
Integrated Simulation Testbed for Security and Resilience of CPS

Himanshu Neema
Vanderbilt University

1025 16th Ave S, Nashville, TN
USA

himanshu.neema@vanderbilt.edu

Bradley Potteiger
Vanderbilt University

1025 16th Ave S, Nashville, TN
USA

bradley.d.potteiger@vanderbilt.edu

Xenofon Koutsoukos
Vanderbilt University

1025 16th Ave S, Nashville, TN
USA

xenofon.koutsoukos@vanderbilt.edu

Gabor Karsai
Vanderbilt University

1025 16th Ave S, Nashville, TN
USA

gabor.karsai@vanderbilt.edu

Peter Volgyesi
Vanderbilt University

1025 16th Ave S, Nashville, TN
USA

peter.volgyesi@vanderbilt.edu

Janos Sztipanovits
Vanderbilt University

1025 16th Ave S, Nashville, TN
USA

janos.sztipanovits@vanderbilt.edu

ABSTRACT

Owing1 to an immense growth of internet-connected and learning-

enabled cyber-physical systems (CPSs) [1], several new types of

attack vectors have emerged. Analyzing security and resilience of

these complex CPSs is difficult as it requires evaluating many

subsystems and factors in an integrated manner. Integrated

simulation of physical systems and communication network can

provide an underlying framework for creating a reusable and

configurable testbed for such analyses. Using a model-based

integration approach and the IEEE High-Level Architecture

(HLA) [2] based distributed simulation software; we have created

a testbed for integrated evaluation of large-scale CPS systems.

Our tested supports web-based collaborative metamodeling and

modeling of CPS system and experiments and a cloud computing

environment for executing integrated networked co-simulations.

A modular and extensible cyber-attack library enables validating

the CPS under a variety of configurable cyber-attacks, such as

DDoS and integrity attacks. Hardware-in-the-loop simulation is

also supported along with several hardware attacks. Further, a

scenario modeling language allows modeling of alternative paths

(Courses of Actions) that enables validating CPS under different

what-if scenarios as well as conducting cyber-gaming

experiments. These capabilities make our testbed well suited for

analyzing security and resilience of CPS. In addition, the web-

based modeling and cloud-hosted execution infrastructure enables

one to exercise the entire testbed using simply a web-browser,

with integrated live experimental results display.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

SAC 2018, April 9–13, 2018, Pau, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5191-1/18/04…$15.00

https://doi.org/10.1145/3167132.3167173

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; Dependable and fault-tolerant systems and

networks • Security and privacy → Systems security •

Computing methodologies → Modeling and simulation

KEYWORDS

Cyber-Physical Systems, modeling and simulation, High-Level

Architecture, security and resilience, courses of action

ACM Reference format:

Himanshu Neema, Bradley Potteiger, Xenofon Koutsoukos, Gabor Karsai,

Peter Volgyesi, and Janos Sztipanovits. 2018. Integrated Simulation for

Security and Resilience of CPS. In Proceedings of ACM SAC Conference,

Pau, France, April 9-13, 2018 (SAC’18), 7 pages. DOI:

https://doi.org/10.1145/3167132.3167173

1 INTRODUCTION

The last decade has seen an immense growth of internet-connected

systems such as the Internet of Things (IOT) and several large-scale

and learning-enabled Cyber-Physical Systems (CPSs) [1] [3]. CPS

systems are often part of critical infrastructure such as railway, road

transportation networks, power and water distribution systems, which

makes them particularly attractive for adversarial attacks. In general,

the attack vectors on these systems include attacks on the physical

infrastructure, computation hardware, and communication networks.

The tightly integrated nature of the physical, computational, and

communication components enables attackers to use attack vectors in

physical domain to attack the cyber domain and vice versa. Adding to

this complexity is the fact that they usually span a variety of physical

domains such as electrical, thermal, mechanical, and cyber (i.e. to route

network packets for the sensor messages and actuator commands).

