
Dynamic Software Reconfiguration in Sensor Networks*

Sachin Kogekar, Sandeep Neema, Xenofon Koutsoukos
Institute for Software Integrated Systems (ISIS)

Department of Electrical Engineering and Computer Science
Vanderbilt University

{Sachin.Kogekar,Sandeep.Neema,Xenofon.Koutsoukos@vanderbilt.edu}

* This work is supported in part by NSF Career grant CNS-0347440 and a grant from Xerox Corp.

Abstract

Reconfiguration and self-adaptation are vital
capabilities of sensor networks and networked
embedded systems that are required to operate in
dynamic environments. This paper presents an
approach for software reconfiguration based on
exploration of the design space of the application.
The design space is represented by formally modeling
all the software components, their alternative
implementations and their interactions.
Reconfiguration is triggered by monitoring the
system and is performed by transitioning to a new
configuration that satisfies the system constraints.
The approach is demonstrated using experimental
results for a representative tracking application.

1. Introduction

Wireless sensor networks consist of a number of
nodes spread across a geographical area, deployed in
an ad hoc manner. The nodes are equipped with
sensors, wireless communication, occasionally
actuators, and computation capabilities. Applications
are characterized by dynamic functional and
performance requirements due to the uncertainty and
variability of the environment.

Reconfiguration and self-adaptation are vital
capabilities of sensor networks that are required to
operate in dynamic environments. Dynamically
adaptive software consists of tasks that detect system
changes, reflect on the event occurrences, and adapt
to the new operating conditions. Runtime
technologies that allow software to evolve as system
requirements change are critical because they enable
such systems to operate under multiple conditions.

One type of reconfiguration is already
implemented in wireless sensor networks using
dynamic and ad hoc routing. We are concerned with
a richer form of reconfiguration which allows

changing the functionality of individual nodes in the
network in response to changes in the environment
and/or usage. More importantly, we argue that the
reconfiguration architecture should allow deriving a
suitable configuration on-line as it would be
infeasible to pre-compute all operating conditions,
and thus all viable system configurations.

This paper presents an approach for constraint-
based dynamic software reconfiguration in sensor
networks. We have prototyped a software
architecture using an 8-node sensor network and we
present experimental results to evaluate the approach.
The key components of our approach include: (i) A
domain-specific modeling environment, designated
the “Sensor Network Reconfiguration Architecture
Modeling Language” (SNRAMoLa), instantiated in
the meta-programmable generic modeling
environment GME [6], (ii) A constraint-based
design-space exploration tool, designated
“DESERT”, that allows derivation of feasible
configurations, and (iii) A suite of runtime
components and services that allow monitoring the
operating conditions and enacting the reconfiguration
instructions.

Early results of this work have been presented in
[7] where we investigated dynamic software
reconfiguration for sensor networks based on the
Berkeley MICA motes and TinyOS [5]. Developing
the reconfiguration infrastructure on the motes was
not possible because of the severe hardware
constraints and the static nature of TinyOS and the
approach was demonstrated only using simulation
results. This paper focuses on the implementation of
the reconfiguration approach for a sensor network
consisting of 8 Linux-based sensor nodes equipped
with cameras and communicating via 802.11b.

The paper is organized as follows. Section 2
discusses related work. The reconfiguration
architecture is presented in Section 3. Section 4
presents the modeling environment and Section 5

briefly discusses design space exploration. The
reconfiguration infrastructure is presented in Section
6 and a case study using a simple tracking application
is presented in Section 7. Conclusions are discussed
in Section 8.

2. Related work

A generic architecture for adaptation in pervasive
networks using a client/server networking example is
presented in [3]. The work in [2] presents a
lightweight infrastructure for managing dynamic
reconfiguration in component-based, distributed
software systems. An approach to carry out
reconfiguration for fault tolerance is suggested in [4].
A framework for supporting the construction and
dynamic reconfiguration of distributed multimedia
applications is presented in [9].

