, includes all the
system variables as well as the component parameters that de-
fine dynamic system behavior. The TCG model is explained
in greater detail in Section 4.1.

The observer is constructed as a DBN model of the nom-
inal system. DBN tracking accommodates plant model in-
accuracies and noisy measurements. Its inputs are the plant
measurements,Y. The DBN is derived from the TCG model
using the method described in[Lerneret al., 2000], and out-
lined in Section 4.2. We use standard Bayesian propagation
techniques[Russell and Norvig, 1995] to derive estimates of
the most likely system state,̂X, and measurement values,Ŷ
as plant behavior evolves. As discussed earlier, incipientfault
parameters change at a very slow rate, which makes the de-
tection of changes due to the incipient faults a hard problem
since it becomes difficult to separate the measurement devia-
tions from measurement noise and discrepancies caused by
modeling inaccuracies. We employ statistical methods for
robust fault detection. The input to the Fault Detector are
the plant measurementsY and the observer-predicted mea-
surementsŶ. A significant difference in the observed and
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(a) The two tank system schematic
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(b) The bond graph model of the two tank sys-
tem

Figure 3: The two tank system and its BG model

expected behavior,(Y − Ŷ) signals a fault occurrence, and
the qualitative residual signalsRs generated from the point
of fault detectiontd are used for hypothesis generation and
refinement.

When the fault detector triggers, the DBN observer is sus-
pended and the TRANSCEND procedure is activated. The
qualitative residual signals,Rs, are used for initial hypothesis
generation, and for hypothesis refinement as additional mea-
surements deviate using qualitative methods. All measure-
ments from the time point of failure detection are also cached
for use by the module. The qualitative scheme is terminated
when one of the following conditions becomes true: (i) the
number of fault candidates is reduced below a certain num-
ber, (ii) all measurement deviations have been used, or (iii) a
pre-specified time horizon is exceeded. The DBN based FII
scheme is then initiated with a DBN model of the faulty sys-
tem behavior from the point of detection of the incipient fault.
The set of current fault hypotheses,P are used to extend the
nominal DBN to the fault DBN for tracking the system behav-
ior after fault occurrence. Again, standard Bayesian update
functions are employed, and with additional measurements
the estimates converge to the true observed measurements.
At this point, using least square estimation techniques, the
rate of change of the fault is estimated. The output from the
FII unit is the fault hypothesis and its rate of change, i.e.,
< p, ps >. The steps outlined above are explained in detail in
the following sections.

We believe that this approach provides an efficient com-
putational scheme for solving the incipient fault diagnosis
problem in the presence of measurement noise and model
uncertainty. The Z Test-based fault detection module per-
forms quick and reliable incipient fault detection while avoid-
ing false alarms. The isolation and identification process is
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Figure 4: The temporal causal graph of the two tank system

made computationally simpler by combining the TCG based
qualitative fault isolation and the DBN-based FII procedures.
As presented in[Lerneret al., 2000], FDII of incipient faults
can be achieved by using a single DBN that models both the
nominal as well as all possible faulty behavior of the system.
However, this makes the number of possible fault hypothe-
ses very large, and an exhaustive online tracking procedure
is not computationally viable. For this reason, the procedure
outlined in [Lerneret al., 2000] involves dropping unlikely
fault candidates to save on computation. It is, therefore, pos-
sible that a true fault is dropped early as its probability of
occurrence is very small. Our diagnosis approach retains all
possible faults without compromising on efficiency. This is
achieved by starting the DBN-based FII procedure only after
the TCG based hypothesis refinement, thereby reducing the
number of nodes in the DBN.

4 Modeling
Any model-based diagnosis approach can only be as good as
the models that form the core of the diagnosis methodology.
As discussed earlier, component-based BGs form the core of
our modeling framework for physical plants. Efficient models
for diagnosis, the TCG, state space models, and the DBNs are
all derived from the primary BG plant model. This section
gives a brief summary of the different models that we employ
for incipient fault diagnosis.

4.1 Temporal Causal Graph
A TCG can be described as adiagnosis modelthat captures
dependencies (algebraic and temporal) between system vari-
ables as a causal structure. The TCG is derived directly from
the bond graph model of the plant[Mosterman and Biswas,
1999]. The TCG derived from the BG model can be defined
as follows.