Further, due to increased connectivity to the internet (both for access

and control), several attack vectors have emerged that an adversary can

utilize to exploit, disrupt, or damage the CPS. These multi-domain

interactions, coupled with concerns of security and resilience make the

task of analyzing the CPSs significantly challenging.

mailto:Permissions@acm.org

SAC’18, April 9-13, 2018, Pau, France H. Neema et al.

Owing to these complex interactions among system

components and many possible combinations and manifestations

of attack vectors, analysis of CPSs is usually performed using

integrated simulations of different CPS components. However,

this requires supporting time-dependent data exchange and time-

synchronization between simulators. We rely on the IEEE High-

Level Architecture (HLA) standard [2] for coordinated distributed

simulations. In addition, due to performance reasons or

unavailability of high-fidelity simulation models, many attacks

and phenomena are not supported in simulations, thus requiring

use of real, physical hardware for their emulation.

The tight coupling between physical and cyber aspects of the

systems requires joint evaluation of CPS security and resilience.

As shown in Figure 1, a testbed must enable the user to not only

model the integrated system-of-systems, but also to

systematically deploy various attacks on the integrated

simulations. Our testbed, called the SecUre and Resilient Cyber-

Physical Systems (SURE), uses a model-based integration

approach, where models are used not only for the system

modeling, but also for their configuration, parameterization,

integration, and execution. Further, we created a library of attacks

in cyber, physical, and hardware domains, from which the

experimenter can pick any number of them and deploy

systematically in the integrated simulations. We enable attacker-

defender games to analyze the system’s performance with

different attacks as well as defense (and mitigation) strategies.

Multi-stage games allow modeling of counter attacks and

counter-counter attacks. Furthermore, Courses-of-Action (COA)

enables experimenters to design workflow-like scenario models

to perform a variety of what-if analyses in a systematic manner.

The complex nature of the real-world CPSs requires their

analysis with many different configurations, parameters, and

workflows, which can require significant computational

infrastructure. A cloud-based experimentation backend can be

used for testbed scalability. In SURE, a web-browser is used not

only for metamodeling, system modeling, and COA and

experiment designs, but also for the cloud experiment integration

and display of live experiment results. Taken together, these

capabilities provide a robust platform for analyzing the security

and resilience of complex CPSs.

Figure 1: Capability Layers of CPS Evaluation Testbed

Security and resilience of CPS has attracted significant

attention in many areas such as medical devices [16], automobiles

[17], and transportation systems [18]. Owing to the heterogeneity

and complexity of CPSs, their security methods are also highly

diverse [19]. Several testbeds have been proposed for security

assessment of CPS applications such as power and SCADA

systems [20] [21] [22]. In contrast, our testbed provides unique

capabilities such as web-based collaborative metamodeling,

modeling of CPS, cloud computing platform for experimentation,

attacker-defender and multi-stage games, scenario-driven

experimentation using courses-of-action, and multiple layers of

abstraction for modeling CPSs.

The rest of the paper is organized in the following manner.

Section 2 paints the overall testbed architecture. Section 3

describes the hardware-in-the-loop simulation. Section 4 details

the attack libraries in the testbed and how attacks can be deployed

to carry out attacker-defender games. Section 5 presents the

Courses-of-Action (COA) modeling. Experiment results are

provided in Section 6 and we conclude the paper in Section 7.

2 TESTBED ARCHITECTURE

Our testbed focusses on providing modeling and experimentation

tools to enable system designers and security researchers to be

able to analyze security and resilience of CPSs. We use a web-

based metamodeling and modeling tool, WebGME [4] for

designing systems and scenarios, and configuring and executing

experiments. WebGME uses a central server that can be accessed

by multiple clients to enable collaborative modeling via the web.

Additionally, the tool provides detailed tracing of modifications

to help modelers with design evolutions by tracking change

history and permitting branching and rollbacks like in a

distributed source-code repository. We use road transportation

networks as the application domain for our testbed, but all our

tools are generic and have been used in many other domains such

as power distribution and command-and-control simulations.

