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ABSTRACT 

Owing1 to an immense growth of internet-connected and learning-

enabled cyber-physical systems (CPSs) [1], several new types of 

attack vectors have emerged. Analyzing security and resilience of 

these complex CPSs is difficult as it requires evaluating many 

subsystems and factors in an integrated manner. Integrated 

simulation of physical systems and communication network can 

provide an underlying framework for creating a reusable and 

configurable testbed for such analyses. Using a model-based 

integration approach and the IEEE High-Level Architecture 

(HLA) [2] based distributed simulation software; we have created 

a testbed for integrated evaluation of large-scale CPS systems. 

Our tested supports web-based collaborative metamodeling and 

modeling of CPS system and experiments and a cloud computing 

environment for executing integrated networked co-simulations. 

A modular and extensible cyber-attack library enables validating 

the CPS under a variety of configurable cyber-attacks, such as 

DDoS and integrity attacks. Hardware-in-the-loop simulation is 

also supported along with several hardware attacks. Further, a 

scenario modeling language allows modeling of alternative paths 

(Courses of Actions) that enables validating CPS under different 

what-if scenarios as well as conducting cyber-gaming 

experiments. These capabilities make our testbed well suited for 

analyzing security and resilience of CPS. In addition, the web-

based modeling and cloud-hosted execution infrastructure enables 

one to exercise the entire testbed using simply a web-browser, 

with integrated live experimental results display. 
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1 INTRODUCTION 

The last decade has seen an immense growth of internet-connected 

systems such as the Internet of Things (IOT) and several large-scale 

and learning-enabled Cyber-Physical Systems (CPSs) [1] [3]. CPS 

systems are often part of critical infrastructure such as railway, road 

transportation networks, power and water distribution systems, which 

makes them particularly attractive for adversarial attacks. In general, 

the attack vectors on these systems include attacks on the physical 

infrastructure, computation hardware, and communication networks. 

The tightly integrated nature of the physical, computational, and 

communication components enables attackers to use attack vectors in 

physical domain to attack the cyber domain and vice versa. Adding to 

this complexity is the fact that they usually span a variety of physical 

domains such as electrical, thermal, mechanical, and cyber (i.e. to route 

network packets for the sensor messages and actuator commands). 

Further, due to increased connectivity to the internet (both for access 

and control), several attack vectors have emerged that an adversary can 

utilize to exploit, disrupt, or damage the CPS. These multi-domain 

interactions, coupled with concerns of security and resilience make the 

task of analyzing the CPSs significantly challenging. 
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Owing to these complex interactions among system 

components and many possible combinations and manifestations 

of attack vectors, analysis of CPSs is usually performed using 

integrated simulations of different CPS components. However, 

this requires supporting time-dependent data exchange and time-

synchronization between simulators. We rely on the IEEE High-

Level Architecture (HLA) standard [2] for coordinated distributed 

simulations. In addition, due to performance reasons or 

unavailability of high-fidelity simulation models, many attacks 

and phenomena are not supported in simulations, thus requiring 

use of real, physical hardware for their emulation. 

The tight coupling between physical and cyber aspects of the 

systems requires joint evaluation of CPS security and resilience. 

As shown in Figure 1, a testbed must enable the user to not only 

model the integrated system-of-systems, but also to 

systematically deploy various attacks on the integrated 

simulations. Our testbed, called the SecUre and Resilient Cyber-

Physical Systems (SURE), uses a model-based integration 

approach, where models are used not only for the system 

modeling, but also for their configuration, parameterization, 

integration, and execution. Further, we created a library of attacks 

in cyber, physical, and hardware domains, from which the 

experimenter can pick any number of them and deploy 

systematically in the integrated simulations. We enable attacker-

defender games to analyze the system’s performance with 

different attacks as well as defense (and mitigation) strategies. 

Multi-stage games allow modeling of counter attacks and 

counter-counter attacks. Furthermore, Courses-of-Action (COA) 

enables experimenters to design workflow-like scenario models 

to perform a variety of what-if analyses in a systematic manner. 

The complex nature of the real-world CPSs requires their 

analysis with many different configurations, parameters, and 

workflows, which can require significant computational 

infrastructure. A cloud-based experimentation backend can be 

used for testbed scalability. In SURE, a web-browser is used not 

only for metamodeling, system modeling, and COA and 

experiment designs, but also for the cloud experiment integration 

and display of live experiment results. Taken together, these 

capabilities provide a robust platform for analyzing the security 

and resilience of complex CPSs. 