Definition 2 (Temporal Causal Graph (TCG))A TCG is a
directed graph< V,L,D >. V = E ∪ F, where V is a set
of vertices, E is a set of effort variables and F is a set of
flow variables in the bond graph system model. L is the label
set{=,1,−1, p, p−1, pdt, p−1dt} (p is a parameter name of
the physical system model). The dt specifier indicates a tem-
poral edge relation, which implies that a vertex affects the
derivative of its successor vertex across the temporal edge.
D ⊆ V × L×V is a set of edges[Narasimhan and Biswas,
2006] .

Fig. 3(a) shows the schematic of a two tank system that
we will use as an example in this paper. The system com-
prises a couple of interconnected tanks, each having an out-
flow pipe for draining the tank. The first tank also has a



source of flow for filling the tank. Fig. 3(b) shows the bond
graph model. Bonds drawn as half-arrows capture the energy-
exchange pathways in the system. Pipes are modeled as re-
sistances and the tanks are modeled as capacitances. Pipes
R1 andR2 drain tanksC1 andC2, respectively, and pipeR12
connects the two tanksC1 andC2. Fig. 4 shows the TCG for
the two tank system. Temporal relations in the TCG are as-
sociated with the energy storage elements, i.e., the tanks.All
other relations in the TCG, e.g., the pressure-flow relations
imposed by the pipes and the idealized junction relations, are
algebraic.

4.2 The DBN Observer for the Nominal System
The DBN observer for the nominal system is constructed
from the TCG, as outlined in[Lerneret al., 2000]. The DBN
model is made up of two components:

1. A regular Bayes net that captures the relations between
system variables at any time slicet. This consists of
four sets of variables(Xt ,Zt ,Ut ,Yt), which represent the
state variables, other hidden variables, input variables,
and measured variables for the dynamic system, and

2. A two-slice temporal Bayes net that captures the across-
time relations defined by the state equation model of
the dynamic system. We assume that the state equation
model is a discrete-time stochastic process that satisfies
the first order Markov assumption. Therefore, the across
time links between time slicest andt +1 are defined by
the system state equations.

For the two tank system, the DBN derived from the TCG has
the following variables at timet: Xt = {e2t ,e7t}, the pres-
sures at the bottom of tanks 1 and 2, respectively,Ut = { f 1t},
the flow into tank 1, andYt = { f 2t , f 8t , f 5t}, the outflows
from tanks 1 and 2, respectively and the flow between tanks
1 and 2. Zt = φ , i.e., the two tank dynamic model requires
no additional variables.The across-time model includes five
links, e2t → e2t+1, e7t → e7t+1, e2t → e7t+1, e7t → e2t+1,
and f 1t → e2t+1. These links are directly derived from the
state space model of the system. Fig 5(a) shows the DBN
observer for time stepst andt +1.

4.3 The DBN Diagnoser
Model-based diagnosis schemes require the models to repre-
sent both the nominal and faulty system behavior. The DBN
observer derived from the system TCG model represents a
stochastic model of nominal system behavior in Fig. 5(a).
Tracking of faulty behavior requires a stochastic model that
captures incipient fault effects. The procedure for deriving
this DBN is also detailed in[Lerneret al., 2000]. To capture
faulty system behavior, two sets of nodes are added. The first
set correspond to parameters that represent the incipient fault
hypotheses. The second set are discrete-valued nodes that are
in 1-1 correspondence with the fault parameters, and they in-
dicate the absence or presence of an incipient fault for thatpa-
rameter. Fig. 5(b) shows the DBN diagnoser for faulty behav-
ior of the two tank system, assuming two potential fault hy-
potheses,{R2,R12}. In other words, the DBN for faulty be-
havior now has an extended setXt that includes{D2t ,D12t}
in addition to{e2t ,e7t}. The D’s are logical variables. A

value of 1 implies that the linked parameter has an incipient
fault. A value of 0 implies no fault. This introduces addi-
tional across time links,D2t → D2t+1, andD12t → D12t+1.
In addition,Zt = {R2t ,R12t}. The set of possible fault hy-
potheses covered by this DBN model include: (i) neitherR2
or R12 faulty, (ii) R2 faulty,R12 not faulty, (iii)R2 not faulty,
R12 faulty, and (iv)R2 andR12 faulty.