The testbed architecture is shown in Figure 2. WebGME is

used to model the system and configure the simulation tools used

for different aspects of the modeled CPS. The different simulation

tools are integrated for timed data exchange and time-

synchronized execution using the framework Command and

Control Wind Tunnel (C2WT) [5] [6]. C2WT supports

integration of a variety of simulation tools such as

Matlab/Simulink [7], OMNeT++ [8], CPNTools [9], SUMO [10],

TrainDirector [11], and Gridlab-D [12].

Figure 2: Testbed Architecture

As shown in Figure 2, we hosted the C2WT integration and

execution platform in a cloud environment using OpenStack [23].

Integrated Simulation Testbed for Security and Resilience of CPS SAC’18, April 9-13, 2018, Pau, France

Additionally, when integrated simulations are executed in the

C2WT platform the live experiment results are populated in a

streaming InfluxDB database [24]. These results are then queried

by the WebGME tool to display live charts of the experiment

results as the simulations are executed. One key feature of our

testbed is that it can execute many variations of the simulation

experiments in parallel, limited only by the available cloud

resources. This is crucial for analyzing CPS, which requires

analyzing many configurations, parameters, and workflows.

Modeling of the CPS, both in WebGME and in C2WT, is

based on Model-Integrated Computing (MIC) [13] that focuses on

formally representing the system components, their interactions,

and rules for composition and configuration. A metamodel is a

Domain-Specific Modeling Language (DSML) designed for a

particular application domain. For example, the metamodel in

SURE captures the modeling of CPS systems and scenarios with

a focus on security and resilience analysis, whereas in C2WT it

focusses on distributed simulation integration.

One of the fundamental aspects of the testbed is the

capability to analyze the CPS under a variety of attacks. The

attacks currently supported and how they are used is described in

Section 4. Further, the testbed allows detailed scenario modeling

for performing what-if analyses using Courses-of-Actions

(COAs) – described in detail in Section 5. In addition, the attack

library and COAs use an integrated hardware-in-the-loop testbed

to run hardware elements and deploy attacks in the hardware.

3 HARDWARE-IN-THE-LOOP SIMULATION

Many attacks and phenomena are not analyzable in simulations

due to performance reasons or unavailability of high-fidelity

simulation models, thus requiring use of real, physical hardware

for performing Hardware-in-the-loop (HIL) simulation. However,

the HIL platform must be connected with a distributed simulation

platform, which provides scalability and time-synchronization

needed for complex distributed simulations. Our HIL platform is

comprised of two parts: a hardware-in-the-loop testbed and the

C2WT distributed simulation environment. This allows for taking

advantage of both the scalability of the C2WT with the fine-tuned

ability to analyze CPS controller behavior on real emulated

hardware consistent with the platforms deployed in the field.

Figure 3: Hardware-In-The-Loop Platform

As illustrated in Figure 3, the HIL testbed is comprised of 5

different components. These include the development system

where CPS control software is developed, the CPS nodes which

consist of embedded computing boards consistent with operating

platforms in the field, a software defined networking interface

that enables controlling various communication parameters and

protocols through the network, a Physics simulator serving as the

physical plant, and a physical network connecting embedded

computing nodes with the simulator interface.

Figure 4: HIL Integration with C2WT

The HIL testbed also has an interface (see Figure 4) to connect

the emulated software in the hardware with the simulated

software in C2WT. The interface protocol communication utilizes

Google Protocol Buffers [14] – a language and platform neutral

extensible mechanism for serializing data – for formatting custom

messages, and the ZeroMQ API [15] for transmitting and

receiving messages throughout the network.

The integration interface has two components, viz. HIL Proxy

and HIL gateway. The role of HIL Proxy is to serve as the

interface between the embedded computing nodes on the HIL

testbed and the simulation environment. As such, this proxy

mechanism receives sensor information from each HIL node as

well as sends custom commands to each respective node to adjust

behavior. The role of the HIL gateway is to serve as an interface

between C2WT simulators and the controller code in the HIL

testbed. This can include communication between controllers and

sensors defined in C2WT with controllers in the HIL testbed, as

well as receiving controller commands from respective HIL

nodes.