 

Figure 1: Capability Layers of CPS Evaluation Testbed 

Security and resilience of CPS has attracted significant 

attention in many areas such as medical devices [16], automobiles 

[17], and transportation systems [18]. Owing to the heterogeneity 

and complexity of CPSs, their security methods are also highly 

diverse [19]. Several testbeds have been proposed for security 

assessment of CPS applications such as power and SCADA 

systems [20] [21] [22]. In contrast, our testbed provides unique 

capabilities such as web-based collaborative metamodeling, 

modeling of CPS, cloud computing platform for experimentation, 

attacker-defender and multi-stage games, scenario-driven 

experimentation using courses-of-action, and multiple layers of 

abstraction for modeling CPSs. 

The rest of the paper is organized in the following manner. 

Section 2 paints the overall testbed architecture. Section 3 

describes the hardware-in-the-loop simulation. Section 4 details 

the attack libraries in the testbed and how attacks can be deployed 

to carry out attacker-defender games. Section 5 presents the 

Courses-of-Action (COA) modeling. Experiment results are 

provided in Section 6 and we conclude the paper in Section 7. 

2 TESTBED ARCHITECTURE 

Our testbed focusses on providing modeling and experimentation 

tools to enable system designers and security researchers to be 

able to analyze security and resilience of CPSs. We use a web-

based metamodeling and modeling tool, WebGME [4] for 

designing systems and scenarios, and configuring and executing 

experiments. WebGME uses a central server that can be accessed 

by multiple clients to enable collaborative modeling via the web. 

Additionally, the tool provides detailed tracing of modifications 

to help modelers with design evolutions by tracking change 

history and permitting branching and rollbacks like in a 

distributed source-code repository. We use road transportation 

networks as the application domain for our testbed, but all our 

tools are generic and have been used in many other domains such 

as power distribution and command-and-control simulations. 

The testbed architecture is shown in Figure 2. WebGME is 

used to model the system and configure the simulation tools used 

for different aspects of the modeled CPS. The different simulation 

tools are integrated for timed data exchange and time-

synchronized execution using the framework Command and 

Control Wind Tunnel (C2WT) [5] [6]. C2WT supports 

integration of a variety of simulation tools such as 

Matlab/Simulink [7], OMNeT++ [8], CPNTools [9], SUMO [10], 

TrainDirector [11], and Gridlab-D [12]. 

 

Figure 2: Testbed Architecture 

As shown in Figure 2, we hosted the C2WT integration and 

execution platform in a cloud environment using OpenStack [23]. 



Integrated Simulation Testbed for Security and Resilience of CPS SAC’18, April 9-13, 2018, Pau, France 

 

 

Additionally, when integrated simulations are executed in the 

C2WT platform the live experiment results are populated in a 

streaming InfluxDB database [24]. These results are then queried 

by the WebGME tool to display live charts of the experiment 

results as the simulations are executed. One key feature of our 

testbed is that it can execute many variations of the simulation 

experiments in parallel, limited only by the available cloud 

resources. This is crucial for analyzing CPS, which requires 

analyzing many configurations, parameters, and workflows. 

Modeling of the CPS, both in WebGME and in C2WT, is 

based on Model-Integrated Computing (MIC) [13] that focuses on 

formally representing the system components, their interactions, 

and rules for composition and configuration. A metamodel is a 

Domain-Specific Modeling Language (DSML) designed for a 

particular application domain. For example, the metamodel in 

SURE captures the modeling of CPS systems and scenarios with 

a focus on security and resilience analysis, whereas in C2WT it 

focusses on distributed simulation integration. 

One of the fundamental aspects of the testbed is the 

capability to analyze the CPS under a variety of attacks. The 

attacks currently supported and how they are used is described in 

Section 4. Further, the testbed allows detailed scenario modeling 

for performing what-if analyses using Courses-of-Actions 

(COAs) –  described in detail in Section 5. In addition, the attack 

library and COAs use an integrated hardware-in-the-loop testbed 

to run hardware elements and deploy attacks in the hardware. 

3 HARDWARE-IN-THE-LOOP SIMULATION 

Many attacks and phenomena are not analyzable in simulations 

due to performance reasons or unavailability of high-fidelity 

simulation models, thus requiring use of real, physical hardware 

for performing Hardware-in-the-loop (HIL) simulation. However, 

the HIL platform must be connected with a distributed simulation 

platform, which provides scalability and time-synchronization 

needed for complex distributed simulations. Our HIL platform is 

comprised of two parts: a hardware-in-the-loop testbed and the 

C2WT distributed simulation environment. This allows for taking 

advantage of both the scalability of the C2WT with the fine-tuned 

ability to analyze CPS controller behavior on real emulated 

hardware consistent with the platforms deployed in the field. 