The DBN diagnoser model proposed in[Lerner et al.,
2000] includes all possible faults in the system. However,
the number of possible faults can be really large in complex
systems causing complexity issues in tracking diagnostic be-
havior using a Bayesian approach. In our work, we reduce
the set of possible fault hypotheses using the TRANSCEND
scheme, and the DBN model for FII only deals with the ac-
tive fault candidates when the qualitative scheme terminates.
This reduces the size of the DBN diagnoser and it results in a
considerable improvement in the efficiency of the diagnosis.

5 Fault Detection, Isolation and Identification
of Incipient Faults

This section presents the details of our methodology for im-
plementing the different components of incipient fault diag-
nosis scheme.

5.1 Tracking Nominal Behavior Using a DBN
The DBN observer captures the nominal state of the system
at every time stept. The set of nodesNt in the DBN and
their distributions provide a snapshot of the system state.A
subset of these nodes,Yt , correspond to measured variables in
the system. The remaining variables belong to the set of sys-
tem variables that cannot be measured, i.e.,Xt andZt . With-
out loss of generality, we simplify the subsequent discussion,
by considering only the variable setXt and ignoringZt . The
tracking problem for the system observer can be defined as
deriving the posterior probabilityP(Xt |Y0:t) at every time step
t.

The first order Markov assumptionreduces the computa-
tion of the posterior probability to

P(Xt |X0:t−1) = P(Xt |Xt−1). (2)

Moreover, the state space model of a physical system de-
fines the system output (i.e., the measured variables) as a
function of the state and the input variables. This implies,

P(Yt |X0:t ,Y0:t−1) = P(Yt |Xt). (3)

By combining equations (2) and (3), the tracking problem
can be defined as an iterative problem[Russell and Norvig,
1995] defined as

P(Xt+1|Y0:t+1) = αP(Yt+1|Xt+1)∑
Xt

P(Xt+1|Xt)P(Xt |Y0:t),

whereα is the normalizing constant. In this work, we as-
sume that all random variables in the system are sampled
from normal distributions. The noise models for the mea-
surements are also assumed to be Gaussian with zero mean
(white noise). Therefore, given prior probability distributions
and the measurement noise models, the posterior probability
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Figure 5: The Nominal and Fault DBN Models for the two tank system

computations are reduced to estimating the mean and vari-
ances of the posterior Gaussian distributions.

The dependencies between the system variables may be
non-linear, as is usually the case for real-life systems. As
a simplification, tracking of the DBN model can be imple-
mented as anExtended Kalman Filter(EKF) [Bar-Shalom
and Fortmann, 1988], which is a classical approach for solv-
ing the tracking problem in such systems. The EKF approxi-
mates the nonlinear dynamics with linear dynamics and then
uses the standard Gaussian model to update the system vari-
ables at the next step. We adapt the EKF method[Narasimhan
and Biswas, 2006] for tracking the nominal system behavior.

5.2 Incipient Fault Detection
The fault detector continually monitors the measurement
residual,rt = yt − ŷt , whereyt ∈Yt are the measured variables
at timet, andŷt are the expected value of the measurements
as determined by the DBN observer. Ideally,rt 6= 0 should
imply a fault and trigger the fault isolation scheme, but to ac-
commodate measurement noise and modeling errors we set
up a statistical testing scheme to balance detection sensitivity
against false alarms.

We start by defining a signal deviation at time stept in
terms of an average residual for the lastN2 samples, i.e.,

µ̂N2t =
1

N2

t

∑
i=t−N2+1

r i .

A hypothesis testing scheme based on the Z-test is em-
ployed to establish the significance of the deviation. To per-
form the Z-test, the variance of the measurement residual
must be known. (For unknown variance the T-test may be
performed, but its confidence interval is much larger.) To ap-
proximate the conditions necessary for the Z-test, the vari-
ance of the signal is estimated, but from a larger data set con-
tainingN1 samples, i.e.,N1 ≫ N2:

σ̂2
N1t =

1
N1−1

t

∑
i=t−N1+1

(

r i −µN1t

)2

TheZ−value has a distributionN(0,1):

Z =
µ̂
σ√
N2

. (4)

The confidence level, defined byα, defines the bound
[z−,z+]: P(z− < z< z+) = 1−α. This bound can be trans-
formed to another bound[µ−,µ+] using Eqn. (4), and the ap-
proximationσ = σ̂N1:

µ− = z−
σ√
N2

, µ+ = z+
σ√
N2

.