The approaches summarized above focus
primarily on the constructs and mechanisms for
enacting a reconfiguration. However, there is very
little emphasis on determining what the next
configuration should be. Most of the approaches pre-
compute the configurations and at runtime do a
simple table lookup to decide the next configuration.
In sensor network applications the number of
potential configurations are simply too many to pre-
compute. Our emphasis therefore is on scalable
constraint-based techniques for determining network
configuration during runtime.

3. Reconfiguration architecture

Central to our approach is the ability to explicitly
represent and manipulate the design space of the
embedded application, which we also term the
operation space when embedded in the running
application. We define reconfiguration as the process
of transitioning from one point in the operation space
to another. This space is captured by formally
modeling all the software components, their
alternative implementations, and their interactions
that together constitute an application. The
applications are modeled using the Asynchronous
Data Flow model of computation [8]. Components
interact by exchanging data through input and output
ports, which constitute the input and output interfaces
of components. System requirements are expressed as
formal constraints on operational parameters such as
power consumption, latency, accuracy, and other
Quality-of-Service (QoS) properties that are
monitored at runtime. Object Constraint Language
(OCL) [11], a standard-based declarative language is
used for expressing constraints.

Determining the new configuration is a search
problem in the operation space. The exploration of
the operation space is a challenging problem since it
must be performed within stringent time bounds and
resource constraints. An efficient approach for
performing this search is based on (1) parameterized
constraints captured in the embedded models and (2)
online constraint solving using a combination of
symbolic constraint satisfaction and linear
programming. Once a new configuration that satisfies
all the constraints is found, the reconfiguration can be
accomplished by online software synthesis targeting
either an interpreted language or a command
interface.

Reconfiguration thus involves two major tasks: (i)
finding the new configuration and (ii) switching or
reconfiguring the components that are actually
executing on the individual sensors. These tasks are
performed by architectural components, as depicted
in Figure 1. The first task is performed by a
component that runs on the base station while the
second task is performed on individual sensors by
specialized switching components.

Figure 1. Reconfiguration architecture

During design time, the entire application is
modeled using SNRAMoLa. The application model
captures the system design space, constraints, and
QoS attributes in the models. During operation, the
Global Constraint Monitor (GCM), executing on the
base station, monitors the sensor nodes using the
Monitor components executing on individual nodes.
The collated monitor data is used to update the QoS

Base Station

SNRAMoLa
Model DESERT

Conf File N

Configuration
File 1

Global Constraint
Monitor

Node N

Node 2
Node 1

Monitor Configurator

Application

Design Space
Representation

Design
Configuration

Vector
QoS

Parameters

Reconfiguration

attributes captured in the application models. The
GCM is also tasked with characterizing the QoS
parameter changes, and any change bigger than
predetermined QoS thresholds causes the GCM to
initiate the reconfiguration process.

The first task of determining a new configuration
is performed by invoking the design exploration tool
DESERT [10]. DESERT prunes the design space
retaining only the configurations that are valid with
respect to the constraints. The output of DESERT is
used to generate a set of configuration files, one for
each sensor.

The next task is performed by dispatching the new
configuration files to the nodes over the ad hoc
wireless network. A Configurator component on
individual nodes executes the reconfiguration
instructions to stop, rewire and/or start active and
dormant application components. In our current
architecture the software for alternate components is
already present on the sensor nodes to lower the
reconfiguration latency, however this does not
preclude downloading new component binary
execution code on to the sensors.

4. Modeling reconfigurable applications

We have developed SNRAMoLa, a graphical
modeling language, to model the design space of the
sensor network application. In the meta-
programmable modeling environment GME [6],
modeling languages are defined with UML class-
diagrams. Commonly referred to as a “meta-model”,
these capture the abstract and concrete syntax of a
modeling language, while structural semantics are
captured with OCL constraints. Note that this use of
OCL constraints is different from the one mentioned
earlier to express the operational constraints.

In addition to the syntax, and structural semantics,
the operational semantics of a modeling language are
indicated by selecting a model of computation. In
SNRAMoLa, we choose the Asynchronous Data
Flow (ASDF) model of computation [8]. In ASDF,
algorithms are described as directed graphs where the
nodes represent computations (or functions) and the
arcs represent data paths. Any node can fire (perform
its computation) whenever input data is available on
its incoming arcs. A node with no input arcs may fire
at any time. This implies that many nodes may fire
simultaneously, and hence represent concurrency.