 

Figure 3: Hardware-In-The-Loop Platform 

As illustrated in Figure 3, the HIL testbed is comprised of 5 

different components. These include the development system 

where CPS control software is developed, the CPS nodes which 

consist of embedded computing boards consistent with operating 

platforms in the field, a software defined networking interface 

that enables controlling various communication parameters and 

protocols through the network, a Physics simulator serving as the 

physical plant, and a physical network connecting embedded 

computing nodes with the simulator interface. 

 

Figure 4: HIL Integration with C2WT 

The HIL testbed also has an interface (see Figure 4) to connect 

the emulated software in the hardware with the simulated 

software in C2WT. The interface protocol communication utilizes 

Google Protocol Buffers [14] – a language and platform neutral 

extensible mechanism for serializing data – for formatting custom 

messages, and the ZeroMQ API [15] for transmitting and 

receiving messages throughout the network. 

The integration interface has two components, viz. HIL Proxy 

and HIL gateway. The role of HIL Proxy is to serve as the 

interface between the embedded computing nodes on the HIL 

testbed and the simulation environment. As such, this proxy 

mechanism receives sensor information from each HIL node as 

well as sends custom commands to each respective node to adjust 

behavior. The role of the HIL gateway is to serve as an interface 

between C2WT simulators and the controller code in the HIL 

testbed. This can include communication between controllers and 

sensors defined in C2WT with controllers in the HIL testbed, as 

well as receiving controller commands from respective HIL 

nodes. 

As the simulator interface is defined in C2WT as a 

simulation, the gateway is additionally responsible for serving as 

an interface for HIL node controllers to interact with the physical 

plant simulator. In addition, two message types are used, viz. HIL 

messages and interface messages. HIL messages correspond to 

internal messages in the HIL testbed such as internal controller 

communications or commands. However, when communication 

needs to be established with the C2WT environment such as 

obtaining sensor values or sending actuation commands to the 

simulator, interface messages are utilized for transmission. 

4 ATTACK MODELING & CYBER GAMING 

As a part of our testbed, a cyber-attack library exists for 

developing modular and reusable attack sequences. These attacks 

represent atomic actions that can be chained together with 

associated timing parameters to develop complex sequences of 

attacks on CPS. The attack library consists of three groups of 

attacks: cyber-attacks, physical attacks, and hardware attacks. 

Cyber-attacks compromise cyber components (e.g., network 

infrastructure) and message communications. Physical attacks 

compromise the physical road infrastructure such as vehicle 

crashes, lane closures, or traffic light failures. Hardware attacks 

are implemented in the real hardware. 
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Table 1: Testbed Attack Libraries 

 
 

As shown in Table 1, the current cyber-attack library 

includes several key cyber-attacks such as denial of service, 

delay, corruption, and integrity attacks. Additionally, each of 

these contains parameters to customize the attack. For example, 

for an integrity attack – that manipulates message level network 

packets – the parameters are various fields of the message. 

Integrity attack updates messages in the simulation by modifying 

the message’s fields. The key attacks in the physical attack library 

include lane closures, vehicle failures, traffic light failures, and 

vehicle crashes. These attacks interact directly with the behavior 

of the physical plant simulator (SUMO). Consistent with the 

cyber-attack instances, each of these attacks has editable 

parameters that allow each generic model to become a unique 

implementation instance (e.g., editable lane field in a lane closure 

attack is used update SUMO configuration to ensure the lane as 

untraveled). Finally, the key hardware attacks include side 

channel, [distributed] denial of service (DDoS), and spoofing 

attacks. These attacks allow observing the effect of multiple 

collaborating attack nodes on the outcome of an attack. This is 

vital in DDoS attacks where the magnitude of system degradation 

is directly proportional to the amount of attacking nodes. 

Using the attack libraries we created several cyber-gaming 

test scenarios for CPS security and resilience. Below are a few 

such scenarios using a road transportation application domain 

(with traffic sensors, traffic lights and controllers, etc.): 

1. Observation selection: A set of traffic sensor locations 

are to be selected from many possible locations such 

that the chosen set is resilient to DoS attacks on a subset 

of them. It uses regression analysis to learn the 

covariance matrices model among the sensors and uses 

the learned model to predict traffic parameters. The 

integrated simulation is run on C2WT platform and the 

actual traffic flows are compared against the predicted 

values. The scenario allows attacker-defender gaming 

by allowing defenders to set locations of sensors and the 

attacker to attack a subset of those locations. The 

scenario can be used by multiple players at the same 

time via the WebGME modeling tool. 