As the simulator interface is defined in C2WT as a

simulation, the gateway is additionally responsible for serving as

an interface for HIL node controllers to interact with the physical

plant simulator. In addition, two message types are used, viz. HIL

messages and interface messages. HIL messages correspond to

internal messages in the HIL testbed such as internal controller

communications or commands. However, when communication

needs to be established with the C2WT environment such as

obtaining sensor values or sending actuation commands to the

simulator, interface messages are utilized for transmission.

4 ATTACK MODELING & CYBER GAMING

As a part of our testbed, a cyber-attack library exists for

developing modular and reusable attack sequences. These attacks

represent atomic actions that can be chained together with

associated timing parameters to develop complex sequences of

attacks on CPS. The attack library consists of three groups of

attacks: cyber-attacks, physical attacks, and hardware attacks.

Cyber-attacks compromise cyber components (e.g., network

infrastructure) and message communications. Physical attacks

compromise the physical road infrastructure such as vehicle

crashes, lane closures, or traffic light failures. Hardware attacks

are implemented in the real hardware.

SAC’18, April 9-13, 2018, Pau, France H. Neema et al.

Table 1: Testbed Attack Libraries

As shown in Table 1, the current cyber-attack library

includes several key cyber-attacks such as denial of service,

delay, corruption, and integrity attacks. Additionally, each of

these contains parameters to customize the attack. For example,

for an integrity attack – that manipulates message level network

packets – the parameters are various fields of the message.

Integrity attack updates messages in the simulation by modifying

the message’s fields. The key attacks in the physical attack library

include lane closures, vehicle failures, traffic light failures, and

vehicle crashes. These attacks interact directly with the behavior

of the physical plant simulator (SUMO). Consistent with the

cyber-attack instances, each of these attacks has editable

parameters that allow each generic model to become a unique

implementation instance (e.g., editable lane field in a lane closure

attack is used update SUMO configuration to ensure the lane as

untraveled). Finally, the key hardware attacks include side

channel, [distributed] denial of service (DDoS), and spoofing

attacks. These attacks allow observing the effect of multiple

collaborating attack nodes on the outcome of an attack. This is

vital in DDoS attacks where the magnitude of system degradation

is directly proportional to the amount of attacking nodes.

Using the attack libraries we created several cyber-gaming

test scenarios for CPS security and resilience. Below are a few

such scenarios using a road transportation application domain

(with traffic sensors, traffic lights and controllers, etc.):

1. Observation selection: A set of traffic sensor locations

are to be selected from many possible locations such

that the chosen set is resilient to DoS attacks on a subset

of them. It uses regression analysis to learn the

covariance matrices model among the sensors and uses

the learned model to predict traffic parameters. The

integrated simulation is run on C2WT platform and the

actual traffic flows are compared against the predicted

values. The scenario allows attacker-defender gaming

by allowing defenders to set locations of sensors and the

attacker to attack a subset of those locations. The

scenario can be used by multiple players at the same

time via the WebGME modeling tool.

2. Resilience monitoring and control: This scenario

enables analyzing resilient control algorithms. After the

defender has designed the initial traffic light control

parameters, the attacker uses integrity cyber-attack to

alter the traffic light phases and/or phase durations so as

to maximize the average travel time of vehicles.

Different control algorithms can be compared against

different attack schemes.

3. Resilient architectures: This scenario was designed to

incorporate attack parameter values generated from real

hardware based attack deployments. Using these

realistic attack parameters in the integrated simulation

environment provides more accurate analysis of CPS

architectures.

4. Hierarchical controller: It enables system-level

resilience studies by incorporating system-level control

algorithms to monitor and reconfigure low-level control

algorithms. For example, this scenario could be used to

study resilient algorithms that evolve in depth and

complexity depending on how threats emerge and

evolve.

5. DoS with Hardware-in-the-loop: It allows HIL

simulations by integrating the HIL testbed with C2WT.