SNRAMoLa enables the user to represent sensor
network applications in the form of a dataflow graph.
The application graph is composed of components
that exchange data through ports. Figure 2 shows the
meta-model of SNRAMoLa. The core concepts in the
SNRAMoLa are Component-s, InPort-s, OutPort-s,

DataFlow connection-s, Choice-s and Condition-s.
The Sensor and SensorFolder objects contain the
application graph, which is composed of the core
objects. The ComponentsFolder object contains all
the non-reconfigurable Component objects. Non-
reconfigurable Component objects cannot be replaced
by any other components in the application by
DESERT during the reconfiguration process and are
always included in the application configuration.

Figure 2. SNRAMoLa meta-model

Each SNRAMoLa model contains exactly one
SensorFolder object. The SensorFolder acts as a
container for all the Sensor objects, which model
sensor node devices. Each application model also
contains exactly one ComponentsFolder object. This
object contains all the non-reconfigurable Component
objects that are included in the application. The
components are then only referred in the actual
application graph built in the Sensor objects.

Separate Sensor objects for each sensor are
declared inside the SensorFolder object. Sensor
objects represent the actual sensor nodes in the sensor
network. This enables the user to model different
applications (applications composed of different
components) for different sensors in the network. The
graphs for the application executing on each sensor
are then built inside these Sensor objects. The
application graph is composed of the core
Component, Choice and Condition objects.

A Component object represents a separate process
in the application executing on the sensor devices.
Components may contain InPort(s) and OutPort(s) if
they exchange data with other Components. A
Component is reconfigurable if it can be replaced by
another Component in the application graph during
the reconfiguration. Non-reconfigurable components
are declared in the ComponentsFolder and referenced
in the application graph built on individual Sensor
objects while reconfigurable components are declared
in the Choice objects, which form containers for
alternative Components. Each Component also has an
attribute called ‘Path’ which identifies the physical
path of the executable that is invoked when starting

the Component. This attribute is used by the
Configurator component on the individual nodes to
execute the corresponding process represented by
that Component.

An InPort object represents an input port of a
Component object. It is declared inside a Component
object and used to accept data from another
Component object. A Component object can have
any number of InPort objects but each InPort object
can be connected to at most one corresponding
OutPort object declared inside another Component or
Choice object using the DataFlow connection object.

An Outport object represents an output port of a
Component object. It is also declared inside a
Component or Choice object and used to send data to
another Component object. A component can have
any number of OutPort objects but each OutPort
object can be connected to at most one corresponding
InPort object, declared inside another Component
object, using the DataFlow connection object.

A DataFlow object is a connection object that
links an output port of a Component object
represented by an OutPort object with an input port
another Component object represented by an InPort
object. It models the asynchronous flow of data from
one application component to another. The DataFlow
object along with the InPort and OutPort objects is
implemented in the reconfiguration software
infrastructure using shared memory.

As the name suggests, a Choice object facilitates
the user to model reconfigurable or mutually
replaceable Component objects in the application
graph. At any given instance, only one process from
the collection of processes represented by the
Component objects declared in a given Choice object
actually executes in an application. A Choice object
also contains a Condition object, which specifies the
condition expressed in OCL in its Expression
attribute. During the reconfiguration process,
DESERT evaluates all the constraints modeled as
Condition objects over all the Component objects
declared in the respective Choice objects and selects
only one Component object to be included in the final
application graph from each Choice object. The
selection is based on the value of the QoS attributes
of the Component objects.

The SNRAMoLa paradigm enables the user to
model complex component based sensor network
applications in an intuitive manner. The
communication links between various components
are clearly expressed using the InPort, OutPort and
DataFlow objects. The paradigm enables the user to
model components that can be replaced by others
during runtime along with the constraints that govern
the selection of the appropriate components from the

collection of alternatives. The user can visualize the
applications executing on individual sensor nodes
along with all the active and passive components of
the application and maintain different versions of the
application on individual sensors if needed. An
example of a reconfigurable application model in
SNRAMoLa is described in Section 7.