The Z-test is employed in the following manner:

µ− ≤ µ ≤ µ+ ⇒ no f ault

otherwise ⇒ f ault.

The advantage of this fault detection approach is that it is
computationally simpler, and it makes no assumptions con-
cerning the properties of the changed mean value (it does not
have to be constant). Once the fault is detected, the Z-test
outputs symbolically the direction of change of the observa-
tion, based on the value of the mean. If the mean is negative,
this implies that the measurements have decreased from their
nominal values, and a symbol− is output. If the mean is
positive, the observations have increased from the nominal
values, and a symbol+ is output.

5.3 Qualitative Incipient Fault Isolation
After fault detection, the DBN tracking is suspended and the
TRANSCENDfault isolation scheme[Mosterman and Biswas,
1999] is run on the TCG to generate the initial fault hypothe-
ses given the first non-zero residual symbol(s). The TRAN-
SCENDdiagnostic framework for abrupt faults is extended to
incipient fault analysis by considering fault profiles thathave
the value(0,±) as was discussed in Section 2. Thebackward
propagationscheme for generating the initial fault hypothesis
remains the same.

For each fault hypothesis generated, a forward pass on the
TCG, i.e., theforward propagationalgorithm generates the
fault signatures. Propagation of a(0,+) or a(0,−) will pro-
duce no discontinuous changes in the measured variables.
Therefore, the predicted first effect of an incipient fault on
a measurement can be expressed as one of three qualitative
symbols:{+,0,−}, which corresponds to a predicted grad-
ual deviation above normal, no change, and a gradual devia-
tion below normal, respectively, over some time interval. In



Fault e2 e7 f 3 f 5 f 8
R1+ + + − + +
R2+ + + + − −
R12+ + − + − −

Table 1: Fault Signature Matrix

[Manderset al., 2000] we have established that only the first
change in a measured signal provides information to differen-
tiate among fault hypotheses, therefore, it is sufficient tojust
record this first change,± as the fault signature. The fault
signatures for buildup of sediments in the three pipes of the
two tank system (Fig. 3), causing their resistances to increase
are listed in Table 1. Continued monitoring of the remain-
ing measurement deviations helps refine the fault hypotheses
using a matching process. If the observed deviation signal
matches the predicted signature value, the fault hypothesis is
retained, otherwise it is dropped.

The qualitative fault isolation algorithm is designed to run
for at mosts steps, wheres is a pre-specified value. It may
turn out that a single fault is isolated before thes steps are
complete, or multiple hypotheses may still be valid after the
s steps. When qualitative isolation identifies a unique candi-
date or thes steps are completed, the TCG based scheme is
terminated and the FII module with the DBN diagnoser is ini-
tiated. The number of stepss must be carefully chosen. Ifs
is too small, it is very likely that few fault candidates willbe
dropped and the ensuing DBN-based FII procedure will not
be efficient. On the other hand, ifs is large we may delay
the isolation and identification tasks. A small number of re-
maining fault candidates implies a few “fault nodes” have to
be introduced into the DBN diagnoser. This is good because
the DBN approach is exponential in the number of number of
fault hypotheses that are introduced. Too many hypotheses
increase computation time and also the time to convergence.

5.4 Fault Isolation and Identification of Incipient
Faults Using the DBN Diagnoser

Once the TCG based procedure completes running forssteps
(or less thans steps if fault isolation completes earlier), the
DBN diagnoser is modified to model the remaining fault hy-
potheses and the DBN-based FII scheme is initiated.