5 COURSES-OF-ACTION ANALYSIS

Courses-of-Actions (COAs) allow for modeling scenarios that

describe detailed what-if analysis or multi-stage attacker-defender

gaming. As shown in Figure 5, the basic idea of COAs is to

enable analysis of integrated simulations along with dynamic

behavior to exercise the same system models with many different

behavioral or scenario workflows.

Figure 5: Courses-of-Action (COA) for Dynamic Behavior

COAs are workflow-like scenario models that are created

using several atomic actions and atomic outcomes (i.e. triggers)

such as time, an event, or system outputs. Additionally, the COAs

contain a variety of COA elements (see Table 2), such as forks

and random durations, which can be used for elaborate strategy or

game planning. A COA model is a Directed Acyclic Graph

(DAG) that is created by connecting atomic nodes with directed

edges. A generic COA Orchestration Engine is used to execute

one or more COAs in parallel as individual atomic elements of

COAs become enabled (after preceding node’s execution).

Table 2: COA Atomic Elements

COA Element Description

Synchronization

Point

Represents absolute time-point from beginning of simulation. All incoming branches must wait until this time-

point has been reached.

Action An interaction that must be sent out by the COA Orchestration Engine as soon as the action point is reached. The

parameters of the interaction can be specified.

Outcome Represents the type of interaction that the COA Orchestration Engine must wait to arrive before it can proceed.

Fork A branching element with the following sementics: All branches following this element are executed in parallel.

Probabilistic Choice Chooses only one succeeding branch based specified probabilities of outgoing branches.

AwaitN Waits on a given number of incoming branches to finish before letting the COA Orchestration engine proceed.

Duration Represents the time the COA Orchestration Engine delays the execution once the duration element is reached.

Random Duration A duration that is randomly distributed using a uniform distribution.

Outcome Filter Filter based on the values of the parameters of the received interaction. Different outgoing branches can be

executed based on different values of parameters.

Terminate COA When reached, the COA execution is terminated.

SimEnd When reached, the entire simulation of the federation is terminated.

Figure 6: Illustrative Example of a COA

Figure 7: COA Status Display

Figure 6 illustrates an example COA model. Note that the

action element injects new information into the running

simulation. Whereas, the outcomes are the observation patterns

that must match in order for the COA execution to proceed

further along the branch. Execution status of COAs is also made

available by the testbed. As shown in Figure 7, the status display

SAC’18, April 9-13, 2018, Pau, France H. Neema et al.

shows different color for different statuses of nodes, viz. red for

currently executing nodes, gray for nodes that have finished

execution, and green for inactive nodes.
In addition, the testbed allows for the grouping of COA

models and to automatically select combinations of COAs from

different COA groups. This is referred to as design of experiments

in the testbed. As an example, if the defender created 6 different

defense strategies as COA models in a defender COA group and

the attacker created 5 different attack strategies as COA models in

the attacker COA group, then choosing the two COA groups for

experimentation will automatically execute 5 x 6 = 30 different

combination of scenarios. Such a capability is useful for cyber

gaming as well as multi-stage attacker-defender games for the

security and resilience analysis of CPS’s.

6 EXPERIMENTAL RESULTS

Case-study 1: Observation selection scenario: Figure 8 shows a

road transportation network in the background overlaid with a

cyber communication network topology. The traffic sensors are

the circles marked with the letter 'S'. The red colored sensors are

those under DoS attack, while blue colored sensors are

operational. A set of sensors need to selected such that even when

a subset of those are under cyber-attacks, the estimation of traffic

flow at the magenta colored location will be close to acceptable

compared to the real traffic flow in the simulation.

Figure 8: Observation Selection Experiment Scenario

We simulated the scenarios where none of the sensors were

attacked and the one shown in Figure 8 with several sensors

under DoS attack. The results from these two variations are

recorded by C2WT in an InfluxDB database, which were pulled

live by WebGME and shown to the user (see Figure 9). Also,

when the experiments are completed, the Root Mean Square Error

of the measured traffic densities is compared against the actual

flows for both cases, viz. when no sensors were attacked, and

when some sensors were attacked. In our experiments, we found

that when several sensors were attacked, the RMSE increased

from 10.546 to 20.0068. Our testbed also computes the graphs of

predicted traffic densities vs observed (in simulation) traffic

densities.