5. Design space exploration

This section briefly elaborates upon the design space
representation and exploration techniques, as
implemented in the tool DESERT [10].

Formally, a design space is a set and can be
symbolically formulated as follows. A configuration
is a particular selection of choices in the space. Let

()dConfigs be the set of all configurations that

include an element d , and ()dχ be the set of

children of d . Also let jD be the set of values of

property j , and let ()lP be the set of properties in a
leaf element l . Then, the set of possible instantiations

()lPS of the leaf element l can be defined as:

()
()

∏=
lP

j
jDlPS (1)

The set of configurations can be constructed
recursively, depending on element decomposition, as
follows:

()

()

()
()

()
()














=

∈

∈
∏

OR

AND

LEAF

∪
dx

dx

xConfigs

xConfigs

dPS

dConfigs

χ

χ

 (2)

Let, kℜ be the root element of the k -th space,

then ()kConfigs ℜ is the set of all configurations in
the k -th space. The aggregate design space can now
be defined as:

()∏ ℜ=
k

kConfigsDS (3)

Design-spaces can be combinatorially large,
rendering all enumerative techniques infeasible.
Fortunately, the structuring of design space as sets,
lends itself suitable to application of symbolic
techniques. We employ a binary encoding for the
elements of the design space (see [10] for details),
and construct the entire space symbolically as
Boolean functions represented with Ordered Binary
Decision Diagrams [1], a powerful and scalable tool
for manipulation of Boolean functions.

There are two basic categories of structural
constraints that DESERT can compute efficiently.
Compatibility and Inter-space constraints specify
relations among subspaces in the overall design space
expressing semantic compatibility between different
elements. Symbolically, these constraints can be
represented as a Boolean expression over the Boolean
representation of the elements of the design-space.
Property constraints specify bounds on the
composite properties of elements in the composed
system. The important challenge for the property
constraints are that they are derived from structural
characteristics of designs. A combination of additive,
min, and max type of composition function can be
used expressed such constraints in DESERT.

The primary advantage of the symbolic design
space pruning approach is that it is exhaustive, i.e.
the pruned space includes all of the designs which
meet the applied design constraints. In our approach,
the first amongst all the valid configurations
generated by DESERT is selected. A significantly
simpler, but still useful alternative approach to design
space pruning could be to find a single design
configuration (not all), which satisfies the selected
design constraints.

6. Reconfiguration infrastructure

Once the application is deployed the tasks of design
space exploration, communication of the
configuration to the sensors, monitoring the sensors
and updating QoS parameters in the models are
performed in a cyclical manner. During the
reconfiguration process, the application model is
converted to a format acceptable to DESERT by the
SNRAMoLa to DESERT Interpreter (for details of
this mapping see [7]). The converted data is fed to
DESERT as an XML file. DESERT applies the
constraints present in the model and generates
another XML file, which enumerates the design
configurations in the pruned space. The DESERT to
Configurator interpreter then generates a
configuration file for each Sensor object present in
the SNRAMoLa model, for the selected design
configuration.

The DESERT to Configurator Interpreter reads
from the SNRAMoLa model file and the DESERT
output file (XML file) and creates individual
configuration files for each Sensor object declared in
the SNRAMoLa model. These configuration files are
identified by the sensor nodes which are identified by
the Sensor objects in the SNRAMoLa model. The
configuration files are then physically transported to
the nodes over the wireless network.

The Configurator is the most important
component of the software reconfiguration
infrastructure. A copy of the Configurator executes
on all the sensor devices. The Configurator
implements the reconfiguration infrastructure by
maintaining two link-list data structures and a
memory ID counter. The Processes link-list stores
information about all the processes that are currently
executing on the node. When a new component is
added in the configuration file, the Configurator adds
a new process in the list before executing it. The
Links link-list stores all the information about the
shared memory that is used to pass data between two
processes. The Configurator creates and maintains
connections between the processes (using shared
memory) so that the source and destination processes
can exchange information.