We implement a single DBN that includes all of the cur-
rent fault hypotheses, i.e., the fault hypotheses that are not
eliminated by the TRANSCENDanalysis. Consider a specific
scenario, where the TRANSCEND scheme reduces the fault
hypothesis set to{R2,R12}. As discussed this introduces
four additional nodes into the system DBN, i.e.,R2,R12,D2,

andD12. The set of possible fault hypotheses covered by the
DBN model of the faulty system include: (i) neitherR2 or
R12 faulty, (ii) R2 faulty, R12 not faulty, (iii) R2 faulty, R12
not faulty, and (iv)R2 andR12 faulty. We assume that we
have enough measurements such that the system, even with
the addition of the faulty modes, is observable. The DBN
FII scheme is initialized to the state of the system at timetd,
when the fault was detected (see Section 2.1). This is because
td − to is assumed to be small and error in starting the DBN-
based FII scheme attd instead ofto is negligible for the our
diagnosis approach. Recall that all observations have been

cached from the time a fault was detected and the DBN ob-
server was suspended.

For the quantitative FII procedure, we adopt the procedure
detailed in[Lerneret al., 2000]. However, the computational
complexity of our approach is greatly reduced because we
start with the pruned set of fault hypotheses obtained from
the qualitative TCG analysis. We maintain the belief state
as a set of hypothesis, each of which corresponds to a single
multivariate Gaussian distribution. A random variablept is
introduced for each hypothesis (each hypothesis is defined
as a parameter value that has changed), and the distribution
of pt corresponds to the likelihood for that fault hypothesis.
Once the DBN with fault hypotheses is established, the same
procedure for updating the likelihood for the nominal DBN
can be applied to adjust the weights and the parameters of the
multivariate Gaussians as each hypothesis is conditioned on
the new measurementsYt+1.

As more observations are collected, the mean value for the
true fault parameter changes gradually, whereas the means of
the other non-faulty parameters do not change. Moreover, the
variances of each distribution should gradually decrease as
more measurements are obtained. Observing the sequence of
means, we can calculate the rate of change of the true fault pa-
rameter, thereby fulfilling the identification task for incipient
faults. If at the end of the qualitative analysis, the set of fault
hypotheses is refined to a singleton set containing only one
fault, it implies that the system is diagnosable using the qual-
itative diagnoser. In that case, we add only one fault mode to
the DBN-based diagnoser and the diagnoser is used solely for
estimating the slope of the fault parameter.

6 Results
In this section, we present the results obtained by applyingthe
proposed diagnosis approach to the two tank system shown in
Fig. 3(a). In such hydraulic systems, the accumulation of sed-
iment in the pipes are common examples of incipient faults.
These incipient faults are modeled as a gradual increase in
the pipe resistances and represented asR1+ R2+ andR12+.
f 3, f 5, and f 8, the flow through the pipesR1, R12 andR2,
respectively, are the measured variables for this experiment.

System behavior was generated for a total of 500 time steps
by simulation using the Simulinkr/MATLAB r environment.
White noise (mean = 0, variance = 2% of the measured sig-
nal) was added to the measurements. The measurements were
saved in a file, and then run through our incipient fault di-
agnosis scheme (implemented in MATLAB) to generate our
experimental results.

We now describe a run of our diagnosis approach for a spe-
cific fault scenario. An incipient fault, i.e., a gradual buildup
of resistance was introduced in pipeR12 at time-step,t = 200.
The fault was modeled by a linear increase in theR12 para-
meter at rate of 0.0014 per time unit.

The introduction of the faultR12+ first resulted in an de-
crease from nominal forf 5, i.e., f 5 = −. The fault detector
Z-test signaled this deviation at time stept = 219, and then
detected a increase from nominal in the measured value for
f 3, i.e., f 3 = +, and then an decrease from nominal forf 8,
i.e., f 8 = − at time steps 266 and 371, respectively. This is



shown in Fig. 6, where the flows after the introduction of the
fault are compared with the flow values estimated by the ob-
server. The forward propagation along the TCG implicated
R2+ and R12+ as the possible fault candidates. The fault
signatures, shown in Table 1 were used to match against the
symbolic value of the measured variables. In this particular
experiment, at the end of the TCG based analysis,R2+ and
R12+ remained as fault candidates as the deviations observed
in f 3 and f 5 could not refute the possibility of either fault.