Figure 9: Live Experiment Results in Web-Browser

Case-study 2: Hardware-in-the-loop scenario: A traffic

control study (see Figure 10) is used with 9 traffic light

controllers within a university campus routing vehicles efficiently

throughout the area. Additionally, there is a level 1 trauma center

near the center of campus making it crucial for ambulances and

other emergency vehicles to travel through this area with as little

traffic as possible. The intersection traffic light controllers are

split into two areas: intersections simulated in C2WT and

controllers emulated in the HIL testbed.

Each intersection in C2WT includes induction loop sensors

that detect traffic density at each direction. This information is

fed to the traffic light controller that then executes a queue based

controller algorithm to optimize traffic flow through the

intersection. However, the induction loop sensors communicate

wirelessly to the controller making them vulnerable to man in the

middle attacks that spoof or modify routed packets before they

reach the controller.

Each intersection emulated in the HIL testbed is controlled

through a fixed time schedule, preventing the possibility of

communication based integrity attacks, but also optimizing traffic

less efficiently than the queue based traffic light controllers. The

fixed time controllers are however prone to DoS attacks based on

power disruptions or physical attacks. The attack surface is

defined as follows: an attacker can perform an integrity attack at

an intersection in C2WT area and edit induction loop sensor

packets to show fewer cars at the intersection. Additionally, the

attacker can perform a DoS attack on an intersection within the

HIL area, to disrupt the path of critical routes.

The attacker tries to maximize the average vehicle trip

duration in the road network, as well as minimize the average

speed of traffic through the area. The results of the experiment are

shown in Figure 11. During the baseline scenario where no

attacks are observed, the average trip duration is approximately

284 seconds with an average trip speed of 24.45 miles per hour.

However, when the attacker performed integrity and denial of

service attacks on intersections, traffic flows were affected

significantly throughout the area. In this case, the average vehicle

trip duration increases to 512 seconds, almost double the original

Integrated Simulation Testbed for Security and Resilience of CPS SAC’18, April 9-13, 2018, Pau, France

trip duration value. Furthermore, the average speed decreases to

approximately 21.22 miles per hour, a 13% reduction compared

to the baseline scenario.

Figure 10: HIL Integration Scenario

Figure 11: Average Speed Comparison

7 CONCLUSION

Cyber-physical systems are becoming wide-spread in various

parts of the economy including the critical infrastructure. Secure

and resilient CPSs are vital to avoid disruptions and damages.

Evaluating CPS security and resilience is of extreme importance,

yet is a highly challenging task. Our testbed facilitates this

evaluation using model-based simulation integration, web-based

collaborative system and experiment modeling, and cloud

experiment execution. The testbed provides modular and

extensible attack libraries for the physical, cyber, and hardware

attacks. Also, the testbed provides modeling and experimentation

with Courses-of-Action (COAs) that enable analysis with

different what-if and gaming scenarios. The COAs provide an

intuitive means to enable system analysts to perform many

scenario-driven experiments over the same integrated simulation.

These sophisticated modeling and experimentation capabilities

make our testbed a robust, powerful, and scalable platform for

analyzing the security and resilience of CPSs.

ACKNOWLEDGMENTS

This work was supported in part by Air Force Research

Laboratory under Award FA 8750-14-2-0180, National Science

Foundation under Grant CNS-1238959, and National Institute of

Standards and Technology under Award 70NANB17H266. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the funding agencies.

REFERENCES

[1] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control

technology, vol. 12, pp. 161–166, 2011.

[2] “IEEE Std 15162010, IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA) - Framework and Rules”, pp. 1–38, 2010.

[3] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V.

Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a science of cyber–

physical system integration,” Proceedings of the IEEE, vol. 100, no. 1, pp.

29–44, 2012.