During initialization, the Configurator opens a
socket to listen for incoming signals from the base
station. After initialization, the Configurator goes in
an infinite loop where it continues to listen for new
messages on the open port coming from the base
station. Upon receiving a message, it performs
reconfiguration activities and then goes back to
listening for new messages.

The Monitor components execute on each node
and monitor QoS parameters of itself and its
immediate neighbors. The GCM executes on the base
station and receives messages with the QoS
parameters of each node. The GCM updates the QoS
parameters in the SNRAMoLa models of the
application and then invokes the reconfiguration
process on the base station. The configuration files
are then sent to the nodes where the actual
reconfiguration takes place.

7. Case study

Our sensor network test-bed consists of eight Red
Hat Linux OpenBrick-E wireless devices [12] and a
Windows XP base station. The OpenBrick-E has a
small form factor and it includes a USB-based
802.11b wireless LAN with a 2 dbi antenna. Each
node is equipped with a Logitech QuickCam Pro
4000 webcam. The base-station is connected to one
sensor node through a wired 802.3 LAN connection
and is used to carry out computation intensive tasks
in the reconfiguration process. The eight nodes are
configured to form a private ad hoc wireless network
as shown in Figure 3. The reconfiguration software
and the applications generate UDP packets and route
them to the destination using IP. An implementation
of the Ad hoc On Demand Distance Vector (AODV)
provided by NIST [13] is used for routing.

Figure 3. Sensor network setup

The distributed aislemonitor application is
designed to perform one-dimensional tracking of
people walking in an aisle. Figure 4 shows the
operational setup for this application. The collective
range of the sensor network is 37 feet. The nodes are
kept equidistant from each other along a straight line
in the aisle so that the fields of view (FOV) of their
webcams overlap. The application tracks people
walking using the webcams and estimating their
position in the aisle. When a person moves from the
FOV of one device to another, the device
communicates with its neighbor and hands over the
track. Although there may be multiple people in the
aisle, for simplifying the tracking it is assumed that
there is a single person in the FOV of each node at a
given time. The sampling frequency for the study was
set to 4 frames per second.

Figure 4, Application setup

Figure 5 shows the functional flow graph of the
aislemonitor application for a single node. The key
components are ImageSensor, Receiver, Estimator,
and DataCollector. We have developed two
alternative implementations of the Estimator and the
DataCollector component, thus the application on a
single node can execute in one of four possible
configurations. The alternative implementations of
the Estimator and DataCollector components are
designed to work together. Thus, there are two valid
configurations of the functional flow graph.

Figure 5. Aislemonitor functional graph

The ImageSensor component is responsible for
detecting motion based on the difference between the
current image and a background image of the aisle
and computing the position of the center of mass of
the person in the image. The Receiver component
receives data packets from neighboring nodes by
establishing a connection during initialization. The
Estimator1 component implements a Kalman filter,
which takes the position and speed passed by the
ImageSensor component as input to calculate the
most likely position of the person in the aisle. The
Estimator2 component is similar to Estimator1.
However, in addition to tracking people in its own
FOV, Estimator2 also implements a function for
predicting the position and the speed if the person is
in the FOV of a neighboring node that is disabled.
The prediction function implements the dynamical
model used by the prediction step of the Kalman
filter initialized with the last available position and
speed. The DataCollector1 component receives the
position and speed of the person from Estimator1 and
either records the values or hands over the track to
the neighbor node. The DataCollector2 component is
also similar to the DataCollector1 but it also
distinguishes between the data obtained by prediction
or Kalman filtering to enable the correct initialization
of the track in the next node.

The Receiver and the ImageSensor components
continue to execute even during reconfiguration.
Only the Estimator1 and DataCollector1 components
are stopped and their alternatives are started. The
SNRAMoLa model of this application is shown in
Figure 6. It depicts the dataflow graph of the
application components, and the alternative
implementations of the Estimator component. The
model also captures constraints that are evaluated
over the design space for the application, at design
time and runtime (dynamic constraints). Some of the
example constraints are listed below:
C1. (EstimatorChoice.implementedBy() =

EstimatorChoice.Estimator1 implies
DataCollectorChoice.implementedBy() =
DataCollectorChoice.DataCollector1) and
(EstimatorChoice.implementedBy() =
EstimatorChoice.Estimator1 implies
DataCollectorChoice.implementedBy() =
DataCollectorChoice.DataCollector1)