The DBN-based diagnoser, representing the fault modes
R2+ and R12+, was appropriately initialized and restarted
from the time of detection of the fault, i.e.,t = 219. All ran-
dom variables in the DBN are assumed to be sampled from
normal distributions with meanµp and varianceσp. The
means of every parameter is updated across time steps as fol-
lows:
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At every step, the mean and variance of the distributions
of each parameter is updated and the estimated observations
are compared with the actual faulty behavior. As the esti-
mates are conditioned on more evidence, i.e., measurements,
the estimation of the true fault parameter should result in pre-
dicted behavior models that match the measured system vari-
ables, while the estimates obtained from the “other” hypothe-
ses will produce estimates that imply no change in its parame-
ter value, or the estimated change has a very low likelihood
given the measurements. The Z-test described earlier is ap-
plied to the measured flow estimates corresponding to each of
the four hypotheses to determine if there is a significant de-
viation from the observed faulty measurements. If the Z-test
determines a deviation in the residual for a certain hypothesis,
that particular hypothesis is no longer considered to be valid.

In this way, att = 477, the deviation in estimates forR2+

is established using the Z-test, andR12+ is correctly isolated
as the true fault. The means of the distribution forR12 at
each time step fromt = 219 is logged and using standard least
square estimation, the slope of change is identified. The rate
of change of the faulty parameter was identified to be 0.00138
which is close to the actual injected rate of 0.0014 with a
percentage error of 1.43%.

Fig. 6(a) shows the plots for (i) the estimated nominal flow
f3 estimated by the observer, (ii) the measured actual flow f3
with the fault injected att = 200, (iii) the estimated flow f3
with R2+ as the only fault hypothesis, and, (iv) the estimated
flow f3 with R12+ as the only fault hypothesis. As the true
fault isR12+, we can see that the estimated flow f3 withR12+

as the only hypothesis converges to the observed flow where
as the estimates of f3 withR2+ as the only hypothesis do
not. Thus the Z-test detects a deviation forR2+ and hence
it is dropped as the fault hypothesis, isolatingR12+ as the

Fault Rate Time of Time of Time Time of Estimated
of fault fault of DBN-based rate of

fault injection detection QFI FII fault
R1+ 0.0021 200 205 305 305 0.0022
R2+ 0.0022 200 218 343 449 0.0024
R12+ 0.0014 200 219 371 477 0.00138

Table 2: Experimental results (all times are expressed as time
steps from the start of the experiment)

true fault. Similar plots for the flows f5 and f8 are shown in
Fig. 6(b) and Fig. 6(c). Table 2 summarizes the results for
experiments whereR1+ andR2+ are introduced as faults one
by one.

7 Conclusions

In this paper, we presented an efficient approach for diagno-
sis of incipient faults using a combined qualitative and quan-
titative DBN-based estimation scheme. The DBN-based FII
approach allows for robust diagnosis under uncertainty that
can be attributed to measurement noise and modeling errors.
However, for large practical systems, the DBN based ap-
proach becomes computationally very expensive. To address
this issue, in our approach, the fault hypotheses is first refined
to a smaller set of candidates using qualitative fault isolation
approaches. The DBN is then built for this reduced number
of fault hypotheses alone making it more efficient than one
which contains all possible fault hypotheses.

One issue that needs further investigation is the observabil-
ity of the DBN diagnoser and its impact on diagnosis. For ex-
ample, in the two tank system shown in Fig. 3, it is sufficient
to measure the pressuree7 and the flowf 3 to uniquely isolate
the fault hypotheses (Table 1). However, for quantitative FII,
it will be necessary to measure all three flows,f 3, f 5, and f 8
in order to estimate the appropriate resistance values at each
time step. The problem of identifying the correct set of mea-
surements such that the system is diagnosable as well as the
DBN is observable, therefore, is an interesting research issue.

In our experiments, we assumed that the prior and con-
ditional probabilities for the DBN are all Gaussian. More-
over, the parameters of the DBN were also assumed to have
a Gaussian distribution. However, this is a rather strong as-
sumption and we need to relax it and demonstrate the effi-
ciency of our diagnosis scheme for more general systems.

Finally, even though the qualitative fault isolation proce-
dure is designed for diagnosis of single faults, the DBN based
FII approach has no such restrictions. Hence, a natural exten-
sion of this work would be to adapt it for the detection of
multiple incipient faults. In future, we intend to also extend
this Bayesian approach to the diagnosis of both incipient and
abrupt faults.
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Figure 6: Tracking of flow measurements for two of the four
fault hypotheses{R2+,R12+}