2. Resilience monitoring and control: This scenario 

enables analyzing resilient control algorithms. After the 

defender has designed the initial traffic light control 

parameters, the attacker uses integrity cyber-attack to 

alter the traffic light phases and/or phase durations so as 

to maximize the average travel time of vehicles. 

Different control algorithms can be compared against 

different attack schemes. 

3. Resilient architectures: This scenario was designed to 

incorporate attack parameter values generated from real 

hardware based attack deployments. Using these 

realistic attack parameters in the integrated simulation 

environment provides more accurate analysis of CPS 

architectures. 

4. Hierarchical controller: It enables system-level 

resilience studies by incorporating system-level control 

algorithms to monitor and reconfigure low-level control 

algorithms. For example, this scenario could be used to 

study resilient algorithms that evolve in depth and 

complexity depending on how threats emerge and 

evolve. 

5. DoS with Hardware-in-the-loop: It allows HIL 

simulations by integrating the HIL testbed with C2WT. 

5 COURSES-OF-ACTION ANALYSIS 

Courses-of-Actions (COAs) allow for modeling scenarios that 

describe detailed what-if analysis or multi-stage attacker-defender 

gaming. As shown in Figure 5, the basic idea of COAs is to 

enable analysis of integrated simulations along with dynamic 

behavior to exercise the same system models with many different 

behavioral or scenario workflows. 

 

Figure 5: Courses-of-Action (COA) for Dynamic Behavior 

COAs are workflow-like scenario models that are created 

using several atomic actions and atomic outcomes (i.e. triggers) 

such as time, an event, or system outputs. Additionally, the COAs 

contain a variety of COA elements (see Table 2), such as forks 

and random durations, which can be used for elaborate strategy or 

game planning. A COA model is a Directed Acyclic Graph 

(DAG) that is created by connecting atomic nodes with directed 

edges. A generic COA Orchestration Engine is used to execute 

one or more COAs in parallel as individual atomic elements of 

COAs become enabled (after preceding node’s execution). 



Table 2: COA Atomic Elements 

COA Element Description 

Synchronization 

Point 

Represents absolute time-point from beginning of simulation. All incoming branches must wait until this time-

point has been reached. 

Action An interaction that must be sent out by the COA Orchestration Engine as soon as the action point is reached. The 

parameters of the interaction can be specified. 

Outcome Represents the type of interaction that the COA Orchestration Engine must wait to arrive before it can proceed. 

Fork A branching element with the following sementics: All branches following this element are executed in parallel. 

Probabilistic Choice Chooses only one succeeding branch based specified probabilities of outgoing branches. 

AwaitN Waits on a given number of incoming branches to finish before letting the COA Orchestration engine proceed. 

Duration Represents the time the COA Orchestration Engine delays the execution once the duration element is reached. 

Random Duration A duration that is randomly distributed using a uniform distribution. 

Outcome Filter Filter based on the values of the parameters of the received interaction. Different outgoing branches can be 

executed based on different values of parameters. 

Terminate COA When reached, the COA execution is terminated. 

SimEnd When reached, the entire simulation of the federation is terminated. 

 

Figure 6: Illustrative Example of a COA 

 

Figure 7: COA Status Display 

 

Figure 6 illustrates an example COA model. Note that the 

action element injects new information into the running 

simulation. Whereas, the outcomes are the observation patterns 

that must match in order for the COA execution to proceed 

further along the branch. Execution status of COAs is also made 

available by the testbed. As shown in Figure 7, the status display 
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shows different color for different statuses of nodes, viz. red for 

currently executing nodes, gray for nodes that have finished 

execution, and green for inactive nodes. 
In addition, the testbed allows for the grouping of COA 

models and to automatically select combinations of COAs from 

different COA groups. This is referred to as design of experiments 

in the testbed. As an example, if the defender created 6 different 

defense strategies as COA models in a defender COA group and 

the attacker created 5 different attack strategies as COA models in 

the attacker COA group, then choosing the two COA groups for 

experimentation will automatically execute 5 x 6 = 30 different 

combination of scenarios. Such a capability is useful for cyber 

gaming as well as multi-stage attacker-defender games for the 

security and resilience analysis of CPS’s. 