C2. (power() < Pavailable)

Receiver

Estimator1 (2) DataCollector1(2)

Data
Flow

OutPort

InPort

ImageSensor

Wired
LAN

Node 1 Node 8

…

Base
Station

37 feet

Sensor node Aisle
Overlap

Field of view

C3. (accuracy() > Adesired)

where Pavailable is currently available total power of
the nodes, a runtime parameter that is computed by
the monitors on the sensor and updated in the models
by the reconfiguration controller. Adesired is the current
accuracy requirements of the application, computed
by the monitors on the sensor nodes depending upon
the time of the day, the density of traffic in the
monitored aisle, and user preferences.

Figure 6. Application model

The application on each node can operate in one
of two possible configurations, and additionally a
sensor node could be turned off to save power. The
overall system can thus operate in 729 (38)
configurations. However, the application
functionality requires that for each node that is turned
off, its nearest neighbor must be in the second
configuration (Estimator2 and DataCollector2),
otherwise it should be in the first configuration
(Estimator1 and DataCollector1), thus limiting the
number of valid configurations to 69. The
reconfiguration is driven by a QoS parameter vector

],,[81 ppPav …= where ip indicates the available
power on a node, and QoS parameter desiredA that
indicates the desired accuracy. The monitor
component on each sensor node monitors the
available power (using a battery sensor) and updates
the reconfiguration controller with this information
periodically (every 10 sec in the experimental setup).
The reconfiguration controller updates the model, and
invokes the DESERT tool to solve these constraints
on-line. We choose a simple linear composition for
power, i.e. the power consumption of each node is a
linear sum of the power consumption by each
component, and the system wide power consumption
is a linear sum of the power consumption of each
node. The power consumption of the second

configuration is higher than the power consumption
of the first configuration due to the higher
computation complexity of the algorithms. Similarly,
we chose a linear composition model for accuracy,
i.e. the application accuracy is a linear function of
number of nodes in the application that are turned on.

Given the runtime available power and the desired
accuracy, DESERT returns a set of valid
configurations which could include nodes that are
operating in first configuration, second configuration,
or are turned off. The reconfiguration controller
simply returns a configuration and starts computing
the instructions necessary to ‘reconfigure’ the system.
In order to reconfigure nodes from the first
configuration to second configuration, instructions
for stopping Estimator1 and DataCollector1
components are sent, followed by instructions for
starting Estimator2 and DataCollector2. The
ImageSensor and Receiver components are not
affected by the reconfiguration. In order to
reconfigure nodes from any of the configurations to
‘off’, instructions are sent to set the nodes in
hibernation (can be woken by a command sent over
the network). It should be noted that our approach is
not limited to switching components alone but can
handle cases where the new application graph will be
different.

A series of experiments with 1, 2, and 3 people
walking in the aisle were performed to evaluate the
software reconfiguration approach. Figure 7 displays
representative results for tracking a single person.
The line ‘Configuration 1’ corresponds to the case all
nodes are executing the first configuration. The
‘Sensing Gap’ is obtained with the 4th node disabled
but still all the remaining nodes execute configuration
1. As it can be seen from the figure, there is a gap
between 220in and 375in. Also the next node needs
to reinitialize track after the gap which causes an
additional error. The line ‘Configuration 2’ illustrates
the case when the 4th node has been disabled but
nodes 3 and 5 run the second configuration. A
dynamical model is used to predict the positions in
the gap and there is no need to initialize a new track.

The reconfiguration approach was evaluated by
recording the times at which various activities took
place. During the tests, time was recorded when (1)
the Monitor on the third node sent a message to the
GCM, which triggered the reconfiguration process,
(2) new configuration files were sent by the base
station to the third node, (3) configuration files were
received by the Configurator on the third node, (4)
reconfiguration commenced on the third node, and
(5) reconfiguration was completed.