[4] M. Maroti, R. Kereskenyi, T. Kecskes, P. Volgyesi, and A. Ledeczi, “Online

collaborative environment for designing complex computational systems,” in

The International Conference on Computational Science (ICCS 2014).

Elsevier Procedia, 06/2014 2014.

[5] Hemingway, G., H. Neema, H. Nine, J. Sztipanovits, and G. Karsai, “Rapid

Synthesis of High-Level Architecture-Based Heterogeneous Simulation: A

Model-Based Integration Approach”, SIMULATION, vol. March 17, 2011

0037549711401950, no. March 17, 2011, Online, Simulation: Transactions of

the Society for Modeling and Simulation International, pp. 16, 03/2011.

[6] Neema, H., H. Nine, G. Hemingway, J. Sztipanovits, and G. Karsai, “Rapid

Synthesis of Multi-Model Simulations for Computational Experiments in C2”,

Armed Forces Communications and Electronics Association - George Mason

University Symposium, issue Critical Issue in C4I, Lansdowne, Virginia,

05/2009.

[7] “Matlab/simulink.” [Online]. Available:

https://www.mathworks.com/products/simulink.html

[8] A. Varga, “The OMNeT++ discrete event simulation system. in: Proceedings

of the european simulation multiconference (ESM’2001),” Prague, Czech

Republic, 2001.

[9] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri nets and CPNtools

for modelling and validation of concurrent systems,” International Journal on

Software Tools for Technology Transfer, vol. 9, no. 3-4, pp. 213–254, 2007.

[10] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO – Simulation

of Urban MObility: An overview,” in Proceedings of the 3rd International

Conference on Advances in System Simulation (SIMUL), 2011, pp. 63–68.

[11] “Traindirector.” [Online]. Available: http://www.backerstreet.com/traindir/

[12] D. P. Chassin, J. C. Fuller, and N. Djilali, “Gridlab-d: An agent-based

simulation framework for smart grids,” Journal of Applied Mathematics, vol.

2014, 2014.

[13] Sztipanovits J., Karsai G.: Model-Integrated Computing. In: IEEE Computer

30, 1997, pp. 110-112.

[14] Varda, Kenton. "Protocol buffers: Google’s data interchange format." Google

Open Source Blog, Available at least as early as Jul 72 (2008).

[15] Hintjens, Pieter. ZeroMQ: messaging for many applications. " O'Reilly Media,

Inc.", 2013.

[16] D. Halperin, T. S. Heydt-Benjamin, K. Fu, T. Kohno, and W. H. Maisel,

“Security and privacy for implantable medical devices,” IEEE Pervasive

Computing, vol. 7, no. 1, 2008.

[17] J.-P. Hubaux, S. Capkun, and J. Luo, “The security and privacy of smart

vehicles,” IEEE Security & Privacy, vol. 2, no. 3, pp. 49–55, 2004.

[18] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady, “Enhancing security and

privacy in traffic-monitoring systems,” IEEE Pervasive Computing, vol. 5, no.

4, pp. 38–46, 2006.

[19] J. Giraldo, E. Sarkar, A. Cardenas, M. Maniatakos, and M. Kantarcioglu,

“Security and privacy in cyber-physical systems: A survey of surveys,” IEEE

Design & Test, 2017.

[20] C. Davis, J. Tate, H. Okhravi, C. Grier, T. Overbye, and D. Nicol, “SCADA

cyber security testbed development,” in 38th North American Power

Symposium (NAPS 2006), 2006, pp. 483–488.

[21] T. Kropp, “System threats and vulnerabilities [power system protection],”

IEEE Power and Energy Magazine, vol. 4, no. 2, pp. 46–50, 2006.

[22] M. Mallouhi, Y. Al-Nashif, D. Cox, T. Chadaga, and S. Hariri, “A testbed for

analyzing security of SCADA control systems (TASSCS),” in 2011 IEEE PES

Innovative Smart Grid Technologies (ISGT),, 2011, pp. 1–7.

[23] “Openstack cloud.” [Online]. Available: www.openstack.org

[24] “InfluxDB database.” [Online]. Available: www.influxdata.com.