6 EXPERIMENTAL RESULTS 

Case-study 1: Observation selection scenario: Figure 8 shows a 

road transportation network in the background overlaid with a 

cyber communication network topology. The traffic sensors are 

the circles marked with the letter 'S'. The red colored sensors are 

those under DoS attack, while blue colored sensors are 

operational. A set of sensors need to selected such that even when 

a subset of those are under cyber-attacks, the estimation of traffic 

flow at the magenta colored location will be close to acceptable 

compared to the real traffic flow in the simulation. 

 

Figure 8: Observation Selection Experiment Scenario 

We simulated the scenarios where none of the sensors were 

attacked and the one shown in Figure 8 with several sensors 

under DoS attack. The results from these two variations are 

recorded by C2WT in an InfluxDB database, which were pulled 

live by WebGME and shown to the user (see Figure 9). Also, 

when the experiments are completed, the Root Mean Square Error 

of the measured traffic densities is compared against the actual 

flows for both cases, viz. when no sensors were attacked, and 

when some sensors were attacked. In our experiments, we found 

that when several sensors were attacked, the RMSE increased 

from 10.546 to 20.0068. Our testbed also computes the graphs of 

predicted traffic densities vs observed (in simulation) traffic 

densities. 

 

Figure 9: Live Experiment Results in Web-Browser 

Case-study 2: Hardware-in-the-loop scenario: A traffic 

control study (see Figure 10) is used with 9 traffic light 

controllers within a university campus routing vehicles efficiently 

throughout the area. Additionally, there is a level 1 trauma center 

near the center of campus making it crucial for ambulances and 

other emergency vehicles to travel through this area with as little 

traffic as possible. The intersection traffic light controllers are 

split into two areas: intersections simulated in C2WT and 

controllers emulated in the HIL testbed. 

Each intersection in C2WT includes induction loop sensors 

that detect traffic density at each direction. This information is 

fed to the traffic light controller that then executes a queue based 

controller algorithm to optimize traffic flow through the 

intersection. However, the induction loop sensors communicate 

wirelessly to the controller making them vulnerable to man in the 

middle attacks that spoof or modify routed packets before they 

reach the controller. 

Each intersection emulated in the HIL testbed is controlled 

through a fixed time schedule, preventing the possibility of 

communication based integrity attacks, but also optimizing traffic 

less efficiently than the queue based traffic light controllers. The 

fixed time controllers are however prone to DoS attacks based on 

power disruptions or physical attacks. The attack surface is 

defined as follows: an attacker can perform an integrity attack at 

an intersection in C2WT area and edit induction loop sensor 

packets to show fewer cars at the intersection. Additionally, the 

attacker can perform a DoS attack on an intersection within the 

HIL area, to disrupt the path of critical routes. 

The attacker tries to maximize the average vehicle trip 

duration in the road network, as well as minimize the average 

speed of traffic through the area. The results of the experiment are 

shown in Figure 11. During the baseline scenario where no 

attacks are observed, the average trip duration is approximately 

284 seconds with an average trip speed of 24.45 miles per hour. 

However, when the attacker performed integrity and denial of 

service attacks on intersections, traffic flows were affected 

significantly throughout the area. In this case, the average vehicle 

trip duration increases to 512 seconds, almost double the original 
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trip duration value. Furthermore, the average speed decreases to 

approximately 21.22 miles per hour, a 13% reduction compared 

to the baseline scenario. 

 

Figure 10: HIL Integration Scenario 

 

Figure 11: Average Speed Comparison 

7 CONCLUSION 

Cyber-physical systems are becoming wide-spread in various 

parts of the economy including the critical infrastructure. Secure 

and resilient CPSs are vital to avoid disruptions and damages. 

Evaluating CPS security and resilience is of extreme importance, 

yet is a highly challenging task. Our testbed facilitates this 

evaluation using model-based simulation integration, web-based 

collaborative system and experiment modeling, and cloud 

experiment execution. The testbed provides modular and 

extensible attack libraries for the physical, cyber, and hardware 

attacks. Also, the testbed provides modeling and experimentation 

with Courses-of-Action (COAs) that enable analysis with 

different what-if and gaming scenarios. The COAs provide an 

intuitive means to enable system analysts to perform many 

scenario-driven experiments over the same integrated simulation. 

These sophisticated modeling and experimentation capabilities 

make our testbed a robust, powerful, and scalable platform for 

analyzing the security and resilience of CPSs. 
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