0
50

100
150
200
250
300
350
400
450
500

0.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000

Time (seconds)

Di
st

an
ce

 (i
nc

he
s)

Configuration 1 Sensing Gap Configuration2

Figure 7. Tracking results

The overhead of the reconfiguration process was
measured by performing 10 experiments. The
reconfiguration process from the receipt of the
message from the node to the dispatch of a new
configuration file to it took in average 10 sec. The
Configurator upon receipt of a new configuration file
performs the actual software reconfiguration on the
node in average 8 sec. The total reconfiguration
process took in average 18 sec (28 sec if the time
required for monitoring is considered). The results of
the experiments are summarized in Table 1.

Table 1. Time required for reconfiguration
Component Location Time (sec)
Monitor Sensor node 10
GCM and Controller Base station 10
Configurator Sensor node 8
Total Time 28
Total Reconfiguration Time 18

The experiments carried out for evaluation of the
software reconfiguration architecture produced
satisfactory results. Although the time required for
reconfiguration is still considerable it is a major
improvement than performing this activity manually.
In addition, our software infrastructure allows the
selective switching of components without affecting
the entire application. For example, during the
reconfiguration the ImageSensor component is still
active and can store its output while switching and
rewiring the Estimator component and therefore,
except the delay introduced, the application can
continue seamlessly.

8. Conclusions and future work

We have demonstrated an approach for constraint-
based dynamic software reconfiguration in sensor
networks. Although we used a sensor network
consisting of Linux-based sensor nodes
communicating via 802.11b, the approach can be
modified for other sensor networks in a
straightforward manner. In our case study, we didn’t
have any problems related to network connectivity.
For large networks, it’s likely that connectivity will
affect the method and especially the time required for

reconfiguration. Since the design space exploration is
performed in the base station, the approach is well-
suited for small to medium sensor network
applications. Scalability as the number of nodes and
software components increases is a very significant
issue. To address this issue, reconfiguration must be
performed in-network and such methods are currently
under investigation.

9. References

[1] R. Bryant, “Symbolic Boolean manipulation with

ordered binary-decision diagrams,” ACM Computing
Surveys, 24(3), 293-318, 1992.

[2] M. Castaldi et al., “A Lightweight Infrastructure for
Reconfiguring Applications,” In Proc. of 11th Software
Configuration Management Workshop, Portland,
Oregon, USA, May, 2003.

[3] S-W. Cheng et al., “Software Architecture Based
Adaptation for Pervasive Systems,” Int. Conference on
Architecture of Computing Systems and Trends in
Network and Pervasive Computing, Karlsruhe,
Germany, April 8-11, 2002.

[4] M.D. Derk and L.S. DeBrunner, “Reconfiguration for
Fault Tolerance using Graph Grammars,” ACM Trans.
on Computer Systems, 16(1), 41-54, 1998.

[5] J. Hill and D. Cullar, “MICA: A Wireless Platform for
Deeply Embedded Networks.” IEEE Micro, 22(6), 12-
24, Nov./Dec. 2002.

[6] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty.
“Model-Integrated Development of Embedded
Software.” Proceedings of the IEEE, 91(1):145-164,
2003.

[7] S. Kogekar et al., “Constraint-Guided Dynamic
Reconfiguration in Sensor Networks,” In Proc. of
Information Processing in Sensor Networks, IPSN ’04,
Berkeley, California, April 26-27, 2004.

[8] E.A. Lee and T.M. Parks, “Dataflow Process
Networks”, Proceedings of the IEEE, 83(5): 773-801,
May 1995.

[9] D. Mitchell et al., “A QoS Support Framework for
Dynamically reconfigurable Multimedia
Applications,” In Proc. of the IFIP WG 6.1 Int.
Working Conference on Distributed Applications and
Interoperable Systems II, p.17-30, June, 1999.

[10] S. Neema et al., “Constraint-Based Design-Space
Exploration and Model Synthesis.” LNCS 2855, pp
290-305, Sept 2003, Springer.

[11] J.B. Warner and A.G. Kleppe A, The Object
Constraint Language: Precise Modeling With UML,
Addison-Wesley, 1999.

[12] http://www.openbrick.org
[13] http://w3.antd.nist.gov/wctg/aodv_kernel

